一种电沉积制备微泡沫基整体式催化剂的方法

文档序号:57678 发布日期:2021-10-01 浏览:17次 >En<

阅读说明:本技术 一种电沉积制备微泡沫基整体式催化剂的方法 (Method for preparing micro-foam-based monolithic catalyst by electrodeposition ) 是由 张吉松 马驰 黄蒙蒙 段笑南 于 2021-07-14 设计创作,主要内容包括:本发明公开了属于整体式催化剂制备技术领域的一种电沉积制备微泡沫基整体式催化剂的方法。所述方法以沉积载体的金属泡沫作为阴极,载体材料作为电沉积液,进行电沉积;经干燥煅烧得到整体式催化剂载体;然后采用湿法浸渍在整体式催化剂载体上加载活性组分,经过二次干燥煅烧,还原得到整体式催化剂。所述以具有孔隙结构的金属泡沫作为基体骨架,先利用电沉积方法使载体材料均匀覆盖在骨架表面;进一步以载体涂层为支撑材料,引导活性组分在其表面负载。本发明制备的整体式催化剂填装至微填充床内能够有效强化气液固传质过程,降低床层压降,提高催化反应效率。(The invention discloses a method for preparing a micro-foam-based monolithic catalyst by electrodeposition, belonging to the technical field of monolithic catalyst preparation. The method takes metal foam for depositing a carrier as a cathode and a carrier material as an electrodeposition solution for electrodeposition; drying and calcining to obtain an integral catalyst carrier; and then loading active components on the monolithic catalyst carrier by adopting wet impregnation, and carrying out secondary drying and calcining and reduction to obtain the monolithic catalyst. The metal foam with a pore structure is used as a matrix framework, and a carrier material is uniformly covered on the surface of the framework by an electrodeposition method; further taking the carrier coating as a support material, and guiding the active component to be loaded on the surface of the carrier coating. The monolithic catalyst prepared by the invention can effectively strengthen the gas-liquid-solid mass transfer process when being filled into the micro packed bed, reduce the pressure drop of the bed layer and improve the catalytic reaction efficiency.)

一种电沉积制备微泡沫基整体式催化剂的方法

技术领域

本发明属于整体式催化剂制备

技术领域

,尤其涉及一种电沉积制备微泡沫基整体式催化剂的方法。

背景技术

微填充床是将传统滴流床微型化,相比于使用颗粒尺寸大于1mm催化剂的传统滴流床,微填充床尺寸较小且填装更加细小的颗粒催化剂,其通常颗粒尺寸小于500μm;因此具有较大的比表面积,展现出良好的混合、传热和传质性能。此外,微填充床催化剂填装简单,易于更换,目前被广泛应用于加氢、高放热氧化及催化剂快速筛选等反应过程。但是微填充床中填装催化剂颗粒尺寸较小,各种作用力中毛细管力相对较大,从而导致液体分布不均匀,催化剂床层压降增加。金属微泡沫具有孔隙率大、孔径小、体密度小和机械强度高等优点,同时也是催化剂良好的基体材料。因此,采用金属微泡沫制备整体式催化剂,填装至微填充床用于催化反应,能够在提高反应效率的同时有效降低床层压降,减少反应能耗。

金属微泡沫是通过自身所具有的孔隙结构来构建与颗粒催化剂相似的反应通道,因此微填充床中金属微泡沫的孔径通常也小于500μm。CN111036148B将微泡沫填充床应用于气液固三相反应,展现出较高的混合和反应效率。在制备整体式催化剂过程中,溶胶凝胶法是较为常用的方法。CN103447098A采用渗铝和溶胶凝胶法在不锈钢表面涂覆催化剂载体,制备的载体孔隙率高、孔径适宜、比表面积大、附着力高、热稳定性好。CN108249427B利用微波结合溶胶凝胶工艺在实心固体基片或多孔泡沫材料表面制备石墨烯薄膜,制备的材料表面含氧基团少,材料导电、导热和疏水性能优异。但是在以毛细管力为主导的金属微泡沫中,采用传统溶胶凝胶法负载催化剂载体,载体浆液很难进入到金属微泡沫孔隙内部,从而导致负载后载体涂层分布不均匀,影响催化剂性能。

