一种靶向脂滴的AIEgen、制备方法及应用

文档序号:574182 发布日期:2021-05-21 浏览:7次 >En<

阅读说明:本技术 一种靶向脂滴的AIEgen、制备方法及应用 (AIEgen targeting lipid droplets, preparation method and application ) 是由 唐本忠 石秀娟 郭子健 宋海鹏 于 2019-11-21 设计创作,主要内容包括:本发明涉及一种靶向脂滴并具有聚集诱导发光性(AIE)的发光体(AIEgens)的简单制备方法。本发明涉及半定量测试脂滴含量的探针。本发明提供的AIEgen能半定量测试缺氧条件下癌细胞中脂滴的水平,并能用于评估HIF-1靶向药物的抑制效果。本发明为筛选HIF-1靶向药物提供了一种简单且价格低廉的策略。此方法可以推广作为评估其它与脂滴相关疾病的药物疗效的替代方法。(The invention relates to a simple method for producing luminophores (AIEgenes) which target lipid droplets and have aggregation-induced emission (AIE). The invention relates to a probe for semi-quantitatively testing the content of lipid droplets. The AIEgen provided by the invention can semi-quantitatively test the level of lipid droplets in cancer cells under an anoxic condition, and can be used for evaluating the inhibition effect of HIF-1 targeted drugs. The invention provides a simple and low-cost strategy for screening HIF-1 targeted drugs. The method can be popularized as an alternative method for evaluating the curative effect of other medicaments for treating lipid droplet related diseases.)

一种靶向脂滴的AIEgen、制备方法及应用

技术领域

本发明涉及一种靶向脂滴并具有聚集诱导发光性(AIE)的发光体(AIEgens)的简单制备方法,还涉及利用该AIE发光体半定量测试缺氧条件下癌细胞中脂滴的水平,以及评估HIF-1靶向药物的抑制效果。

背景技术

不受控制的细胞生长和增殖是癌症的特征。这种侵略性和无序的细胞生长导致血管系统紊乱和血流受损,阻碍了氧气和其它营养向癌细胞的灌注。一般认为,缺氧肿瘤组织中的氧水平比相应正常组织的氧水平低,平均为1-2%或更低。缺氧不仅被普遍认为是癌症的标志,而且还增加了心血管疾病和中风的风险。癌细胞为了在缺氧环境下生存和繁衍,其内部许多复杂的细胞内信号传导途径被诱导出来。其中主要的途径是缺氧诱导因子(HIF)途径。通过HIF-1的过表达和HIF-1依赖的下游上调,血管形成增加,癌细胞侵略性增强,以及对治疗的抵抗力也增强,从而促进了癌症的发展和转移。最近的研究报告表明,抑制HIF-1活性可以对原发性肿瘤及其转移产生抗癌作用和抑制作用。因此,HIF-1是发现抗肿瘤药物的主要分子靶标,这在临床前研究和早期临床试验都得到了证实。所以更好地了解HIF-1在癌细胞中的关键作用及其活性可以帮助阐明有关将HIF-1用作抗癌治疗靶点的各种公开问题。

传统的检测方法,例如,用于评估HIF-1活性的免疫荧光,蛋白质印迹或遗传编码的荧光素酶检测方法,以及用于评估HIF-1mRNA表达的qRT-PCR,已经帮助我们了解了HIF-1在癌症细胞缺氧信号传导中的功能,并帮助筛选了HIF-1的抑制剂。但是,这些方法需要运用昂贵的生物试剂,例如,抗体、RNA或DNA,并且涉及复杂的操作过程。另一方面,缺氧会诱导HIF-1依赖性脂滴积累,并且脂质存储对于保护细胞免受活性氧毒性,细胞存活和肿瘤生长至关重要。而且通常认为癌细胞内脂滴水平升高与HIF-1的过度表达有关。因此,定量细胞内脂滴水平将是一种获知癌细胞HIF-1活性的经济有效的方法。

