非均质岩石波速场的获取方法

文档序号:780088 发布日期:2021-04-09 浏览:27次 >En<

阅读说明:本技术 非均质岩石波速场的获取方法 (Method for acquiring heterogeneous rock wave velocity field ) 是由 王智洋 吴志军 翁磊 储昭飞 于 2020-12-09 设计创作,主要内容包括:本发明涉及一种非均质岩石波速场的获取方法,该方法首先将波速场转化为能够与应力波传导时间相关的虚拟场,并通过测量几组平行路径应力波的传导时间在频域内重构虚拟场;随后将频域虚拟场转化为空间域的波速场并消除其中奇异点即得到最终重构的波速场。本发明能够利用多组脉冲穿透测量准确获取非均质岩石的波速场,该方法具有操作简单,计算量小,重构过程不基于波速场连续性假设的优点,因此能够较好地重构出非均质岩石中波速场的非连续变化,适用于非均质岩石实验室声发射实验中波速模型的获取。(The invention relates to a method for acquiring a wave velocity field of a heterogeneous rock, which comprises the steps of firstly converting the wave velocity field into a virtual field which can be related to the conduction time of stress waves, and reconstructing the virtual field in a frequency domain by measuring the conduction time of stress waves of a plurality of groups of parallel paths; and then converting the frequency domain virtual field into a wave velocity field of a space domain and eliminating singular points in the wave velocity field to obtain a finally reconstructed wave velocity field. The method can accurately acquire the wave velocity field of the heterogeneous rock by utilizing the penetration measurement of a plurality of groups of pulses, has the advantages of simple operation, small calculated amount and no wave velocity field continuity hypothesis-based reconstruction process, can better reconstruct the discontinuous change of the wave velocity field in the heterogeneous rock, and is suitable for acquiring the wave velocity model in the acoustic emission experiment of the heterogeneous rock laboratory.)

非均质岩石波速场的获取方法

技术领域

本发明涉及岩石力学实验技术领域,具体涉及一种非均质岩石波速场的获取方法。

背景技术

声发射事件定位是声发射监测技术的核心,它利用声发射监测系统记录的波形,触发时刻等相关数据计算声发射事件的空间坐标和发生时刻。准确地声发射定位对分析岩石损伤破坏机制有重要意义。而声发射事件定位的准确性很大程度上取决于岩石试件波速模型的质量。

目前,在岩石材料声发射定位中,通常采用单一波速模型,即假定材料是连续,均质和各向同性的。然而在现实中,岩石材料的波速场可能由于其内部加杂或局部损伤表现出非连续,非均匀的特征。忽视岩石材料真实波速场的复杂性会严重影响声发射事件定位的准确性。同时,由于岩石内部结构是不可见的,想要直接获取较为准确的岩石内部波速场难度较大。

现有用来获取非均质岩石波速结构的方法只要包括,一维波速重构法,走时反演法和波形反演法。其中一维波速重构法得到的真实波速模型的一维近似不足以满足非均质岩石材料准确声发射定位的需求。走时反演法和波形反演法对初始的波速模型质量要求很高,而且这两种方法均是基于波速场处处连续可导的假设。对于内部难以探查且波速结构非连续的非均质岩石材料使用效果并不理想。因此,研究一种能够通过较为简单测量方法获取高质量的非均质岩石材料波速模型的方法十分有意义,能够很大程度上保证声发射源定位的精度。

发明内容

针对现有技术的不足,本发明的目的是提供一种便于操作,可靠性好的非均质岩石波速场的获取方法,适用于岩石力学实验中声发射事件的准确定位。

为实现上述目的,本发明提供的非均质岩石波速场的获取方法,其特征在于:包括以下步骤:

1)构造波速场相关的虚拟场并测得其不同角的投影;

2)在频域内对虚拟场进行重构;

3)将频域内重构的虚拟场转化到空间域;

4)根据虚拟场取值范围判断重构波速场中可能出现的奇异点并消除其影响;

5)计算重构波速场。

作为优选方案,所述步骤1)中,虚拟场的构造方法为:将波速场进行离散,通过单元尺寸与单元对应波速的比值构造虚拟场。

进一步地,所述步骤1)中,虚拟场投影的获取方法为:由虚拟场的物理意义可知,通过脉冲穿透法测量的应力波传播时间即为虚拟场在该路径上的投影;

更进一步地,通过多组平行路径的测量得到虚拟场不同角的投影。

更进一步地,所述步骤2)中,在频域内对虚拟场进行重构的方法为:对虚拟场空间投影进行一维付里叶变换,通过虚拟场空间投影的付里叶变换与频域内虚拟场在对应角度断面的等价关系在频域内重构虚拟场。

更进一步地,所述步骤3)中,将频域内重构的虚拟场转化为空间域的波速场的方法为:通过二维付里叶逆变换将在频域内重构的虚拟场转化到空间域,并通过虚拟场与波速场的关系将其转化为波速场。

更进一步地,所述步骤4)中,消除重构波速场中可能存在的奇异点的方法为:当重构波速场中出现奇异点时,需要对重构虚拟场进行低通滤波后再将其转化为波速场。

更进一步地,具体步骤如下:

