一种光催化选择性金属溶解剂及溶解方法

文档序号:803244 发布日期:2021-03-26 浏览:35次 >En<

阅读说明:本技术 一种光催化选择性金属溶解剂及溶解方法 (Photocatalytic selective metal dissolving agent and dissolving method ) 是由 卞振锋 陈瑶 徐梦娇 闻洁雅 万瑜 李和兴 于 2019-09-26 设计创作,主要内容包括:本发明涉及一种光催化选择性金属溶解剂及溶解方法,该溶解剂为含光催化剂的氰类化合物溶液,所述的溶液中含水量为0-50wt%,所述的溶液中光催化剂的含量为0.01-50mg/mL。光催化选择性金属溶解方法,该方法为:将金属材料分散到光催化选择性金属溶解剂中,光照射一定时间即可对金属材料中各个金属进行选择性溶解。与现有技术相比,本发明突破了对贵金属选择性溶解过程的现有认识,对金属在环境中的演变以及金属开采或金属分离提纯处理有指导意义。(The invention relates to a photocatalytic selective metal dissolving agent and a dissolving method, wherein the dissolving agent is a cyanogen compound solution containing a photocatalyst, the water content of the solution is 0-50 wt%, and the content of the photocatalyst in the solution is 0.01-50 mg/mL. A photocatalytic selective metal dissolution method comprises the following steps: the metal material is dispersed into the photocatalytic selective metal dissolving agent, and each metal in the metal material can be selectively dissolved by irradiating light for a certain time. Compared with the prior art, the invention breaks through the prior knowledge of the selective dissolution process of the noble metal and has guiding significance for the evolution of the metal in the environment and the metal mining or the metal separation and purification treatment.)

一种光催化选择性金属溶解剂及溶解方法

技术领域

本发明涉及光催化应用领域,尤其是涉及一种光催化选择性金属溶解剂及溶解方法。

背景技术

随着科技的飞速发展,金属利用率也越来越高,大多数金属组合使用能发挥更大的作用。然而金属含量有限,对金属的回收和再利用非常重要。其中,对于金属的选择性溶解是回收中的最为重要过程之一,在现有的方法中,金属多用强酸(王水)溶解回收贵金属,通过该方法得到的金属离子溶液无选择性,且整个过程对环境有害,回收成本非常高,污染严重。

专利CN108728645A公开了一种含贵金属铁合金酸溶解活化的工艺方法,该方法利用氧化物将生成的反应物残渣与铁水分离,再利用王水溶解贵金属。其铁合金熔融形成铁水的温度高达1200-1500℃,条件十分苛刻,且在过程中用到了腐蚀性极强的王水。专利CN107502745A公开了一种金、银贵金属离子的选择性回收利用方法,该方法利用碳管薄膜下表面的聚多巴胺将废液中的金、银离子还原成金、银纳米粒子,并吸附在碳管薄膜下表面,形成碳管、金或银纳米粒子复合薄膜材料。其碳管复合薄膜制备步骤繁琐,回收的贵金属材料只能形成复合薄膜材料。

因此,开发一种有效地可选择性溶解金属的绿色环保方法是非常迫切的。光催化以其反应条件温和、能直接利用太阳能转化为化学能的优势,备受科研人员的关注,在能源及环境保护领域中均显现出巨大的应用前景。光催化溶解金属给环境保护、能源利用带来了一个非常重要的机遇,并为向低碳、资源节约型的绿色经济过渡做出贡献。

发明内容

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可在温和环保的条件下的光催化选择性金属溶解剂及溶解方法。

本发明的目的可以通过以下技术方案来实现:

一种光催化选择性金属溶解剂,该溶解剂为含光催化剂的氰类化合物溶液,所述的溶液中含水量为0-50wt%,所述的溶液中光催化剂的含量为0.01-50 mg/mL。

进一步地,所述的光催化剂包括无机光催化材料、有机光催化材料、半导体光催化材料以及其进行改性,表面修饰,相互复合的光催化材料。

进一步地,所述的无机光催化材料包括二氧化钛、硫化镉、钒酸铋、氧化钨中的一种或多种;

所述的有机光催化材料包括氮化碳、卟啉、仿生酶或卟啉超分子有机聚合物及金属有机复合物中的一种或多种;