为了使脂滴可视化,与其它技术(如拉曼显微镜和透射电子显微镜)相比,荧光成像技术具有更高的灵敏度并允许进行实时成像。目前已开发出很多种有机荧光染料作为脂滴特异性探针,但某些传统的脂滴探针(如油红,尼罗红和BODIPY衍生物)存在聚集导致的猝灭(ACQ)的问题。ACQ是一种光物理现象,描述了由于强烈的π-π堆积相互作用,探针的荧光在高浓度或聚集状态下急剧减弱或淬灭。这些亲脂分子在脂滴中的积累可能会促进它们的聚集,从而导致发射淬灭,不利于定量分析。为了避免聚集体形成或使ACQ效应最小化,这些探针经常被建议使用低浓度,但这会引起其它问题,例如易发生光漂白。而且它们还具有较小的斯托克斯位移和背景干扰,损害了实际使用中的探针性能。因此,非常需要开发斯托克斯位移大,结构简单,易于制备且无ACQ效应的荧光探针。

具有聚集诱导发射特性的发光剂(AIEgens)近年来已成为一类具有独特光学特性的新型荧光材料。AIEgens在溶液中不发光,但当它们的浓度变高或发生聚集时,其发射会显著增强。此外,AIEgens具有较大的斯托克斯位移和优异的光稳定性,从而为ACQ问题提供了很好的解决方案。在最近的几十年中,AIEgens已发现许多良好的应用,例如,生物成像、生物传感和疾病诊疗等。另一方面,脂滴长期以来一直被认为是简单的中性脂质储库,直到最近人们才发现它们在细胞生物过程中起着许多重要的作用。尽管已经开发了许多具有AIE特性的脂滴探针,在需要进一步探索的脂滴研究领域中,仍然有必要开发新的脂滴探针并使用它们来发现脂滴的新功能和脂滴探针的新应用。此外,具有长激发和发射波长的AIEgen对于生物成像应用更为可取,因为这样可以将细胞自发荧光的干扰降到最低。一般来说,用电子供体和受体基团构建的探针具有结构小而简单,易于合成的突出特点。在该项发明中,使用这种有效方法开发了具有红色发射和脂滴靶向的AIEgen。

发明内容

在一个实施方案中,本发明提供一种表现出聚集诱导发光的发光体,该发光体包含以下结构:

在一个实施方案中,本申请针对一种发射红光的聚集诱导发光体(AIEgen),其表现出聚集诱导发光的性质和特异性靶向脂滴的性能。特别地,一个非限制性的应用是半定量测试缺氧条件下癌细胞中脂滴的水平,并用于评估HIF-1靶向药物的抑制效果。

附图说明

图1示出了化合物3在氘代氯仿里的1H NMR谱图;

图2示出了TBP在氘代氯仿里的1H NMR谱图;

图3示出了TBP在氘代氯仿里的13C NMR谱图;

图4示出了化合物3的高分辨率质谱(MALDI-TOF)图;

图5示出了TBP的高分辨率质谱(MALDI-TOF)图;

图6示出了(A和B)TBP单晶结构的正视图和侧视图;(C)晶体中分子间的相互作用;

图7示出了在不同溶剂中的TBP的归一化(A)紫外-可见光谱和(B)PL光谱;B中的插图:在手持式紫外灯365nm紫外线的照射下,溶于不同溶剂的TBP的荧光照片,TBP的浓度是10μM;(C)斯托克斯位移与溶剂取向极化率(Δf)的关系图;(D)TBP的前线分子轨道图和能级图;

图8示出了(A)在具有不同PBS组份(fPBS)的DMSO/PBS混合物中,TBP的PL强度;(B)在622nm处的相对发射峰强度(αAIE)与fPBS的关系图,其中αAIE为I/I0,I代表DMSO/PBS混合物中的PL强度,I0代表DMSO溶液中的PL强度,λex=444nm;插图:(左)在DMSO溶液和(右)含有99%fPBS的DMSO/PBS混合物中TBP的荧光照片,此照片是在手持式紫外灯365nm紫外线的照射下拍摄;

图9示出了DMSO/PBS混合物中TBP聚集体通过DLS测量的水合粒径分布,PBS的含量分别为(A)70%,(B)80%,(C)90%和(D)99%;

图10示出了固态TBP的荧光衰减曲线;

表1示出了TBP的光学性质。a)DMSO溶液中的吸收峰;b)DMSO中的发射峰;c)由校准的积分球测试的荧光量子产率;d)在PBS含量为99%的DMSO/PBS混合物中的最大发射;e)固态发射峰;f)在环境条件下测得的荧光寿命。

