一种典型对称电极间隙结构的有效场域特征集的表征方法

文档序号:68785 发布日期:2021-10-01 浏览:21次 >En<

阅读说明:本技术 一种典型对称电极间隙结构的有效场域特征集的表征方法 (Characterization method of effective field characteristic set of typical symmetric electrode gap structure ) 是由 邱志斌 吴子建 廖才波 朱雄剑 侯华胜 张楼行 于 2021-06-18 设计创作,主要内容包括:本发明公开了一种典型对称电极间隙结构的有效场域特征集的表征方法,该方法包括:构建对称电极间隙的仿真模型、划分有限元网格并计算静电场分布,提取两电极端部连线路径上的电场强度值,以该路径上的电场强度最小值作为边界值E-(cr),将两电极之间电场强度大于边界值的网格单元构成的区域定义为与间隙击穿具有强关联性的有效场域,并将其划分为高压电极子场域和接地电极子场域,在两个子场域内分别提取所有网格单元的电场强度和单元体积,并据此计算得出45个与电场分布有关的特征量,构成有效场域特征集,用以表征间隙结构。本发明提供的有效场域特征集可为研究触发间隙击穿的特征区域提供参考,适用于作为间隙击穿电压预测模型的输入参数。(The invention discloses a method for representing an effective field characteristic set of a typical symmetrical electrode gap structure, which comprises the following steps: constructing a simulation model of the symmetrical electrode gap, dividing a finite element grid, calculating electrostatic field distribution, extracting the electric field strength value on a connecting line path of the end parts of the two electrodes, and taking the minimum value of the electric field strength value on the connecting line path as a boundary value E cr Defining the area formed by grid cells with electric field intensity between two electrodes greater than boundary value as effective field area with strong correlation with gap breakdown, dividing it into high-voltage electrode sub-field area and grounding electrode sub-field area, respectively extracting electric field intensity and cell volume of all grid cells in two sub-fields, and calculating 45 characteristic quantities related to electric field distribution to form effective field area characteristic set for representing gap structure. The effective field characteristic set provided by the invention can provide reference for researching the characteristic region triggering the gap breakdown, and is suitable for being used as an input parameter of a gap breakdown voltage prediction model.)

一种典型对称电极间隙结构的有效场域特征集的表征方法

技术领域

本发明属于高电压与绝缘

技术领域

,具体涉及一种典型对称电极间隙结构的有效场域特征集的表征方法。

背景技术

空气间隙的放电特性是高压输变电领域长期关注的基础问题之一。由于缺乏完善的放电理论,绝缘设计只能依赖于放电特性试验,通过试验获取放电电压与间隙距离等简单几何参数的关系式,然而试验研究成本高、周期长,有必要开展空气间隙放电电压预测研究。球隙、棒-棒间隙等典型对称电极间隙具有简单的几何结构,可以作为研究复杂间隙模型的切入点。电极尺寸、间隙距离等简单几何参数反映了间隙结构特点,是影响间隙放电的重要因素。然而,仅通过简单几何参数表征间隙结构效果有限,即无法准确反映影响间隙绝缘特性的结构因素。间隙结构是决定电场空间分布的宏观参数,可以通过信息更加丰富的三维空间电场实现对间隙结构的有效表征。

在空气间隙放电研究领域中,采用电场特征集表征间隙结构已有相关研究。例如,在“稍不均匀电场空气间隙击穿电压计算的新方法”(《高电压技术》,2015年第2期)和“球隙最短路径电场特征量与工频击穿电压预测”(《武汉大学学报(工学版)》,2019年第11期)等已公开的技术中,分别提出采用“整个区域、放电通道、电极表面、放电路径”或“最短路径”上定义的特征量来表征整个间隙的电场分布。然而,对于球隙和棒-棒间隙这类典型对称电极间隙而言,采用“整个区域、放电通道、电极表面、放电路径”等区域的特征量进行表征可能造成特征冗杂,而仅由“最短路径”定义的相关特征量又往往难以全面反映空气间隙的空间结构。球隙和棒-棒间隙作为对称间隙结构,两者的空间电场分布具有一定的相似性,为了实现对其空间电场的统一表征,有必要在间隙的高、低压电极之间定义范围更小的特征提取场域,构建更加简洁、合理的电场分布特征集。

发明内容

针对现有技术中的不足与难题,本发明旨在提供一种典型对称电极间隙结构的有效场域特征集的表征方法,为合理表征球隙和棒-棒间隙的三维空间结构,并进一步实现击穿电压预测提供基础特征参数。

本发明通过以下技术方案予以实现:

一种典型对称电极间隙结构的有效场域特征集的表征方法,该方法包括以下步骤:

S1、构建对称电极间隙的仿真模型、划分有限元网格,对两电极分别施加高电位U和零电位,并计算静电场分布;

S2、提取两电极端部连线路径上的电场强度值,以该路径上的电场强度最小值作为边界值Ecr

S3、将两电极之间电场强度大于边界值的网格单元构成的区域定义为与间隙击穿具有强关联性的有效场域,并将其划分为高压电极子场域和接地电极子场域;

S4、在两个子场域内分别提取所有网格单元的电场强度和单元体积,并据此计算得出45个与电场分布有关的特征量,构成有效场域特征集;

有效场域特征集具体包括:

高压电极子场域的体积Vh,接地电极子场域的体积Vl,两电极端部连线路径上的电场强度最小值En

高压电极子场域的电场强度最大值Emh、平均值Eah、大值平均值Eaeh、极差Erh、方差Evarh、标准差Estdh、畸变率fh,电场总能量Wh、能量密度Wdh,电场强度大于En+x·(Emh-En)的单元体积Vhx和电场能量Whx及其所占Vh的体积比Vrhx和所占Wh的能量比Wrhx