电沉积法是一种简单、快速和低成本的整体式催化剂制备方法,实验过程条件温和,无需添加粘结剂,通过改变条件可以获得目标组成和厚度的载体涂层。在电场作用下载体可以在金属泡沫表面均匀生长,涂层分布良好,不易堵塞金属泡沫孔隙,具有良好的安全性和重复性。同时,均匀的载体涂层有利于催化剂活性组分的均匀分散,使催化剂具有较高的活性和稳定性。目前很少有发明报道在金属微泡沫表面电沉积负载载体,制备整体式催化剂,并将催化剂填装至微填充床,用以强化气液固传质过程和催化反应过程。该发明基于微填充床采用电沉积法制备微泡沫基整体式催化剂,对于发展新型的催化反应强化过程具有很好的前景。

发明内容

为了解决上述问题,本发明提出了一种电沉积制备微泡沫基整体式催化剂的方法,所述方法包括以下步骤:

1)以沉积载体的金属泡沫作为阴极,载体材料作为电沉积液,进行电沉积;经干燥、煅烧,得到整体式催化剂载体;

2)采用湿法浸渍在整体式催化剂载体上加载活性组分,经过二次干燥、煅烧,还原得到整体式催化剂;

以具有孔隙结构的金属泡沫作为基体骨架,先利用电沉积方法使载体材料均匀覆盖在骨架表面;然后,以载体涂层为支撑材料,引导活性组分在其表面负载。

采用金属泡沫作为本发明整体式催化剂的骨架材料,克服了常规整体式催化剂中基体骨架比表面积小的缺点;并且,采用电沉积法代替传统溶胶凝胶法制备整体式催化剂载体涂层,不仅突破了金属泡沫由于其孔径小而较难作为整体式催化剂基体的限制,还能实现载体涂层均匀覆盖到金属泡沫微小孔隙表面的效果。

具体步骤为:

1)将载体粉末加入去离子水中配制成溶液或者悬浮液,移至电解槽;将阳极和阴极连接至交流电源,置于所述电解槽中进行电沉积,其中沉积载体的金属泡沫作为阴极;将沉积载体后的金属泡沫进行干燥和煅烧,得到整体式催化剂载体;

2)采用湿法浸渍在所述载体上加载活性组分,经过干燥、煅烧及还原得到整体式催化剂。

2.根据权利要求1所述的一种电沉积制备微泡沫基整体式催化剂的方法,其特征在于:金属泡沫包括泡沫镍、泡沫铜、泡沫铝、泡沫铁、泡沫钛、泡沫不锈钢或泡沫合金中的一种;金属泡沫的孔径为50~500μm。

孔径较小能构建微小的反应通道,有利于提高反应和传质效率。但是,随着孔隙的减小,毛细管力不断增加,导致运用传统溶胶凝胶涂覆和浸渍等方法,载体涂层难以实现均匀分布,增加了载体负载过程中的难度。本方法结合电沉积过程,克服了现有方法的缺点及局限性,将载体均匀沉积到孔隙结构表面,为后续加载均匀分布的活性组分提供有利条件。

所述电沉积过程中,沉积电压为1~20V,沉积时间为5~360min,沉积温度为20~90℃。

所述步骤1)电沉积液配制方法为:将载体材料加入去离子水中配制成溶液或者悬浮液;

溶液的浓度为0.001~0.500mol/L;优选地,浓度为0.010~0.100mol/L;

悬浮液的浓度为1~100g/L;优选地,浓度为5~50g/L。

步骤1)中,电沉积液浓度过高、电压过大,金属泡沫表面会在短时间内快速负载大量载体涂层,无法实现涂层的均匀分布;反之,浓度过低、电压过小,金属泡沫表面涂层覆盖率较低,也较难实现均匀分布,并且负载过程耗时过长,影响负载效率。