图11示出了HeLa细胞被(A)TBP和BODIPY 493/503Green共染色或(B)被TBP和Green(MTG)共染色的共定位成像。HeLa细胞的共聚焦图像包括明场图像,红色通道图像(TBP),绿色通道图像(BODIPY或MTG)和两个荧光通道的合并图像;条件:对于TBP,λex=488nm,λem=600–740nm;对于BODIPY,λex=488nm,λem=495–520nm;对于MTG,λex=488nm,λem=495–520nm;比例尺:20μm;(C)随着扫描次数的增加,TBP或尼罗红孵育的HeLa细胞的荧光信号强度的降低;插图:用TBP(上图)或尼罗红(下图)染色的HeLa细胞在连续激发下拍摄的共聚焦图像;条件:对于TBP,λex=488nm,λem=550–740nm;对于尼罗红,λex=514nm,λem=520–740nm;比例尺=20μm;(D)在黑暗中用不同浓度的TBP孵育24h的HeLa细胞的细胞活力;

图12示出了随油酸溶液中(A)TBP浓度或(B)尼罗红浓度的增加,其荧光发射的变化;条件:对于TBP,λex=488nm,λem=640nm;对于尼罗红,λex=530nm,λem=630nm;

图13示出了用50μM油酸处理不同时间,并用5μM TBP染色30分钟的HeLa细胞的共聚焦图像;条件:λex=488nm,λem=550–740nm;比例尺:20μm;

图14示出了油酸处理的HeLa细胞与未处理的细胞的荧光强度比与处理时间的关系图;条件:λex=488nm,λem=550–740nm;数据代表平均值±标准误差;

图15示出了在缺氧或常氧条件处理不同时间的HepG2细胞的共聚焦图像;细胞被不同条件处理后,用5μM TBP孵育30分钟后再被拍照;条件:λex=488nm,λem=550–740nm;比例尺:20μm;

图16示出了HepG2细胞用50μM药物(Kaempferol(山奈酚Kae),Chrysin(白杨素Chry))预处理3h,然后在缺氧环境中处理不同的时间,之后被5μM TBP染色30分钟的共聚焦图像;条件:λex=488nm,λem=550–740nm;比例尺:20μm;

图17示出了在不同条件下HepG2细胞的荧光强度比随处理时间变化的关系图;F0代表在处理时间为0h时细胞的荧光强度;数据代表平均值±标准误差;条件:λex=488nm,λem=550–740nm;比例尺为20μm;

图18示出了(A)在缺氧环境处理不同时间之后,用5μM TBP染色30分钟的HepG2细胞的流式细胞仪分析结果;(B)从流式细胞仪获得的在缺氧环境处理不同时间的HepG2细胞的中值荧光强度;条件:λex=488nm,λem=655±15nm;

图19示出了用不同浓度的Kae或Chry预处理30min并在缺氧环境中3h后被TBP染色的HepG2细胞的共聚焦图像;条件:λex=488nm,λem=550–740nm;比例尺:20μm;

图20示出了用不同浓度的药物(Kae或Chry)预处理并在缺氧环境下3h的HepG2细胞中TBP的共聚焦荧光信号与未处理细胞的荧光信号比值;数据代表平均值±标准误差;

图21示出了(A)用不同浓度的Kae预处理后,在缺氧环境中3h后用5μM TBP染色30分钟的HepG2细胞的流式细胞仪分析结果;(B)从流式细胞仪获得的中值荧光强度随Kae浓度的变化;条件:λex=488nm,λem=655±15nm。

具体实施方式

本发明提供一种靶向脂滴的AIEgen。其中三苯基胺赋予AIE特征,并作为电子给体。苯并噻二唑和吡啶基团作为电子受体。这种D-A结构导致发射红移。在本申请中,特别地,一个非限制性的应用是半定量测试缺氧条件下癌细胞中脂滴的水平,并用于评估HIF-1靶向药物的抑制效果。

在一个实施方案中,本发明的AIEgen具有以下结构:

在根据本申请的AIEgen的实施方案中,AIEgens可以特异性靶向脂滴,具有明亮的红色发射,大的斯托克斯位移,很好的光稳定性和较低的细胞毒性,其浓度与荧光发射成正向关系。其能半量化脂滴的水平而不会出现自猝灭问题。其也能半定量测试缺氧条件下癌细胞中脂滴的水平,并评估HIF-1靶向药物的抑制效果。

