Intelligent numerical control turning system for processing shaft parts

文档序号:398301 发布日期:2021-12-17 浏览:20次 中文

阅读说明:本技术 一种用于加工轴类零件的智能化数控车削系统 (Intelligent numerical control turning system for processing shaft parts ) 是由 谢波 赵芳 于 2021-09-22 设计创作,主要内容包括:本发明涉及智能车削领域,具体是涉及一种用于加工轴类零件的智能化数控车削系统,包括,车床主体;给料机构,设置在车床主体的一侧;送料机构,设置在车床主体的一侧,且送料机构位于给料机构的底部;移放料机构,包括有,安装架,设置在车床主体、给料机构和安装架之间;旋转轴,转动设置在安装架上,且旋转轴与车床主体的卡盘同轴向,且旋转轴位于车床主体的车削区、给料机构的出料端和送料机构的进料端的中心位置;第一夹轴臂和第二夹轴臂,第一夹轴臂和第二夹轴臂沿径向设置在旋转轴的圆周面上;回转驱动组件,设置在安装架上;推辊驱动组件,设置在安装架上,本发明能够实现轴类零件的自动化车削加工,其上料、卸料过程无需人工参与,自动化程度高。(The invention relates to the field of intelligent turning, in particular to an intelligent numerical control turning system for processing shaft parts, which comprises a lathe main body; the feeding mechanism is arranged on one side of the lathe body; the feeding mechanism is arranged on one side of the lathe body and is positioned at the bottom of the feeding mechanism; the material moving and discharging mechanism comprises a mounting frame, a feeding mechanism and a discharging mechanism, wherein the mounting frame is arranged among the lathe body, the feeding mechanism and the mounting frame; the rotating shaft is rotatably arranged on the mounting frame, is coaxial with the chuck of the lathe body, and is positioned in the center of the turning area of the lathe body, the discharge end of the feeding mechanism and the feed end of the feeding mechanism; the first shaft clamping arm and the second shaft clamping arm are arranged on the circumferential surface of the rotating shaft along the radial direction; the rotary driving assembly is arranged on the mounting frame; the push roller driving assembly is arranged on the mounting frame, automatic turning of shaft parts can be achieved, manual participation is not needed in the feeding and discharging processes, and the degree of automation is high.)

1. A turning system for machining shaft parts, comprising: the lathe comprises a lathe body and a feeding mechanism, wherein the lathe body is used for turning shaft parts, and the feeding mechanism is used for feeding the shaft parts to a chuck of the lathe body; it is characterized in that the preparation method is characterized in that,

the feed mechanism includes:

the feeding mechanism is used for conveying the shaft parts to be turned along a preset direction;

the material moving mechanism is used for moving the shaft parts on the feeding mechanism to a position which can be clamped by a chuck of the lathe body or taking the shaft parts which are turned out from the chuck;

and the feeding mechanism is used for receiving the turned shaft parts taken out by the material moving mechanism and moving the received shaft parts along a preset direction.

Move material mechanism includes:

a mounting frame;

the rotating shaft is rotatably arranged on the mounting frame, and the axis of the rotating shaft is parallel to the axis of the chuck;

first press from both sides beam arm and second press from both sides the beam arm, respectively along the perpendicular to the axis direction of rotation axis extends, when observing on the axis of rotation axis, first press from both sides beam arm and second press from both sides the beam arm and have certain contained angle, the contained angle satisfies when first press from both sides the beam arm when the axle type part that the centre gripping was located on feed mechanism, and the axle type part that the second pressed from both sides the beam arm can the centre gripping was located on the chuck to when first press from both sides the beam arm and put into the chuck with the axle type part of centre gripping, the axle type part that the second pressed from both sides the beam arm can be put the centre gripping is in feed mechanism is last.

2. A turning system for machining shaft parts according to claim 1, the feeding mechanism comprises a double-roller chain conveying assembly which is positioned on the opposite side of the axis of the chuck relative to the rotating shaft when viewed from the top, the height of the side of the double-roller chain conveying component close to the rotating shaft is lower than that of the side far away from the rotating shaft, the lower side of the double-roller chain conveying assembly is higher than the rotating shaft, the shaft parts to be turned are placed on the double-roller chain conveying assembly, the double-roller chain conveying assembly can drive the shaft parts above the double-roller chain conveying assembly to move towards the direction close to the rotating shaft and stop when the shaft parts to be turned move to the designated position, and the first shaft clamping arm clamps and takes away the shaft parts to be turned at the designated position.