所述悬浮液pH值为3~5;悬浮液采用机械搅拌或者磁力搅拌进行分散,搅拌转速控制为100~1000r/min,优选地,搅拌转速控制为200~600r/min。

步骤1)所述载体材料为盐类、氧化物类或活性炭中的一种;优选地,盐类包括铝盐、硅盐、铈盐、钛盐、钙盐、镁盐或锌盐;氧化物类包括氧化铝、氧化硅、氧化铈、氧化钛、氧化钙、氧化镁或氧化锌。

所述氧化物类和活性炭的粉末粒径为10~500nm;优选地,粒径为20~100nm。

电沉积过程中,阳极材料为镍、铜、铂、不锈钢或石墨中的一种。

电沉积过程中,阳极和阴极为平行放置,阳极和阴极之间距离为5~200mm,优选地,距离为10~100mm。

所述步骤1)干燥温度为20~150℃,干燥时间为120~1440min;煅烧温度为300~800℃,升温速率为1~10℃/min,煅烧时间为60~900min。

所述活性组分为贵金属或非贵金属活性组分中的一种或者几种;贵金属活性组分包括钯盐、铂盐或钌盐;非贵金属活性组分包括钴盐、钼盐、钨盐、镍盐、铜盐、铁盐或锰盐。

所述活性组分含量占制备的整体式催化剂质量比例为0.1~10.0wt.%。

所述活性组分浸渍温度为20~90℃,浸渍时间为10~600min,优选地,浸渍温度为30~70℃,浸渍时间为120~360min。

步骤2)所述干燥温度为20~150℃,干燥时间为120~1440min;煅烧温度为300~800℃,升温速率为1~10℃/min,煅烧时间为60~900min;还原气体为氢气或氢气及氮气混合气体,其中氢气浓度为5~100vol.%,还原温度为150~600℃,升温速率为1~10℃/min,还原时间为60~600min。

一种电沉积制备的微泡沫基整体式催化剂填装至微填充床中进行催化反应的应用。

本发明的有益效果在于:

1.本发明将载体涂层负载在金属泡沫表面,相比于仅负载活性组分的整体式催化剂,使用整体式催化剂载体可以提高比表面积,使催化剂活性组分均匀地分散在金属泡沫表面,减少活性组分用量,提高活性组分利用率。

2.通过电沉积制备的整体式催化剂载体涂层分布均匀,能进一步促进活性组分的良好分散,同时结合金属泡沫孔隙率大、孔径小、体密度小和机械强度高的优点,使催化剂具有较高的活性和稳定性。

3.本发明电沉积方法无需外加粘结剂,条件温和,操作简单,更加贴合实际生产的需要。同时,能在结构复杂的金属泡沫表面获得目标组成和厚度的载体涂层,载体涂层不易堵塞金属泡沫孔隙,具有良好的安全性和重复性。

4.微填充床设备体积小,投资费用低,操作弹性好;整体式催化剂与传统颗粒催化剂相比,填装方便,易于更换;在微填充床中填装电沉积制备的整体式催化剂双重强化传质传热和混合效果,降低床层压降,提高反应效率。

附图说明

图1为本发明电沉积制备整体式催化剂载体装置示意图;

其中:a-交流电源,b-电解槽,c-电沉积液,d-阳极,e-阴极;

图2为本发明微填充床填装微泡沫基整体式催化剂进行催化反应流程示意图;

其中:1-气液预混合器,2-微填充床,3-微泡沫基整体式催化剂,4-气体钢瓶,5-液体储罐,6-气液分离器,7-泵,8-质量流量计,9-液体进口,10-气体进口,11-液体出口,12-气体出口;

图3为对比例1采用溶胶凝胶法在泡沫镍表面制备Al2O3涂层的扫描电镜图;

图4为实施例1采用电沉积法在泡沫镍表面制备Al2O3涂层的扫描电镜图;

图5为对比例2采用电沉积法在泡沫镍表面制备Al2O3涂层的高倍数扫描电镜图;

图6为对比例3采用电沉积法在泡沫镍表面制备Al2O3涂层的高倍数扫描电镜图;

图7为对比例4采用电沉积法在泡沫镍表面制备Al2O3涂层的高倍数扫描电镜图;

图8为对比例5采用电沉积法在泡沫镍表面制备Al2O3涂层的高倍数扫描电镜图;