化合物TBP的合成

通过两步Suzuki偶联反应制备产物TBP,其总产率为39%。TBP的中间体和产物已通过NMR和高分辨率质谱法充分表征(图1-5)。其合成路线如下图所示。

化合物3的合成:向配备有冷凝器的500mL双颈圆底烧瓶中加入1(3g,10mmol)、2(2.6g,9mmol)、碳酸钾(13.8g,100mmol)和Pd(PPh3)4(346mg,0.3mmol),在氮气保护下,向里加入100mLTHF和20mL水溶解;混合物搅拌并在80℃下加热回流8h;冷却至室温后,将混合物用二氯甲烷萃取三次;收集有机相,用无水硫酸钠干燥;减压浓缩滤液。粗产物通过使用DCM/己烷(1:9,v/v)作为洗脱剂的硅胶柱色谱法纯化,得到橙色固体3(2.07g,50%)。1HNMR(400MHz,CDCl3):δ(TMS,ppm)7.90-7.89(1H,d),7.82-7.79(2H,d),7.55-7.53(1H,d),7.32-7.28(4H,m),7.19-7.18(6H,d),7.09-7.06(2H,t).高分辨质谱(MALDI-TOF),m/z459.0185([M]+,理论值457.0248)。

化合物TBP的合成:向配备有冷凝器的250mL双颈圆底烧瓶中加入3(1g,10mmol)、4(536mg,4.36mmol)、碳酸钾(3g,21.8mmol)和Pd(PPh3)4(75mg,0.065mmol),在氮气保护下,向里加入50mL THF和10mL水溶解;混合物搅拌并在80℃下加热回流8h;冷却至室温后,将混合物用二氯甲烷萃取三次;收集有机相,用无水硫酸钠干燥;减压浓缩滤液。粗产物通过使用EA/DCM(1:99,v/v)作为洗脱剂的硅胶柱色谱法纯化,得到红色固体(776mg,78%)。1HNMR(400MHz,CDCl3):δ(TMS,ppm)8.78-8.76(2H,q),7.95-7.94(2H,d),7.94-7.87(3H,d),7.80-7.78(1H,d),7.32-7.28(4H,t),7.22-7.18(6H,t),7.10-7.06(2H,t).13C NMR(400MHz,CDCl3):δ(TMS,ppm)154.07,153.63,150.20,148.51,147.34,144.74,134.71,130.17,130.08,129.44,129.29,128.97,126.90,125.10,123.56,123.50,122.57.高分辨质谱(MALDI-TOF),m/z 456.1402([M]+,理论值456.1409)。

TBP的结构

从供体到受体的有效分子内电荷转移将有助于将其发射波长红移到红色荧光区域。TBP是亲脂性的,其CLogP为7.85,并具有中等分子量(456g/mol),这些可确保TBP靶向疏水性脂滴。在TBP的晶体结构中,三苯胺和吡啶基团相对于苯并噻二唑核心具有扭曲,二面角分别为32.56°和40.22°(图6A和6B)。这种扭曲的构象避免了发生强烈的分子间π-π相互作用。TBP的晶体堆积图表明分子间存在多个C-H…π相互作用(图6C),这有助于限制晶体态TBP的分子构象。

TBP的光物理性质

TBP可以很好地溶于常见的有机溶剂,包括己烷(Hex)、甲苯(PhMe)、氯仿(CHCl3)、乙酸乙酯(EA)、乙醇(EtOH)和乙腈(ACN)。TBP在不同溶剂中的吸收和发射光谱如图7A和7B所示。随着溶剂极性的变化,TBP的最大吸收峰在448nm至453nm之间显示出很小的变化(图7A)。而当逐渐增加溶剂极性时,最大发射峰在527nm至666nm之间逐渐变化(图7B)。发射峰的极大红移归因于不同极性的溶剂对TBP扭曲构象的不同程度的诱导。斯托克斯位移对溶剂极性的依赖性如图7C所示,结果表明斯托克斯位移随溶剂极性的增加而变大,显示了TBP的正溶剂化现象。

由于TICT效应,通常在由扭曲的D-A结构组成的分子中会观察到溶剂变色现象。为了进一步说明TBP的TICT性质,通过密度泛函理论的方法计算了其前线分子轨道分布(图7D)。最高占据分子轨道(HOMO)中的电子密度主要位于TBP的三苯胺基团上,但最低未占据分子轨道(LUMO)分布在苯并噻二唑和吡啶基团上。因此,TBP具有的溶剂致变色性质,大的分子偶极子和不对称电子云分布说明TBP分子可以有效发生TICT效应。