接地电极子场域的电场强度最大值Eml、平均值Eal、大值平均值Eael、极差Erl、方差Evarl、标准差Estdl、畸变率fl,电场总能量Wl、能量密度Wdl,电场强度大于En+x·(Eml-En)的单元体积Vlx和电场能量Wlx及其所占Vl的体积比Vrlx和所占Wl的能量比Wrlx

进一步地,x取值为0.7、0.8、0.9。

与现有技术相比,本发明有益效果包括:

(1)本发明采用电场分布特征集对球隙和棒-棒间隙这类对称电极间隙结构的空间结构进行描述,可替代间隙距离、球径、棒电极尺寸等简单几何参数,实现对间隙结构更加合理的表征。

(2)相比于现有技术中采用“整个区域、放电通道、电极表面、放电路径”和“最短路径”等空间区域进行电场分布的特征定义,本发明提供的有效场域电场分布特征集兼顾了特征提取的效率和特征表达的完善性,推广性能更好,更适用于作为间隙击穿电压预测模型的输入参数。

附图说明

图1为实施例中的表征球隙结构的有效场域示意图;

附图2是实施例中的球隙有效场域的静电场分布云图。

具体实施方式

下面结合附图,对本发明作进一步地说明。

下面结合实施例对本发明做进一步的描述,有必要在此指出的是以下实施例只是用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述发明内容所做出的一些非本质的改进和调整,仍属于本发明的保护范围。

一、本发明的具体方法原理

本发明提供一种表征典型对称电极间隙结构的有效场域特征集,用以定量描述球隙和棒-棒间隙的空间结构与电场分布,可为进一步实现击穿电压预测提供基础特征参数。

本发明采用如下技术方案:

对用以高电压放电研究的球隙和棒-棒气隙来说,通常一端施加高电压,另一端接地,根据其结构尺寸可以建立相应的仿真模型,并划分有限元网格,对其中一电极施加高电位U(即高压球电极1),另一电极施加零电位(即接地球电极2),利用有限元法计算间隙的静电场分布。

首先在两电极之间定义电场分布特征提取的有效场域,本实施例中,以球隙为例,如图1所示,提取两电极端部连线路径上的电场强度值,以该路径上的电场强度最小值作为边界值Ecr,将两电极之间电场强度大于边界值的网格单元构成的区域定义为与间隙击穿具有强关联性的有效场域,并将其划分为高压电极子场域3和接地电极子场域4,本实施例中边界值为高压电极子场域3和接地电极子场域4相接处,在两个子场域内分别提取所有网格单元的电场强度和单元体积,并据此计算得出45个与电场分布有关的特征量,构成有效场域特征集,具体如下:

高压电极子场域3的体积Vh,接地电极子场域4的体积Vl,两电极端部连线路径上的电场强度最小值En

式中,n和m分别为高压电极子场域3和接地电极子场域4内的单元总数,Ek为两电极端部连线路径上第k个采样点的电场强度值,P为该路径上的采样点总数。

高压电极子场域3的电场强度最大值Emh、平均值Eah、大值平均值Eaeh、极差Erh、方差Evarh、标准差Estdh、畸变率fh,其计算公式如下:

式中,Ei表示高压电极子场域3第i个单元场强的平均值,i=1,2,…,n;Es为该场域内第s个场强大于Eah的单元场强值,S为对应的单元总数。

高压电极子场域3的电场总能量Wh、能量密度Wdh,电场强度大于En+x·(Emh-En)的单元体积Vhx和电场能量Whx及其所占Vh的体积比Vrhx和所占Wh的能量比Wrhx,其计算公式如下:

式中,ε0为真空介电常数,Vhxi和Whxi为高压电极子场域3内第i个电场强度大于En+x·(Emh-En)的单元的体积和能量,xn为对应的单元总数,Vi和Wi分别为第i个单元的体积和能量,其中x取值为0.7、0.8、0.9。

接地电极子场域4的电场强度最大值Eml、平均值Eal、大值平均值Eael、极差Erl、方差Evarl、标准差Estdl、畸变率fl,其计算公式如下:

式中,Ej表示接地电极子场域4第j个单元场强的平均值,j=1,2,…,m;Et为该场域内第t个场强大于Eal的单元场强值,T为对应的单元总数。

接地电极子场域4的电场总能量Wl、能量密度Wdl,电场强度大于En+x·(Eml-En)的单元体积Vlx和电场能量Wlx及其所占Vl的体积比Vrlx和所占Wl的能量比Wrlx,其计算公式如下:

式中,Vhxj和Whxj为高压电极子场域3内第j个电场强度大于En+x·(Eml-En)的单元的体积和能量,xm为对应的单元总数,Vj和Wj分别为第j个单元的体积和能量,其中x取值为0.7、0.8、0.9。

二、球隙实施例

本实施例以球隙为例,说明本发明所涉及的一种表征典型对称电极间隙结构的有效场域特征集。设球径D=50cm、间隙距离d=10cm。根据尺寸建立二维轴对称仿真模型,对一端电极加载电位1V,对另一电极和截断空气边界施加零电位,采用有限元法可计算出其静电场分布,电场仿真结果如附图2所示。

在两电极端部连线路径上等距选取2001个采样点,提取每个采样点的电场强度值,以该路径上的电场强度最小值作为边界值Ecr,根据本发明有效场域的定义,分别提取高压电极子场域3和接地电极子场域4内所有网格单元的电场强度和单元体积,根据上述特征量计算公式分别计算得出有效场域特征集,见表1。

表1

由此可得出本实施例中的球隙的有效场域特征集,集合中的元素即为上述45个电场分布特征量。

以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于刚度的空间精密轴系预紧力的测量方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类