3. The turning system for processing shaft parts according to claim 2, wherein two mounting discs are arranged on the rotating shaft, each mounting disc is provided with a first clamping arm and a second clamping arm, the first clamping arm and the second clamping arm on each mounting disc respectively extend along the radial direction of the rotating shaft and form the included angle, and the first clamping arm and the second clamping arm on the two mounting discs are respectively aligned one by one along the axial direction of the rotating shaft; first press from both sides the structure of beam arm and second and press from both sides the beam arm the same, all include telescopic cylinder and clamping jaw cylinder, telescopic cylinder's cylinder body is fixed on the mounting disc, telescopic cylinder's telescopic link is flexible along the extending direction of the first clamp beam arm that corresponds or second clamp beam arm, clamping jaw cylinder's cylinder body sets up on telescopic cylinder's the free end, clamping jaw cylinder's clamping jaw deviates from for its cylinder body the rotation axis, the centre gripping direction configuration of every clamping jaw cylinder's clamping jaw is for can carrying the axle type part that the level was placed.

4. The turning system for processing shaft parts according to claim 2, wherein the material moving mechanism further comprises a rotary driving assembly for driving the rotary shaft to rotate back and forth, the rotary driving assembly comprising:

a carriage slidably supported on the mount along an axial direction of the rotary shaft, the rotary shaft passing through the mount, the rotary shaft being rotatable but not axially movable relative to the mount;

a first gear rotatably provided on the carriage;

a second gear fixed to the rotary shaft and engaged with the first gear;

and the rotary cylinder is arranged on the sliding frame, the output end of the rotary cylinder is connected with the second gear, and the rotary cylinder is used for driving the rotating shaft to rotate by a preset angle.

5. The turning system for processing shaft parts according to claim 4, wherein the material moving mechanism further comprises an axial driving assembly for pushing the rotating shaft to move along the axial direction of the chuck so as to drive the shaft part clamped on the first clamping arm to move, so that one end of the shaft part can be inserted into the clamping groove of the chuck, the axial driving assembly comprises:

a sliding cylinder which is coaxially arranged with the rotating shaft and is slidably arranged on the mounting frame along the axial direction of the rotating shaft, wherein one end of the rotating shaft far away from the chuck is rotatably inserted into the sliding cylinder;

and the pushing cylinder is arranged on the mounting frame and used for driving the sliding cylinder to move back and forth along the axis direction of the sliding cylinder.

6. The turning system for machining shaft parts of claim 5, wherein the axial drive assembly further comprises a buffer structure comprising:

the pushing plate is positioned on the side opposite to the chuck relative to the rotating shaft and connected with the sliding cylinder through a plurality of fixing pins, a convex ring is arranged at one end, close to the pushing plate, of the sliding cylinder, the fixing pins are arranged at equal angles relative to the axis of the sliding cylinder, one end, away from the pushing plate, of each fixing pin penetrates through the convex ring, the fixing pins can slide relative to the convex ring along the axis direction of the rotating shaft, a limiting block is arranged at the other end of each fixing pin, a spring is arranged on the part, located between the convex ring and the pushing plate, of each fixing pin, and the spring is always in a compressed state, so that the pushing plate and the sliding cylinder always have the tendency of being away from each other; relative to the pushing plate, the pushing cylinder is positioned on the side opposite to the sliding cylinder, and a cylinder rod of the pushing cylinder is fixed on the pushing plate.

7. The turning system for processing shaft parts as claimed in claim 6, wherein a distance sensor is disposed on the sliding cylinder or the mounting frame for detecting the moving distance of the pushing plate, whether the shaft part is inserted into the chuck can be determined according to the moving distance of the pushing plate detected by the distance sensor, and when it is determined that the shaft part is inserted into the chuck, the clamping jaw cylinder of the first clamping arm is released and the telescopic cylinder is retracted; when judging during axle type part does not insert the chuck, the push cylinder withdrawal, the rotation axis is rotatory, makes the vertical setting up of first press from both sides the staff, opens clamping jaw cylinder, and axle type part can adjust its position in clamping jaw cylinder automatically at the action of gravity, and then clamping jaw cylinder presss from both sides tightly, and the rotation axis drives first press from both sides the staff rotation to make axle type part the axis with the axis collineation of chuck, push cylinder promotion rotation axis removes towards the chuck.