所述的半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料包括含有氧空位的二氧化钛材料,羟基修饰二氧化钛材料,二维结构二氧化钛材料,氮掺杂二氧化钛材料,卟啉敏化二氧化钛,卟啉自组装材料,其中卟啉包括原卟啉,铁卟啉,镁卟啉或锌卟啉,二氧化钛复合氨基修饰的金属有机化合物材料,二硫化钼负载二氧化钛、硫化镉复合材料,硫化镉量子点材料,原位硫化氧化钨复合材料,磷掺杂氧化铟材料,氮缺陷的氮化碳复合材料,碳材料修饰氮化碳材料,其中碳材料包括碳点、石墨烯或碳纳米管,层状溴氧铋材料,含氧缺陷的溴氧铋材料,仿生催化酶材料及有机光系统与无机催化剂复合材料。

进一步地,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的一种或几种。

一种采用上述的光催化选择性金属溶解剂进行光催化选择性金属溶解方法,该方法为:将金属材料分散到光催化选择性金属溶解剂中,光照射一定时间即可对金属材料中各个金属进行选择性溶解。

进一步地,所述的金属材料与所述光催化剂的质量比为1:(0.01-1)。

进一步地,所述的金属材料包括铜、银和金中的一种或多种。

进一步地,所述的金属材料还包括铁、锰、铬、锌、锡、铅、铝、钛、钌、铑、铱、钯的一种或几种。

进一步地,所述的光照射的光波长为150-1500nm,涵盖深紫外光、紫外光、可见光和近红外光,光照时间为2-4h。

进一步地,溶解过程中向光催化选择性金属溶解剂中加入含氧气体或能产生氧气的化学物质,使光催化选择性金属溶解剂中的氧容量为5-100%;所述的能产生氧气的化学物质包括臭氧、过氧化氢或过氧化钠的一种或几种。

与现有技术相比,本发明具有以下优点:

(1)贵金属(如金,银)在环境中一般以单质形式存在,光催化技术能够使光催化剂在光照下产生具有氧化性质的自由基物种氧化贵金属,从而溶解贵金属,对于普通金属(铜)同样适用;

(2)大多数贵金属溶解通常使用王水,但银却无法用王水溶解。王水溶解金属无选择性且易挥发污染环境。使用的光催化反应条件温和,且对金属有顺序的选择性溶解,这个过程具有温和、反应溶液毒性低、节能、绿色、环保、成本低、操作方便等优点,适合于进行大规模工业化金属选择性溶解处理;

(3)一般溶解还原性很低的贵金属,都是利用配位反应(例如王水当中浓盐酸的氯离子与金属发生配位反应)提高其还原性,从而将其溶解,这样的溶解是没有选择性的,本发明通过利用光催化剂的选择性,调整活性物种的氧化性来实现贵金属的选择性溶解,突破了对贵金属选择性溶解过程的现有认识,对金属在环境中的演变以及金属开采或金属分离提纯处理有指导意义。

(4)由于各种金属的还原性不同,采用本发明所述方法对多种金属进行溶解时,可根据金属的还原性不同,判断各金属溶解的先后顺序,并根据时间或颜色确定溶解终点,从而将各不同金属选择性分离出来,实现金属的分离提纯。如根据不同时间点的金属离子浓度测试,可以有效确定某个金属是否溶解结束。当确定某一金属溶解结束,即可停止反应,待将其分离后再进行下一金属的溶解。

附图说明

图1为实施例1中三种金属选择性溶解反应的溶解比例曲线图;

图2为实施例2中多种金属选择性溶解反应的溶解比例曲线图;

图3为实施例3中溶解反应前后的样品实物图。

具体实施方式

下面结合附图和具体实施例对本发明进行详细说明。

实施例1

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

图1为三种金属选择性溶解反应的溶解比例曲线图,从ICP测试数据可以明显的看出液体中金属溶解顺序为铜,银,金,三种金属的比例不断增加(取少量溶液蒸干溶剂后加等溶剂量的水稀释检测)。

实施例2

将500mg含等量铝,铁,钴,镍,锌,钯,铂,钌,铑,铱的材料分散到500ml丙烯腈溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为0%。

图2为多种金属选择性溶解反应的溶解比例曲线图,从ICP测试数据也可以明显的看出液体中无任何金属溶解(取少量溶液蒸干溶剂后加等溶剂量的水稀释检测),说明了该方法对金属铜、银和金的特殊选择性。

实施例3

分别将50mg含1%铜,1%银和1%金的材料分散到20ml丙烯腈溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属的溶解率为100%。

从图3中可以看出溶解前样品分别呈紫色(金),红色(银)和绿色(铜),溶解反应后样品全变为白色。

实施例4

将500mg含等量铜,银,金的材料分散到100ml三聚氰胺的水溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射3h,金属溶解率为100%,溶出顺序为铜,银,金。

实施例5

将500mg含等量铜,银,金的材料分散到25ml乙腈溶液中,然后加入 50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为 91.3%,溶出顺序为铜,银,金。

