一种电子产品组件用热固性树脂组合物及其应用

文档序号:845446 发布日期:2021-03-16 浏览:21次 >En<

阅读说明:本技术 一种电子产品组件用热固性树脂组合物及其应用 (Thermosetting resin composition for electronic product component and application thereof ) 是由 林立成 孙启辉 粟俊华 席奎东 蒋剑 王洁洁 于 2020-11-30 设计创作,主要内容包括:本发明涉及一种电子产品组件用热固性树脂组合物及其应用,该组合物包括以下质量份组分:乙烯基热固性树脂50-90份;硅烷封端乙烯基热固性树脂5-40份;固化剂1-5份;阻燃剂10-40份;中空玻璃微球5-40份;所述的热固性树脂组合物用于制备电子产品组件,包括半固化片、覆铜层压板或印刷电路板。与现有技术相比,本发明能赋予覆铜基板低的吸水率、低介电常数、低介电损耗以及优良的耐湿热特性。(The invention relates to a thermosetting resin composition for electronic product components and application thereof, wherein the composition comprises the following components in parts by mass: 50-90 parts of vinyl thermosetting resin; 5-40 parts of silane-terminated vinyl thermosetting resin; 1-5 parts of a curing agent; 10-40 parts of a flame retardant; 5-40 parts of hollow glass microspheres; the thermosetting resin composition is used for preparing electronic product components, including prepregs, copper-clad laminates or printed circuit boards. Compared with the prior art, the invention can endow the copper-clad substrate with low water absorption, low dielectric constant, low dielectric loss and excellent damp-heat resistance.)

一种电子产品组件用热固性树脂组合物及其应用

技术领域

本发明涉及热固性树脂领域,具体涉及一种电子产品组件用热固性树脂组合物及其应用。

背景技术

移动互联网和物联网正朝着网络多元化、宽带化、综合化、智能化的方向发展。随着各种移动互联网和智能终端的普及,面向以后,移动数据流量将呈现爆炸式增长。5G作为新一代移动通讯网络系统,移动用户数据传输速率相比4G提高10倍到100倍,峰值传输速率可达10Gbit/s,端到端时延达到毫秒级水平,这对高频板材用电子电路材料提出了更为苛刻的要求。

在5G通讯的大环境下,降低电子电路材料的介电常数成为减小信号迟滞时间的重要手段。中空玻璃微球是一种中空密闭的球体,具有低的介质常数(DK在1.2至2.0),与低极性的乙烯基热固性树脂混合使用后,能降低电子电路基材的介电常数和介电损耗,是现阶段高频板材开发的重要技术路线。

对于高频板材,要求在较宽的频率、温度、湿度等环境条件变化下仍能保持正常工作。然而,中空玻璃微球材料本身的吸水率较大,与低极性的热固性乙烯基树脂的界面结合差,这样综合的影响导致基板材料的吸水率过大,材料的介电常数、介电损耗等关键指标特性在潮湿等恶劣环境下容易发生变化,材料长期使用稳定性差。

中国专利CN109233244A公开了一种热固性树脂组合物,利用无机氧化物包覆中空玻璃微球,能改善中空玻璃微球与基体树脂的结合力,降低了基板材料的吸水率,所述无机包覆层占无机包覆的中空玻璃微球总重量的0.1至20%。中国专利CN109836631A公开了一种乙烯基热固性树脂组合物。所述乙烯基热固性树脂组合物包含:乙烯基热固性树脂、固化剂和表面乙烯基聚苯醚树脂化学修饰的中空玻璃微球。在乙烯基热固性树脂组合物中添加表面乙烯基聚苯醚树脂化学修饰的中空玻璃微球,可以增加与乙烯基热固性树脂分子链段之间的相互作用,降低中空玻璃微球在胶液中的上浮趋势,提高胶水的均匀性。而且乙烯基聚苯醚树脂化学修饰中空玻璃微球,可降低所制备层压板的吸水率。

以上专利虽然能改善中空玻璃微球与热固性树脂的结合力,降低基板材料的吸水率,提高基板材料长期使用的稳定性,但是需要先对中空玻璃微球进行化学预处理,并涉及到后续一系列的除杂、干燥工艺。中空玻璃微球的密度在0.08-0.25g/cm3之间,其质轻的特点决定了湿法化学改性工艺复杂、麻烦,且需要耗费大量的有机溶剂。

发明内容

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能赋予覆铜基板低的吸水率、低介电常数、低介电损耗以及优良的耐湿热特性的电子产品组件用热固性树脂组合物及其应用。