8. A turning system for machining shaft parts according to claim 1, characterized in that the lathe body is a common lathe or a numerically controlled machine tool.

9. A turning system for machining shaft parts, comprising: the lathe comprises a lathe body and a feeding mechanism, wherein the lathe body is used for turning shaft parts, the feeding mechanism is used for feeding the shaft parts to a chuck of the lathe body, and the feeding mechanism is separable from the lathe body;

the feed mechanism includes:

the feeding mechanism is used for conveying the shaft parts to be turned along a preset direction;

the material moving mechanism is used for moving the shaft parts on the feeding mechanism to a position which can be clamped by a chuck of the lathe body or taking the shaft parts which are turned out from the chuck;

and the feeding mechanism is used for receiving the turned shaft parts taken out by the material moving mechanism and moving the received shaft parts along a preset direction.

Move material mechanism includes:

a mounting frame;

the rotating shaft is rotatably arranged on the mounting frame, the axis of the rotating shaft is parallel to the axis of the chuck, the height of the rotating shaft on the mounting frame is adjustable, and the distance between the rotating shaft and the feeding mechanism in the horizontal direction perpendicular to the axis of the rotating shaft is adjustable;

first press from both sides beam arm and second press from both sides the beam arm, respectively along the perpendicular to the axis direction of rotation axis extends, when observing on the axis of rotation axis, first press from both sides beam arm and second press from both sides the beam arm and have certain contained angle, the contained angle satisfies when first press from both sides the beam arm when the axle type part that the centre gripping was located on feed mechanism, and the axle type part that the second pressed from both sides the beam arm can the centre gripping was located on the chuck to when first press from both sides the beam arm and put into the chuck with the axle type part of centre gripping, the axle type part that the second pressed from both sides the beam arm can be put the centre gripping on the feed mechanism, first press from both sides beam arm and second press from both sides the beam arm along its respective extension direction with the distance of rotation axis is adjustable.

Technical Field

The invention relates to the field of intelligent turning, in particular to an intelligent numerical control turning system for processing shaft parts.

Background

Turning refers to lathing as part of machining. Lathe machining mainly uses a lathe tool to perform turning machining on a rotating workpiece. The lathe is mainly used for processing shafts, discs, sleeves and other revolving or non-revolving workpieces with revolving surfaces, and is the most widely used type of machine tool processing in machinery manufacturing and repairing factories.

Shaft parts, particularly spindle parts, commonly exist in a numerical control turning process.

Because the weight of axle type part is big, especially after tens axle type parts are put together, weight often reaches hundreds of kilograms, consequently, the workman need spend a large amount of physical power and be used for the transport of axle type part to clamp axle type part dress on the lathe, this test to physical power is very harsh, and work efficiency is lower, can't realize automated production.

Disclosure of Invention

In order to solve the technical problem, an intelligent numerical control turning system for processing shaft parts is provided.

In order to achieve the above purposes, the technical scheme adopted by the invention is as follows:

a turning system for machining shaft parts, comprising: the lathe comprises a lathe body and a feeding mechanism, wherein the lathe body is used for turning shaft parts, and the feeding mechanism is used for feeding the shaft parts to a chuck of the lathe body;

the feed mechanism includes:

the feeding mechanism is used for conveying the shaft parts to be turned along a preset direction;

the material moving mechanism is used for moving the shaft parts on the feeding mechanism to a position which can be clamped by a chuck of the lathe body or taking the shaft parts which are turned out from the chuck;

and the feeding mechanism is used for receiving the turned shaft parts taken out by the material moving mechanism and moving the received shaft parts along a preset direction.