实施例6

将500mg含等量铜,银,金的材料分散到150ml苯乙腈溶液中,然后加入100mg商品混相二氧化钛催化剂,在空气中用紫外光照射2h,金属溶解率为100%,溶出顺序为铜,银,金。

实施例7

将500mg含等量铜,银,金的材料分散到80ml苯乙腈溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为65.4%,溶出顺序为铜,银,金。

实施例8

将500mg含50%铜,25%银,25%金的材料分散到50ml丙烯腈溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为100%,溶出顺序为铜,银,金。

实施例9

将500mg含80%铜,15%银,5%金的材料分散到90ml丙二腈的水溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为100%,溶出顺序为铜,银,金。

实施例10

将500mg含25%铜,50%银,25%金的材料分散到220ml丙烯腈的溶液中,然后加入150mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为100%,溶出顺序为铜,银,金。

实施例11

将500mg含5%铜,25%银,70%金的材料分散到50ml丙二腈的水溶液中,然后加入75mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金属溶解率为100%,溶出顺序为铜,银,金。

实施例12

将500mg含等量铜,银,金,铁,钴和镍的材料分散到50ml丙烯腈溶液中,然后加入70mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银,金溶解率为100%,铁,钴,镍溶解率为0%,溶解顺序为铜,银,金。

实施例13

将500mg含等量铜,银,金,钯和铂的材料分散到500ml丙烯腈溶液中,然后加入85mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银,金溶解率为100%,钯和铂溶解率为0%,溶解顺序为铜,银,金。

实施例14

将200mg含等量铜,银,金,钌和铑的材料分散到60ml氰乙酸溶液中,然后加入30mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银,金溶解率为100%,钌和铑溶解率为0%,溶解顺序为铜,银,金。

实施例15

将250mg含等量铜,银,金和铱的材料分散到55ml氰乙酸溶液中,然后加入25mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银,金溶解率为100%,铱溶解率为0%,溶解顺序为铜,银,金。

实施例16

将500mg含等量铜,银,金,铝和锌的材料分散到150ml丙烯腈溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银,金溶解率为100%,铝和锌溶解率为0%,溶解顺序为铜,银,金。

实施例17

将300mg含等量铜和镍的材料分散到250ml丙烯腈溶液中,然后加入 50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜溶解率为 100%,镍溶解率为0%。

实施例18

将100mg含等量银和钯的材料分散到50ml氰乙酸溶液中,然后加入50 mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,银溶解率为100%,钯溶解率为0%。

实施例19

将550mg含等量金和铂的材料分散到350ml丙二腈的水溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金溶解率为 100%,铂溶解率为0%。

实施例20

将600mg含等量铜,银,钴和镍的材料分散到50ml丙烯腈溶液中,然后加入500mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银溶解率为100%,铁,钴溶解率为0%,溶解顺序为铜,银。

实施例21

将1000mg含等量铜,银,铝的材料分散到500ml丙烯腈溶液中,然后加入100mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银溶解率为100%,铝溶解率为0%,溶解顺序为铜,银。

实施例22

将650mg含等量银,金,钯和镍的材料分散到150ml丙烯腈溶液中,然后加入150mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,银,金溶解率为100%,钯,镍溶解率为0%,溶解顺序为银,金。

实施例23

将350mg含等量银,金,钌和铱的材料分散到75ml丙烯腈溶液中,然后加入25mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,银,金溶解率为100%,钌和铱溶解率为0%,溶解顺序为银,金。

实施例24

将780mg含等量铜,铁,钴和镍的材料分散到80ml丙烯腈溶液中,然后加入60mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜溶解率为100%,铁,钴和镍溶解率为0%。

实施例25

将520mg含等量银,铝,钯和钌的材料分散到50ml三聚氰胺的水溶液中,然后加入100mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,银溶解率为100%,铝,钯和钌溶解率为0%。

实施例26

将660mg含等量金,铝,镍和钌的材料分散到60ml丙烯腈溶液中,然后加入160mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金溶解率为100%,铝,镍和钌溶解率为0%。

实施例27

将120mg含等量金,铑和铱的材料分散到50ml丙烯腈溶液中,然后加入150mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,金溶解率为 100%,铑和铱溶解率为0%。

实施例28

将250mg含等量铂,铝,钯和钌的材料分散到150ml丙二腈的水溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铝,铂,铝,钯和钌溶解率为0%。

实施例29

将550mg含等量铁,铑和铱的材料分散到130ml丙烯腈溶液中,然后加入70mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,银溶解率为 100%,铁,铑和铱溶解率为0%。