所述步骤1)中,构造波速场相关的虚拟场并测得其不同角度的投影

构造虚拟场w与波速场v有如下关系。

其中h表示波速场中一个位移小量,即离散波速场中的单元尺寸,虚拟场w表示应力波经过该位移小量或单元所需的时间。

使用脉冲穿透法进行测量时,应力波传播的时间可以表示为:

其中δ表示脉冲函数,有:

xcosθ+ysinθ-ρ表示应力波激发点到接收点的直线路径。可以看出,通过脉冲穿透法测得的应力波传播时间即是虚拟场w在该投影路径上的投影点。当路径角度相同时,这些投影点组成的曲线即为虚拟场w在该角度下的投影g。

基于上式可知,要得到虚拟场w在某一特定角度的投影只需在该角度对应的一组平行路径上使用脉冲穿透法进行测量,记录应力波走时并进行曲线拟合。

所述步骤2)中,在频率域内对虚拟场进行重构

通过付里叶变换将得到的虚拟场在空间域的投影变换到频率域,即:

其中W表示虚拟场w的二维付里叶变换。基于上式表述的虚拟场投影的一维付里叶变换与虚拟场二维付里叶变换的关系,可以在频率域内对虚拟场进行重构。

所述步骤3)中,将在频域重构的虚拟场转化到空间域

通过二维付里叶逆变换将频域内表示的虚拟场W向空间域进行转换,有:

其中|ω|为斜波滤波器。由于该函数是不可积的,需要在被积函数中增加一个汉明窗函数h用以限制积分区间。至此虚拟场w在空间域中可以通过如下方程进行表示:

其中

所述步骤4)中,根据虚拟场取值范围判断重构波速场中可能出现的奇异点并消除其影响

根据虚拟场的物理意义可知,其取值应当始终大于0。事实上,由于在步骤2)和3)中使用付里叶级数对非连续函数进行近似,使得虚拟场的计算结果会存在一定的震荡。特别是在波速快速变化的区域震荡会尤其强烈。同时,在公式中,虚拟场出现在分母的位置。若0点包含在震荡区域中,重构波速场会出现奇异点。当这种情况出现时,需要在使用公式之前对虚拟场使用低通滤波器进行滤波处理。

所述步骤5)中,计算重构波速场

将经过滤波处理后的重构虚拟场代入公式,即可求得重构波速场的最终结果。

本发明的优点及有益效果如下:

本发明提供了一种非均质岩石波速场的获取方法,主要用于解决非均质岩石材料波速场反演计算中由于引入连续性假设而带来的精度不高的问题。

附图说明

图1是本发明所述方法流程图;

图2是本发明实施例中通过实验采集和曲线拟合得到的各方向投影的示意图;

图3-a是本发明实施例中虚拟场(波速场)从频率域向到空间域转化的波速场总览结果;

图3-b是本发明实施例中虚拟场(波速场)从频率域向到空间域转化的特征线数据结果;

图3-c是本发明实施例中虚拟场(波速场)从频率域向到空间域转化的特征线数据放大结果;

图4-a是本发明实施例中经过低通滤波处理后的虚拟场(波速场)波速场总览结果;

图4-b是本发明实施例中经过低通滤波处理后的虚拟场(波速场)特征线数据结果。

具体实施方式

下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。

以自制非均质岩石试件为例依照发明内容所述的技术方案获得其波速场。

试件主体为花岗岩,尺寸200mm*200mm*30mm,波速5128m/s。试件中心为用水刀切出的尺寸为100mm*100mm*30mm的孔洞并用水泥砂浆进行填充。水泥砂浆由325硅酸盐水泥和河沙按照1:1.5的比例配制,完全养护后波速为2030m/s。

如图1所示,本发明非均质岩石波速场的获取方法,具体步骤如下:

步骤1):构造波速场相关的虚拟场并测得其不同角度的投影:

将波速场按照600*600的分辨率进行离散,则使用脉冲穿透法进行投影点测量时,每间隔5度进行一次投影测量,同一投影中的测点相距为5mm。通过基于霍夫变换的多边形拟合方法构造出该试件虚拟场在0至45度的投影,并通过对称性得到其在0至180度内的投影(如图2)。

步骤2):在频率域内对虚拟场进行重构:

对得到的投影进行单变量的离散付里叶变换,每个一维付里叶变换都是虚拟场二维付里叶变换的一部分。

步骤3):将频域内重构的虚拟场转化到空间域

用滤波函数|ω|乘以每个投影的付里叶变换再乘以一个汉明窗函数后进行一维离散反付里叶变换并进行积分。以上操作后可以得到如图3-a至3-c的虚拟场(波速场)重构结果。转化为重构波速场后发现除奇异点外重构结果与实测波速差别不大。

步骤4):根据虚拟场取值范围判断重构波速场中可能出现的奇异点并消除其影响

如图3-a可以看到0点包含在了虚拟场的取值范围内,当转化为波速场时,会出现奇异点(如图3-b)。为消除奇异点,需要对图3-a中所示的虚拟场使用高斯低通滤波器进行滤波处理。处理后的虚拟场如图4-a,可以看到其取值范围明显收窄且不再包含0点。

步骤5):计算重构波速场

将经过低通滤波后虚拟场转化为波速场,可以看到在最终的波速场重构结果中,即图4-b,原先的奇异点已经得到了很好的抑止。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围以内。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:盐酸左西替利嗪滴剂中糖精钠的分离与测定方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!