Move material mechanism includes:

a mounting frame;

the rotating shaft is rotatably arranged on the mounting frame, and the axis of the rotating shaft is parallel to the axis of the chuck;

first press from both sides beam arm and second press from both sides the beam arm, respectively along the perpendicular to the axis direction of rotation axis extends, when observing on the axis of rotation axis, first press from both sides beam arm and second press from both sides the beam arm and have certain contained angle, the contained angle satisfies when first press from both sides the beam arm when the axle type part that the centre gripping was located on feed mechanism, and the axle type part that the second pressed from both sides the beam arm can the centre gripping was located on the chuck to when first press from both sides the beam arm and put into the chuck with the axle type part of centre gripping, the axle type part that the second pressed from both sides the beam arm can be put the centre gripping is in feed mechanism is last.

Preferably, the feeding mechanism comprises a double-roller chain conveying assembly, the double-roller chain conveying assembly is located on the side opposite to the axis of the chuck relative to the rotating shaft when viewed from top, the height of the side, close to the rotating shaft, of the double-roller chain conveying assembly is lower than the height of the side, far away from the rotating shaft, of the double-roller chain conveying assembly, the height of the lower side of the double-roller chain conveying assembly is higher than the height of the rotating shaft, the shaft parts to be turned are placed on the double-roller chain conveying assembly, the double-roller chain conveying assembly can drive the shaft parts located above the double-roller chain conveying assembly to move towards the direction close to the rotating shaft and stop when the shaft parts to be turned move to a specified position, and the first clamping shaft arm clamps and takes away the shaft parts to be turned located at the specified position.

Preferably, two mounting discs are arranged on the rotating shaft, each mounting disc is provided with a first shaft clamping arm and a second shaft clamping arm, the first shaft clamping arm and the second shaft clamping arm on each mounting disc respectively extend along the radial direction of the rotating shaft and form the included angle, and the first shaft clamping arms and the second shaft clamping arms on the two mounting discs are respectively aligned one by one along the axial direction of the rotating shaft; first press from both sides the structure of beam arm and second and press from both sides the beam arm the same, all include telescopic cylinder and clamping jaw cylinder, telescopic cylinder's cylinder body is fixed on the mounting disc, telescopic cylinder's telescopic link is flexible along the extending direction of the first clamp beam arm that corresponds or second clamp beam arm, clamping jaw cylinder's cylinder body sets up on telescopic cylinder's the free end, clamping jaw cylinder's clamping jaw deviates from for its cylinder body the rotation axis, the centre gripping direction configuration of every clamping jaw cylinder's clamping jaw is for can carrying the axle type part that the level was placed.

Preferably, the material moving mechanism further comprises a rotary driving assembly for driving the rotating shaft to rotate back and forth, and the rotary driving assembly comprises:

a carriage slidably supported on the mount along an axial direction of the rotary shaft, the rotary shaft passing through the mount, the rotary shaft being rotatable but not axially movable relative to the mount;

a first gear rotatably provided on the carriage;

a second gear fixed to the rotary shaft and engaged with the first gear;

and the rotary cylinder is arranged on the sliding frame, the output end of the rotary cylinder is connected with the second gear, and the rotary cylinder is used for driving the rotating shaft to rotate by a preset angle.

Preferably, the material moving mechanism further includes an axial driving assembly, which is used for pushing the rotating shaft to move along the axial direction of the chuck so as to drive the shaft part clamped on the first shaft clamping arm to move, so that one end of the shaft part can be inserted into the clamping groove of the chuck, and the axial driving assembly includes:

a sliding cylinder which is coaxially arranged with the rotating shaft and is slidably arranged on the mounting frame along the axial direction of the rotating shaft, wherein one end of the rotating shaft far away from the chuck is rotatably inserted into the sliding cylinder;

and the pushing cylinder is arranged on the mounting frame and used for driving the sliding cylinder to move back and forth along the axis direction of the sliding cylinder.

Preferably, the axial drive assembly further comprises a buffer structure, the buffer structure comprising:

the pushing plate is positioned on the side opposite to the chuck relative to the rotating shaft and connected with the sliding cylinder through a plurality of fixing pins, a convex ring is arranged at one end, close to the pushing plate, of the sliding cylinder, the fixing pins are arranged at equal angles relative to the axis of the sliding cylinder, one end, away from the pushing plate, of each fixing pin penetrates through the convex ring, the fixing pins can slide relative to the convex ring along the axis direction of the rotating shaft, a limiting block is arranged at the other end of each fixing pin, a spring is arranged on the part, located between the convex ring and the pushing plate, of each fixing pin, and the spring is always in a compressed state, so that the pushing plate and the sliding cylinder always have the tendency of being away from each other; relative to the pushing plate, the pushing cylinder is positioned on the side opposite to the sliding cylinder, and a cylinder rod of the pushing cylinder is fixed on the pushing plate.