为了探索TBP的AIE特性,本发明研究了在DMSO和PBS的混合物中具有不同PBS组份(fPBS)时候TBP的光致发光(PL)曲线(图8A和8B)。在纯DMSO溶液中,TBP在671nm处具有微弱的发射(Φf=3.5%)。这是因为DMSO的高极性诱导了TBP扭曲构象的形成,从而导致发射微弱。加入PBS缓冲液后,TBP的PL强度无明显变化,直至fPBS达到40%(图8B)。同时,从40%fPBS到70%fPBS,TBP的发射强度大大增强并且发生蓝移(图8A和8B)。当fPBS为70%时,PL强度达到最大值,但随着fPBS的进一步增加而逐渐降低(图8B)。为了解释荧光发射的变化,本发明进行了动态光散射的测试,以检查粒径从70%fPBS到99%fPBS的变化(图9)。结果表明,当fPBS为70%时,TBP发生聚集。当fPBS从70%增加到99%时,TBP聚集体的水合动力学直径从186nm减小到60nm。据报道,粒子表面上的AIE分子比粒子内部的分子具有更大的旋转自由度。并且较小的聚集体尺寸会产生较大的表面积,这提供了允许分子内旋转程度更高的微环境,从而削弱了总体发射。因此,PL强度的提高是由于聚集体的形成激活了荧光发射通道,在70%fPBS后PL强度的降低是由于聚集体尺寸的减小而导致产生更多的分子内旋转以耗散能量。此外,TBP在99%fPBS处的量子产率为30.2%,发射峰位于622nm。这个较高的量子产率使TBP在细胞成像中具有良好的实用性。在固态下,TBP的PL光谱在600nm处达到峰值,量子产率为24.7%。TBP荧光衰减曲线表明,其荧光寿命为4.1ns(图10)。表1总结了TBP的光学性质。

表格1

TBP的脂滴靶向成像,光稳定性和细胞毒性

本发明首先使用HeLa细胞研究了TBP的细胞成像。将HeLa细胞用5μM TBP孵育30分钟后,在488nm的激发下观察到在细胞质中的球形细胞器发出了明亮的荧光(图11A)。基于点亮的细胞器的球形和TBP的疏水性,推测TBP分子富集在脂滴中。为了验证这一点,用商业脂滴特异性染料BODIPY 493/503来进行共定位实验(图11A)。两者的皮尔森相关系数为0.93,表明TBP对脂滴具有较高的特异性。另外,TBP与Green(MTG)的信号几乎没有重叠,进一步证明了TBP对线粒体没有特异性(图11B)。

本发明通过连续照射被染料染色的HeLa细胞来测量TBP在细胞成像中的光稳定性(图11C)。商业脂滴特异性染料尼罗红作为比较(图11C)。经过40次扫描后,TBP的荧光信号几乎没有损失,而尼罗红的荧光损失了近50%。本发明还使用MTT方法研究了TBP的细胞毒性(图11D)。结果表明,在TBP浓度达到40μM,细胞活力仍然没有明显降低,这表明TBP较低的细胞毒性。因此,TBP出色的光稳定性和较低的细胞毒性将有利于其在半定量活细胞脂滴水平中的应用。

脂滴的半定量测试

为了检查TBP的半量化能力,本发明首先检查了其在油酸溶液中随浓度增加时的PL发射。尼罗红被用作比较(图12)。结果表明,随着染料浓度的增加,TBP的PL发射逐渐增强。但是,尼罗红的PL发射首先随着其浓度的增加而增加,但在浓度超过800μM之后发生了降低。因此,TBP的荧光发射与其浓度成正相关性,这使其可用于半定量的应用上。

为了进一步检查TBP进行半定量脂滴含量的能力,本发明使用油酸诱导HeLa细胞的脂滴形成(图13和14)。如图13所示,在油酸处理之前仅发现了少数脂滴。随着油酸处理时间的延长,HeLa细胞变得更亮,脂滴的数目逐渐增多,表明油酸诱导了脂滴的形成,并且TBP将脂滴照亮。图14绘制了油酸处理的细胞与未处理的细胞中TBP的荧光强度之比与油酸处理时间的关系。结果表明,F/F0随着油酸处理时间的增加而增加,这说明TBP可以显示脂滴含量的变化。因此,TBP可以进一步被用于深入研究在缺氧等不同条件刺激下脂滴含量的变化。