图9为实施例1采用电沉积法在泡沫镍表面制备Al2O3涂层的高倍数扫描电镜图;

图10表示溶胶凝胶法和电沉积法制备催化剂在α-甲基苯乙烯长周期加氢过程中的稳定性。

具体实施方式

以下结合附图和具体实施例对本发明作进一步的详细说明:

实施例1

1)选择γ-Al2O3粉末作为载体材料,粉末粒径为30nm,将其加入去离子水中配制成悬浮液,浓度为10g/L。加入HNO3将悬浮液pH值调节至4,采用磁力搅拌将悬浮液进行混合分散,搅拌转速为200r/min。按图1所示结构,组装电沉积装置,将悬浮液作为电沉积液c,并移至电解槽b。以石墨作为阳极d,泡沫镍作为阴极e,泡沫镍孔径为200μm。将阳极和阴极平行放置,距离为10mm,连接至交流电源a,并置于电解槽中进行电沉积,沉积电压为5V,沉积时间为30min,沉积温度为25℃。沉积后样品在120℃条件下干燥360min,在600℃条件下煅烧120min,升温速率为5℃/min,得到整体式催化剂载体。如图4和9所示,Al2O3载体涂层分布十分均匀。

2)选择PdCl2配制活性组分溶液,活性组分含量占催化剂质量比例为0.3wt.%。将样品浸入溶液中,浸渍温度为60℃,浸渍时间为180min。浸渍后样品在120℃条件下干燥360min,在400℃条件下煅烧120min,升温速率为2℃/min,在300℃条件下还原120min,升温速率为5℃/min,还原气体为氢气。还原后得到整体式催化剂。

采用如图2所示的微填充床填装微泡沫基整体式催化剂,反应装置分别连接进料装置和出料装置,进料装置包括液体和气体两路,液体通路中液体储罐5经由泵7接入反应装置,气体通路中气体钢瓶4经由质量流量计8接入反应装置,通过泵7和质量流量计8调节气液原料的进料速率;反应装置包括气液预混合器1和微填充床2,微填充床中装填有微泡沫基整体式催化剂3,气液原料由液体进口9和气体进口10进入反应装置,先经过气液预混合器1进行预先混合,再进入微填充床2进行催化反应,反应完成后进入出料装置的气液分离器6进行物相分离,分别通过液体出口11和气体出口12排出收集。

将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为99.7%,转化率在16h内下降1.6%,在16~72h内基本保持不变,催化剂稳定性良好。如图5所示,催化剂活性和稳定性明显优于相同条件下对比例1中采用溶胶凝胶法制备的催化剂。

实施例2

1)选择Al(NO3)3·9H2O粉末作为载体材料,将其加入去离子水中配制成溶液,浓度为0.02mol/L。将溶液移至电解槽。以不锈钢作为阳极,泡沫铝作为阴极,泡沫铝孔径为280μm。将阳极和阴极平行放置,距离为50mm,连接至交流电源,并置于电解槽中进行电沉积,沉积电压为7V,沉积时间为60min,沉积温度为50℃。沉积后样品在80℃条件下干燥720min,在500℃条件下煅烧360min,升温速率为5℃/min,得到整体式催化剂载体。

2)选择PtCl4配制活性组分溶液,活性组分含量占催化剂质量比例为1.0wt.%。将样品浸入溶液中,浸渍温度为80℃,浸渍时间为120min。浸渍后样品在80℃条件下干燥720min,在500℃条件下煅烧360min,升温速率为1℃/min,在500℃条件下还原120min,升温速率为5℃/min,还原气体为氢气和氮气,氢气浓度为90vol.%,氮气浓度为10vol.%;还原后得到整体式催化剂。

采用与实施例1相同微填充床催化反应系统,将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为96.5%,转化率在16h内下降1.5%,在16~72h内基本保持不变,催化剂稳定性良好。