Preferably, a distance sensor is arranged on the sliding cylinder or the mounting frame and used for detecting the moving distance of the pushing plate, whether the shaft part is inserted into the chuck can be judged according to the moving distance of the pushing plate detected by the distance sensor, and when the shaft part is judged to be inserted into the chuck, the clamping jaw cylinder of the first clamping shaft arm is loosened, and the telescopic cylinder retracts; when judging during axle type part does not insert the chuck, the push cylinder withdrawal, the rotation axis is rotatory, makes the vertical setting up of first press from both sides the staff, opens clamping jaw cylinder, and axle type part can adjust its position in clamping jaw cylinder automatically at the action of gravity, and then clamping jaw cylinder presss from both sides tightly, and the rotation axis drives first press from both sides the staff rotation to make axle type part the axis with the axis collineation of chuck, push cylinder promotion rotation axis removes towards the chuck.

Preferably, the lathe body is a general lathe or a numerical control machine.

The invention also provides a turning system for processing the shaft parts, which comprises: the lathe comprises a lathe body and a feeding mechanism, wherein the lathe body is used for turning shaft parts, the feeding mechanism is used for feeding the shaft parts to a chuck of the lathe body, and the feeding mechanism is separable from the lathe body;

the feed mechanism includes:

the feeding mechanism is used for conveying the shaft parts to be turned along a preset direction;

the material moving mechanism is used for moving the shaft parts on the feeding mechanism to a position which can be clamped by a chuck of the lathe body or taking the shaft parts which are turned out from the chuck;

and the feeding mechanism is used for receiving the turned shaft parts taken out by the material moving mechanism and moving the received shaft parts along a preset direction.

Move material mechanism includes:

a mounting frame;

the rotating shaft is rotatably arranged on the mounting frame, the axis of the rotating shaft is parallel to the axis of the chuck, the height of the rotating shaft on the mounting frame is adjustable, and the distance between the rotating shaft and the feeding mechanism in the horizontal direction perpendicular to the axis of the rotating shaft is adjustable;

first press from both sides beam arm and second press from both sides the beam arm, respectively along the perpendicular to the axis direction of rotation axis extends, when observing on the axis of rotation axis, first press from both sides beam arm and second press from both sides the beam arm and have certain contained angle, the contained angle satisfies when first press from both sides the beam arm when the axle type part that the centre gripping was located on feed mechanism, and the axle type part that the second pressed from both sides the beam arm can the centre gripping was located on the chuck to when first press from both sides the beam arm and put into the chuck with the axle type part of centre gripping, the axle type part that the second pressed from both sides the beam arm can be put the centre gripping on the feed mechanism, first press from both sides beam arm and second press from both sides the beam arm along its respective extension direction with the distance of rotation axis is adjustable.

Compared with the prior art, the invention has the following beneficial effects:

1) the automatic feeding and discharging device can realize automatic feeding and discharging in turning, reduces manual participation, saves manpower, and reduces labor cost;

2) the feeding mechanism is separated from the lathe body, so that one feeding mechanism can be matched with different lathe bodies according to requirements, on one hand, the situation that the feeding mechanism with one specification is arranged for each lathe body is avoided, on the other hand, a user can purchase the feeding mechanism according to requirements, the feeding mechanism can be used in the required lathe, the feeding mechanism can be moved freely in subsequent use, and the use cost is further reduced.

Drawings

FIGS. 1 and 2 are perspective views of the present invention from two different perspectives;

FIG. 3 is a top view of the present invention;

FIG. 4 is a front view of the present invention;

FIG. 5 is a cross-sectional view at section B-B of FIG. 4;

FIG. 6 is a perspective view of the material moving and placing mechanism of the present invention;

FIG. 7 is a side view of the material moving and placing mechanism of the present invention;

FIG. 8 is a cross-sectional view at section C-C of FIG. 7;

FIG. 9 is an enlarged view of a portion of FIG. 8 at D;

fig. 10 is a perspective view of the feeding mechanism, the feeding mechanism and the material moving and discharging mechanism of the invention.