评估HIF-1靶向药物的抑制效果

HepG2是一种肝癌细胞系,通常用于研究细胞对缺氧的反应。HepG2细胞在装有氧气吸收剂的室内培养,以模拟癌细胞的缺氧环境。首先将HepG2细胞置于缺氧(5%)或常氧(20%)环境中一段时间,然后用TBP染色,并用共聚焦激光扫描显微镜(CLSM)拍摄其荧光图像。结果发现在常氧环境中的细胞显示出非常弱的荧光,表明正常的HepG2细胞有非常少量的脂滴。相反,经过缺氧处理的细胞显示出极大增强的荧光(图15和17)。当比较缺氧某个时间(F)与缺氧0h(F0)下细胞的荧光强度时,研究发现F/F0与缺氧处理时间呈正相关(图17)。也就是说,当将缺氧处理时间从0h延长到3h时,HepG2细胞内部的脂滴逐渐增加。本发明也利用流式细胞仪分析了缺氧引起的时间依赖性脂滴积累(图18)。结果表明,在缺氧环境下HepG2细胞的荧光也随缺氧时间的增加而增加。因此,这些结果揭示了HepG2细胞在缺氧后显示出脂滴显着的时间依赖性积累,并进一步验证了TBP在缺氧期间监测脂滴积累的能力。

由于细胞的脂滴水平与HIF-1表达已经建立了明确的关系,因此细胞中脂滴数量的变化可以反映缺氧条件下HIF-1表达的变化。换句话说,如果HIF-1表达被抑制,即使在缺氧条件下,脂滴也不会发生积累。这激发本发明使用TBP作为脂滴的报告信号来评估针对HIF-1药物的疗效。本发明使用两种已报道的HIF-1抑制剂,Kaempferol(山奈酚Kae)和Chrysin(白杨素Chry)来证明TBP探针的潜在应用。对于用Kae和Chry预处理的HepG2细胞(图16和17),即使在缺氧处理3小时后,也未观察到明显的荧光变化。有趣的是,研究发现经Kae处理的HepG2细胞的脂滴水平降至常氧环境中的细胞脂滴水平以下,但经Chry处理的细胞脂滴水平与常氧环境中的细胞脂滴水平相当(图17),这表明Kae对HIF-1的抑制作用要比Chry的抑制作用强。

本发明还研究了药物对HIF-1抑制作用的剂量依赖性(图19和20)。首先用不同浓度的Kae或Chry处理HepG2细胞,然后将其暴露于缺氧条件下3小时,然后用TBP染色。图20显示了在不同药物浓度下TBP信号逐渐降低的曲线图。本发明发现两种药物处理后细胞的TBP信号均随药物浓度的增加而降低(图19和20)。此外,Kae对HIF-1抑制作用的流式细胞实验也显示出剂量依赖性关系(图21A和21B)。HIF-1抑制剂的剂量依赖性与已报道的工作相似。此外,结果还显示Kae的抑制作用比Chry的抑制作用更强。因此,所有这些结果表明TBP能够通过易于使用的荧光技术评估潜在的HIF-1抑制剂的效力。

这里只给出了非限制性实例,相信此发明设计的脂滴靶向AIE探针可推广作为评估其它与脂滴相关疾病的药物疗效的替代方法。

实施本发明可以达到以下有益效果:

1.本发明制备靶向脂滴的探针只需要两步,方法简单。

2.本发明的探针具有AIE特性,具有光稳定性好,细胞毒性小的优点。而且探针具有较大的斯托克斯位移,避免了自吸收的问题。

3.本发明的探针激发光488nm是常见显微镜都有的光源,适用范围广。

4.本发明的探针其荧光发射与其浓度呈正向关系,避免了ACQ的问题,可以用于脂滴的半定量分析。

5.本发明的探针能半定量测试缺氧条件下癌细胞中脂滴的水平。

6.本发明的探针能用于评估HIF-1靶向药物的抑制效果。为筛选HIF-1靶向药物提供了一种简单且价格低廉的策略。

7.本发明设计的探针可推广作为评估其它与脂滴相关疾病的药物疗效的替代方法。

上面结合附图对本发明的实施方式进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多变形,这些均属于本发明的保护范围之内。

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种N-乙酰基依诺沙星的丙烯酮衍生物及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!