实施例3

1)选择CeO2粉末作为载体材料,粉末粒径为80nm,将其加入去离子水中配制成悬浮液,浓度为30g/L。加入HNO3将悬浮液pH值调节至3.8,采用磁力搅拌将悬浮液进行混合分散,搅拌转速为500r/min。将悬浮液移至电解槽。以铂作为阳极,泡沫铜作为阴极,泡沫铜孔径为170μm。将阳极和阴极平行放置,距离为30mm,连接至交流电源,并置于电解槽中进行电沉积,沉积电压为2V,沉积时间为180min,沉积温度为60℃。沉积后样品在80℃条件下干燥600min,在450℃条件下煅烧360min,升温速率为10℃/min,得到整体式催化剂载体。

2)选择Co(NO3)2·6H2O配制活性组分溶液,活性组分含量占催化剂质量比例为10.0wt.%。将样品浸入溶液中,浸渍温度为40℃,浸渍时间为240min。浸渍后样品在80℃条件下干燥600min,在450℃条件下煅烧360min,升温速率为5℃/min,在350℃条件下还原480min,升温速率为10℃/min,还原气体为氢气和氮气,氢气浓度为20vol.%,氮气浓度为80vol.%。还原后得到整体式催化剂。

采用与实施例1相同微填充床催化反应系统,将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为87.3%,转化率在16h内下降2.3%,在16~72h内基本保持不变,催化剂稳定性良好。

实施例4

1)选择活性炭粉末作为载体材料,粉末粒径为50nm,将其加入去离子水中配制成悬浮液,浓度为20g/L。加入HNO3将悬浮液pH值调节至4.2,采用机械搅拌将悬浮液进行混合分散,搅拌转速为300r/min。将悬浮液移至电解槽。以不锈钢作为阳极,泡沫镍作为阴极,泡沫镍孔径为420μm。将阳极和阴极平行放置,距离为60mm,连接至交流电源,并置于电解槽中进行电沉积,沉积电压为5.5V,沉积时间为90min,沉积温度为30℃。沉积后样品在100℃条件下干燥480min,在550℃条件下煅烧300min,升温速率为8℃/min,得到整体式催化剂载体。

2)选择Pd(NO3)2·2H2O配制活性组分溶液,活性组分含量占催化剂质量比例为0.5wt.%。将样品浸入溶液中,浸渍温度为30℃,浸渍时间为300min。浸渍后样品在100℃条件下干燥480min,在400℃条件下煅烧300min,升温速率为2℃/min,在400℃条件下还原300min,升温速率为8℃/min,还原气体为氢气和氮气,氮气、氢气浓度均为50vol.%。还原后得到整体式催化剂。

采用与实施例1相同微填充床催化反应系统,将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为99.9%,转化率在16h内下降1.7%,在16~72h内基本保持不变,催化剂稳定性良好。

实施例5

1)选择MgCl2·6H2O粉末作为载体材料,将其加入去离子水中配制成溶液,浓度为0.06mol/L。将溶液移至电解槽。以镍作为阳极,泡沫不锈钢作为阴极,泡沫不锈钢孔径为320μm。将阳极和阴极平行放置,距离为80mm,连接至交流电源,并置于电解槽中进行电沉积,沉积电压为12V,沉积时间为20min,沉积温度为70℃。沉积后样品在110℃条件下干燥360min,在600℃条件下煅烧180min,升温速率为5℃/min,得到整体式催化剂载体。

2)选择Ni(NO3)2·6H2O配制活性组分溶液,活性组分含量占催化剂质量比例为6.0wt.%。将样品浸入溶液中,浸渍温度为60℃,浸渍时间为240min。浸渍后样品在110℃条件下干燥360min,在600℃条件下煅烧180min,升温速率为1℃/min,在400℃条件下还原240min,升温速率为5℃/min,还原气体为氢气和氮气,氢气浓度为10vol.%,氮气浓度为90vol.%。还原后得到整体式催化剂。

采用与实施例1相同微填充床催化反应系统,将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为91.6%,转化率在16h内下降2.1%,在16~72h内基本保持不变,催化剂稳定性良好。