Detailed Description

The following description is presented to disclose the invention so as to enable any person skilled in the art to practice the invention. The preferred embodiments in the following description are given by way of example only, and other obvious variations will occur to those skilled in the art.

Example one

A turning system for machining shaft parts, comprising: the lathe comprises a lathe body 100 and a feeding mechanism 200, wherein the lathe body 100 is used for turning the shaft parts 300, and the feeding mechanism 200 is used for feeding the shaft parts 300 to a chuck of the lathe body 100.

The feeding mechanism 200 includes:

the feeding mechanism 1 is used for conveying shaft parts to be turned along a preset direction;

the material moving mechanism is used for moving the shaft parts on the feeding mechanism 1 to a position where the shaft parts can be clamped by a chuck of the lathe body 100 or taking the shaft parts which are turned out from the chuck;

and the feeding mechanism 2 is used for receiving the turned shaft parts taken out by the material moving mechanism and moving the received shaft parts along a preset direction.

Move material mechanism includes:

a mounting frame 3;

the rotating shaft 4 is rotatably arranged on the mounting frame 3, and the axis of the rotating shaft 4 is parallel to the axis of the chuck;

first press from both sides beam 5 and second press from both sides beam 6, respectively along the perpendicular to the axis direction of rotation axis 4 extends, when observing on the axis of rotation axis 4, first press from both sides beam 5 and second press from both sides the beam 5 and have certain contained angle, the contained angle satisfies when first press from both sides beam 5 when the centre gripping is to the axle type part that is located feed mechanism 1, and second press from both sides beam 6 can the centre gripping to the axle type part that is located the chuck to when first press from both sides beam 5 puts into the chuck with the axle type part of centre gripping in, second press from both sides beam 6 and can put the axle type part of centre gripping on feed mechanism 2.

The feeding mechanism 1 comprises a double-roller chain conveying assembly 1a, when viewed from top, the double-roller chain conveying assembly 1a is located on the side opposite to the axis of the chuck relative to the rotating shaft 4, the height of the side, close to the rotating shaft 4, of the double-roller chain conveying assembly 1a is lower than the height of the side, far away from the rotating shaft 4, of the double-roller chain conveying assembly 1a, the height of the lower side of the double-roller chain conveying assembly 1a is higher than the height of the rotating shaft 4, the shaft part 100 to be turned is placed on the double-roller chain conveying assembly 1a, the double-roller chain conveying assembly 1a can drive the shaft part 300 located above the double-roller chain conveying assembly to move towards the direction close to the rotating shaft 4 and stop when the shaft part 100 to be turned moves to a specified position, and the first clamping arm 5 clamps and takes away the shaft part 100 to be turned located at the specified position.

Further, the feeding mechanism 1 further includes a plurality of limiting blocks 1a1 disposed on an outer annular surface of the chain of the double-roller chain conveying assembly 1a, the plurality of limiting blocks 1a1 are disposed at equal intervals, when the shaft component 100 to be turned is placed on the double-roller chain conveying assembly 1a, two ends of the shaft component can abut against the corresponding limiting blocks 1a1, and at this time, the shaft component is parallel to the axis of the chuck.

Be provided with at least one mounting disc 5d on the rotation axis 4, all be provided with a first clip armlet 5 and a second clip armlet 6 on every mounting disc 5d, first clip armlet 5 and second clip armlet 6 on every mounting disc 5d are for respectively along the radial extension of rotation axis 4 and be the contained angle. Preferably, the number of the mounting plates 5d is two, and the first chuck arm 5 and the second chuck arm 6 on the two mounting plates 5d are respectively aligned one by one along the axial direction of the rotating shaft 4.