实施例30

将500mg含不同量铜,银,金,铝,钯和钌的材料分散到50ml丙烯腈的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铜,银,金溶解率为100%,铝,钯和钌溶解率为0%,溶解顺序为铜,银,金。

实施例31

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg卟啉负载二氧化钛(TCPP-TiO2)催化剂,在空气中用紫外光照射4 h,金属溶解率为88.7%,溶解顺序为铜,银,金。

实施例32

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入130mg商品硫化镉催化剂,在空气中用波长为420nm的可见光照射4h,金属溶解率为78.6%,溶解顺序为铜,银,金。

实施例33

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg自组装卟啉纳米片(SA-TCPP)催化剂,在空气中用可见光照射4h,金属溶解率为96.1%,溶解顺序为铜,银,金。

实施例34

将500mg含等量铜,银,金的材料分散到50ml苯乙腈溶液中,然后加入50mg富含氧缺陷的二氧化钛(OV-TiO2)催化剂,在空气中用可见光照射 4h,金属溶解率为86.9%,溶解顺序为铜,银,金。

实施例35

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg羟基修饰的二氧化钛(OH-TiO2)催化剂,在空气中用可见光照射4 h,金属溶解率为93.6%,溶解顺序为铜,银,金。

实施例36

将500mg含等量铜,银,金的材料分散到50ml苯乙腈溶液中,然后加入50mg二硫化钼负载的二氧化钛(MoS2/TiO2)催化剂,在空气中用可见光照射4h,金属溶解率为99.8%,溶解顺序为铜,银,金。

实施例37

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg二硫化钼与硫化镉(MoS2/CdS)复合催化剂,在空气中用可见光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例38

将500mg含等量铜,银,金的材料分散到50ml乙腈溶液中,然后加入 50mg磷掺杂的氧化铟(P-In2O3)催化剂,在空气中用紫外光照射4h,金属溶解率为97.9%,溶解顺序为铜,银,金。

实施例39

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg有机光系统与无机化合物(PSⅡ/Ru2S3/CdS)复合催化剂,在空气中用可见光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例40

将500mg含等量铜,银,金的材料分散到50ml氰乙酸溶液中,然后加入200mg商品硫化镉催化剂,通入臭氧,用波长为550nm的可见光照射3h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例41

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入150mg商品混相二氧化钛催化剂,通入氧气比例为30%的气体,用波长为 365nm的紫外光照射3h,金属溶解率为84.9%,溶解顺序为铜,银,金。

实施例42

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入95mg商品混相二氧化钛催化剂,通入氧气比例为50%的气体,用波长为 365nm的紫外光照射5.5h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例43

将500mg含等量铜,银,金的材料分散到50ml苯乙腈溶液中,然后加入80mg商品混相二氧化钛催化剂,通入氧气比例为30%的气体,用波长为 150nm的深紫外光照射5h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例44

将500mg含等量铜,银,金的材料分散到50ml丙二腈的水溶液中,然后加入150mg商品硫化镉催化剂,通入氧气比例为60%的气体,用波长为550 nm的可见光照射6h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例45

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入200mg商品硫化镉催化剂,加入双氧水,用波长为550nm的可见光照射6.5h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例46

将50mg含等量铜,银,金的材料分散到150ml丙烯腈溶液中,然后加入50mg锌卟啉(Zn-porphyrin)催化剂,加入双氧水,在氮气中用可见光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例47

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg二维二氧化钛(2D-TiO2)催化剂,通入氧气比例为50%的气体,用 420nm可见光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例48

将750mg含等量铜,银,金的材料分散到150ml丙烯腈溶液中,然后加入250mg富含三价钛离子的二氧化钛(H-TiO2-x)催化剂,在空气中用420nm 可见光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例49

将500mg含等量铜,银,金的材料分散到50ml丙烯腈溶液中,然后加入50mg硫化镉量子点(CdS QDs)液体催化剂,在空气中用550nm可见光照射4h,金属溶解率为100%,溶解顺序为铜,银,金。

实施例50

将500mg含等量铜,银,金的材料分散到50ml苯乙腈溶液中,然后加入50mg含有氮缺陷的氮化碳(g-C3Nx)催化剂,在空气中用550nm可见光照射4h,金属溶解率为68.7%,溶解顺序为铜,银,金。

以上实施例仅用于说明本发明技术方案,并非是对本发明的限制,本技术领域的普通技术人员在本发明的实质范围内所做的改变、替代、修饰、简化均为等效的变换,都不脱离本发明的宗旨,也应属于本发明的权利要求保护范围。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:阳极泥处理方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!