实施例6

1)选择SiO2粉末作为载体材料,粉末粒径为20nm,将其加入去离子水中配制成悬浮液,浓度为50g/L。加入HNO3将悬浮液pH值调节至4.5,采用机械搅拌将悬浮液进行混合分散,搅拌转速为600r/min。将悬浮液移至电解槽。以石墨作为阳极,泡沫钛作为阴极,泡沫钛孔径为230μm。将阳极和阴极平行放置,距离为20mm,连接至交流电源,并置于电解槽中进行电沉积,沉积电压为6V,沉积时间为120min,沉积温度为40℃。沉积后样品在120℃条件下干燥360min,在700℃条件下煅烧120min,升温速率为10℃/min,得到整体式催化剂载体。

2)选择RuCl3配制活性组分溶液,活性组分含量占催化剂质量比例为2wt.%。将样品浸入溶液中,浸渍温度为60℃,浸渍时间为120min。浸渍后样品在120℃条件下干燥360min,在500℃条件下煅烧120min,升温速率为5℃/min,在550℃条件下还原120min,升温速率为10℃/min,还原气体为氢气。还原后得到整体式催化剂。

采用与实施例1相同微填充床催化反应系统,将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为93.2%,转化率在16h内下降1.2%,在16~72h内基本保持不变,催化剂稳定性良好。

对比例1

1)采用溶胶凝胶法负载催化剂载体材料。将聚乙烯醇(粘结剂)加入去离子水中,采用磁力搅拌进行混合,搅拌转速为500r/min,并加热至85℃,持续搅拌2h,使聚乙烯醇完全溶解。

选择γ-Al2O3粉末作为载体材料,粉末粒径为30nm。将粉末和HNO3(稳定剂)加入聚乙烯醇溶液中,持续搅拌2h,在室温条件下静止放置24h,得到Al2O3浆液。将泡沫镍放入小管中,连接至蠕动泵,泡沫镍孔径为200μm。采用蠕动泵循环Al2O3浆液,使浆液流经小管并负载在泡沫镍表面,循环流量为162mL/min,循环时间为30min。负载后样品在120℃条件下干燥360min,在600℃条件下煅烧120min,升温速率为5℃/min,得到整体式催化剂载体。如图3所示,Al2O3涂层分布不均匀。

2)选择PdCl2配制活性组分溶液,活性组分含量占催化剂质量比例为0.3wt.%。将样品浸入溶液中,浸渍温度为60℃,浸渍时间为180min。浸渍后样品在120℃条件下干燥360min,在400℃条件下煅烧120min,升温速率为2℃/min,在300℃条件下还原120min,升温速率为5℃/min,还原气体为氢气。还原后得到整体式催化剂。

采用与实施例1相同微填充床催化反应系统,将整体式催化剂400mg填装至微填充床,用于α-甲基苯乙烯加氢制异丙苯过程。在反应温度70℃,反应压力1.0MPa,反应物流量0.1mL/min,氢气流量20mL/min条件下进行反应,反应物转化率为77.8%,转化率在16h内下降4.8%,在16~72h内基本保持不变,如图10所示。

对比例2

采用实施例1的电沉积方法,改变电沉积液浓度为110g/L,制备整体式催化剂载体。如图5所示,由于电沉积液浓度过高,泡沫镍表面Al2O3载体出现结块现象,与实施例1中图9相比,涂层分布不均匀。

对比例3

采用实施例1的电沉积方法,改变电沉积液浓度为0.5g/L,制备整体式催化剂载体。如图6所示,由于电沉积液浓度过低,Al2O3载体不能完全覆盖泡沫镍表面,与实施例1中图9相比,涂层呈现不均匀分布。

对比例4

采用实施例1的电沉积方法,改变沉积电压为25V,制备整体式催化剂载体。如图7所示,由于沉积电压过大,泡沫镍表面产生大量Al2O3块状结构,与实施例1中图9相比,涂层分布不均匀。

对比例5

采用实施例1的电沉积方法,改变沉积电压为0.5V,制备整体式催化剂载体。如图8所示,由于沉积电压过小,泡沫镍表面Al2O3载体的负载量较小,仍有基体裸露现象,与实施例1中图9相比,涂层呈现不均匀分布。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种提高Pt-CeO-2催化剂氧化反应低温活性和耐久性的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!