First press from both sides beam 5 and second press from both sides the structure of beam 6 the same, all include telescopic cylinder 5a and clamping jaw cylinder 5b, telescopic cylinder 5 a's cylinder body is fixed on the mounting disc 5d, telescopic cylinder 5 a's telescopic link is flexible along the first extension direction who presss from both sides beam 5 or second clamp beam 6 that correspond, clamping jaw cylinder 5 b's cylinder body sets up on telescopic cylinder 5 a's the free end, clamping jaw cylinder 5 b's clamping jaw deviates from for its cylinder body rotation axis 4, the centre gripping direction configuration of every clamping jaw cylinder 5 b's clamping jaw is for can cliping the axle type part 300 of level placement. And one side of each clamping jaw cylinder 5b, opposite to the two clamping jaws, is provided with a V-shaped groove 5c, and the shaft parts can be clamped conveniently through the V-shaped grooves 5 c.

The material moving mechanism further comprises a rotary driving assembly 7 for driving the rotating shaft 4 to rotate back and forth. The swing drive assembly 7 includes:

a carriage 7a slidably supported on the mount 3 along an axial direction of the rotary shaft 4, the rotary shaft 4 passing through the mount 3, the rotary shaft 4 being rotatable but not axially movable with respect to the mount 3;

a first gear 7b rotatably provided on the carriage 7 a;

a second gear 7c fixed to the rotary shaft 4 and engaged with the first gear 7 b;

and the rotary cylinder 7d is arranged on the sliding frame 7a, the output end of the rotary cylinder is connected with the second gear 7c, and the rotary cylinder is used for driving the rotating shaft 4 to rotate by a preset angle.

The material moving mechanism further comprises an axial driving assembly 8, and the axial driving assembly is used for pushing the rotating shaft 4 along the axial direction of the chuck so as to drive the shaft part 300 clamped on the first shaft clamping arm 5 to move, so that one end of the shaft part 300 can be inserted into the clamping groove of the chuck. The axial drive assembly 8 comprises:

a sliding cylinder 8a which is arranged coaxially with the rotating shaft 4 and is slidably arranged on the mounting frame 3 along the axial direction of the rotating shaft 4, wherein one end of the rotating shaft 4 far away from the chuck is rotatably inserted into the sliding cylinder 8 a;

and a pushing cylinder 8c arranged on the mounting frame 3 and used for driving the sliding cylinder 8a to move back and forth along the axial direction thereof.

The rotary shaft 4 is connected to the slide cylinder 8a via a bearing 8 b.

Preferably, the axial drive assembly 8 further comprises a buffer structure comprising:

a push plate 8d1 located on the opposite side of the chuck with respect to the rotation shaft 4, the push plate 8d1 being connected to the slide cylinder 8a by a plurality of fixing pins 8d2, a convex ring 8a1 is arranged at one end of the sliding cylinder 8a close to the pushing plate 8d1, a plurality of fixing pins 8d2 are arranged at equal angles relative to the axis of the sliding cylinder 8a, one end of each fixing pin 8d2, which is far away from the pushing plate 8d1, penetrates through the convex ring 8a1, the fixing pin 8d2 is slidable in the axial direction of the rotary shaft 4 with respect to the protruding ring 8a1, a limit block 8d4 is arranged at the other end of the fixed pin 8d2, a spring 8d3 is arranged on the part of each fixed pin 8d2 between the convex ring 8a1 and the pushing plate 8d1, the spring 8d3 is always in a compressed state so that the push plate 8d1 and the slide cylinder 8a always have a tendency to move away from each other. The pushing cylinder 8c is located on the opposite side of the sliding cylinder 8a with respect to the pushing plate 8d1, the cylinder rod of the pushing cylinder 8c is fixed to the pushing plate 8d1, the rotating shaft 4 can be driven to move back and forth by the expansion and contraction of the pushing cylinder 8c, and the shaft-like part 300 can be fixed to or taken out of the chuck.

Preferably, a distance sensor may be further provided on the sliding cylinder 8a or the mounting frame 3 for detecting the moving distance of the pushing plate 8d1, and whether the shaft part 300 is inserted into the chuck can be determined according to the moving distance of the pushing plate 8d1 detected by the distance sensor. When it is judged that the shaft-like part 300 is inserted into the chuck, the jaw cylinder 5b of the first jaw arm 5 is released and the telescopic cylinder 5a is retracted. When judging that axle type part 300 is not inserted in the chuck, this kind of condition probably is that clamping jaw cylinder 5b does not press from both sides the back, promote cylinder 8c withdrawal, rotation axis 4 reversal makes first clamp shaft arm 5 set up vertically upwards, opens clamping jaw cylinder 5b, and axle type part can adjust its position in clamping jaw cylinder 5b automatically under the action of gravity, and then clamping jaw cylinder 5b presss from both sides tightly, and rotation axis 4 corotation is put in place, promotes cylinder 8c and promotes rotation axis 4 removal once more, if can not enter into the chuck yet, the system reports to the police this moment, by manual handling. In order to enable the first chuck shaft arm 5 to be vertically upward, a motor may be used instead of the revolving cylinder 7d, and a position sensor may be provided at a position where the first chuck shaft arm 5 needs to stay.

The feeding mechanism 1 further comprises a distance sensor 1b, the distance sensor 1b is fixedly arranged at one end, close to the lathe body 100, of the double-roller chain conveying assembly 1a and used for detecting the distance between the double-roller chain conveying assembly 1a and the shaft part 300, when the detected distance is consistent with a preset distance, the shaft part 300 is located and can be clamped, after the first clamping arm 5 rotates to the position, the clamping jaw cylinder 5b is opened, the telescopic cylinder 5a stretches out, then the clamping jaw cylinder 5b clamps, the rotating shaft 4 rotates for a preset angle, and the axis of the shaft part on the first clamping arm 5 is collinear with the axis of the chuck.

When the shaft part of chuck is taken off as needs, promote cylinder 8c and stretch out, the clamping jaw cylinder 5b of second press from both sides shaft arm 6 is opened, and telescopic cylinder 5a stretches out, and then clamping jaw cylinder 5b presss from both sides tightly, promotes cylinder 8c withdrawal. When the rotating shaft 4 rotates, the axis of the shaft part on which the first shaft clamping arm 5 moves is collinear with the axis of the chuck, the shaft part on the second shaft clamping arm 6 is located right above the feeding mechanism 2, at this time, the clamping jaw cylinder of the second shaft clamping arm 6 is opened, and the shaft part 300 falls on the feeding mechanism 2.

Feeding mechanism 2 includes hold-in range slip table 2a and guide board 2b, hold-in range slip table 2a level sets up in the bottom of feed mechanism 1, hold-in range slip table 2a is used for the level to outwards carry finished shaft class part, guide board 2b slope sets up, lower one end setting is at hold-in range slip table 2 a's feed end and with hold-in range slip table 2 a's upside surface parallel and level, guide board 2b higher one end is located and moves the material mechanism under, guide board 2b is used for making the axle type part that moves the material mechanism and unload slowly roll to hold-in range slip table 2 a's feed end. Feeding mechanism 2 still includes riser 2c and gas spring 2d, riser 2c sets up the feed end at hold-in range slip table 2a along vertical direction, the lower one end of guide board 2b is articulated with riser 2 c's upper end, and gas spring 2 d's both ends are articulated with guide board 2b and riser 2c, can make guide board 2b elasticity set up the feed end at hold-in range slip table 2a through riser 2c and gas spring 2d, and then can cushion finished shaft class part to guide board 2 b's impact force.

The lathe body 100 may be a general lathe or a numerically controlled lathe.

Example two

In this embodiment, the feeding mechanism 200 is provided detachably to the lathe body 100, the height of the rotary shaft 4 is adjustable, the distance of the rotary shaft 4 with respect to the feeding mechanism 1 in the horizontal direction perpendicular to the axis of the chuck is adjustable, and the positions of the first chuck arm 5 and the second chuck arm 6 on the mounting plate 5d in the radial direction of the rotary shaft 4 are adjustable, so that the feeding mechanism can be applied to different lathe bodies 100, and when different lathe bodies 100 are to be replaced, it is only necessary to adjust the relative positions of the feeding mechanism 200 and the lathe body 100, the height of the rotary shaft 4, the relative positions of the rotary shaft 4 and the feeding mechanism 1, and the mounting positions of the first chuck arm 5 and the second chuck arm 6 on the mounting plate 5 d.

The foregoing shows and describes the general principles, essential features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are merely illustrative of the principles of the invention, but that various changes and modifications may be made without departing from the spirit and scope of the invention, which fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and equivalents thereof.

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:三轮车配件加工半自动车床的工件卸料装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类