本发明的目的可以通过以下技术方案来实现:

设计人发现,中空玻璃微球吸水率较大,与低极性的热固性乙烯基树脂的界面结合差,导致基板材料的吸水率大,材料的介电常数、介电损耗等关键指标特性在潮湿等恶劣环境下容易发生变化,材料长期使用稳定性差。现有技术方案往往通过对中空玻璃微球进行化学改性,增强中空玻璃微球与乙烯基热固性树脂的相互作用,提升了无机-有机界面的结合力,降低了材料的吸水率,提高了基板材料的长期使用稳定性。但是,中空玻璃微球的化学改性工艺复杂,且使用到大量的有机溶剂,生产效率低、能耗大。

设计人经过深入的研究发现,在组合物中直接添加硅烷封端液体聚丁二烯,能有效改善中空玻璃微球与热固性乙烯基树脂的结合力。硅烷封端液体聚丁二烯分子链上同时含有硅烷氧基团和C=C不饱和双键,硅烷氧基对中空玻璃微球等无机物具有反应性,而C=C不饱和双键对乙烯基热固性树脂具有反应性。因此,硅烷封端液体聚丁二烯可以作为中空玻璃微球和乙烯基树脂的结合层,形成有机基体-(有机基体-硅烷偶联剂)-无机基体的结构,提高中空玻璃微球和乙烯基树脂的相容性,降低吸水率,具体方案如下:

一种电子产品组件用热固性树脂组合物,该组合物包括以下质量份组分:

进一步地,所述的乙烯基热固性树脂包括聚丁二烯、聚丁二烯共聚物、苯乙烯-二乙烯基苯低聚物、聚苯醚、乙烯基交联剂中的一种或多种。可以单独使用以上列出的化合物中的一种,并且可以组合使用以上列出的化合物中的两种以上。

进一步地,所述的聚丁二烯包括非官能化的聚丁二烯、马来酸酐接枝聚丁二烯、环氧改性聚丁二烯、羟基封端聚丁二烯、甲基丙烯酸酯封端聚丁二烯或异氰酸酯封端聚丁二烯中的一种或多种;聚丁二烯优选分子量在1000-10000,并且更优选1000-5000;聚丁二烯优选具有高乙烯基含量,优选1,2-双键含量大于50%,并且更优选1,2-双键摩尔含量大于85%。

所述的聚丁二烯共聚物包括丁二烯-苯乙烯共聚物、丁二烯-苯乙烯-丁二烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物或丁二烯-异戊二烯共聚物中的一种或多种;

所述的聚苯醚包括带有1-3个不饱和官能团的聚苯醚树脂;具体包括苯乙烯改性聚苯醚或丙烯酰基改性聚苯醚中的一种或多种;聚苯醚的分子量没有特性限制。具体而言,优选分子量为1000-4000。

本发明中所用的聚苯醚每一分子链所具有的官能基团的平均个数为1-3个。如果可反应的官能团数量少,则固化物的交联密度低,玻璃化温度低,膨胀系数大,固化物难以获得良好的耐热性;如果可反应的官能团数量过多,则反应速度快,树脂的流动性差,对玻璃纤维布的含浸性差,形成的基板材料容易产生缺陷。此外,官能团数量过多,也会破坏了聚苯醚的对称性,固化物介电性能变差。

所述的乙烯基交联剂包括三烯丙基异氰脲酸酯、三聚氰酸三烯丙酯、苯乙烯、二乙烯基苯、双马来酰亚胺中的一种或多种。

乙烯基交联剂是分子链上具有碳-碳不饱和双键,能发生自由基聚合反应而形成交联物的化合物。

进一步地,所述的硅烷封端乙烯基热固性树脂包括硅烷封端液体聚丁二烯;所述的硅烷封端液体聚丁二烯分子量在3000-5000,乙烯基含量在20-90%。

硅烷封端乙烯基热固性树脂是分子链上同时具有硅烷氧基和C=C不饱和双键的树脂。硅烷氧基对无机物具有反应性,C=C不饱和双键对乙烯基热固性树脂具有反应性或相容性。因此,硅烷封端乙烯基热固性树脂介于无机和有机界面之间,可形成有机基体-(有机基体-硅烷偶联剂)-无机基体的结合层。硅烷封端乙烯基热固性树脂优选乙烯基含量在20-90%的硅烷封端液体聚丁二烯,这类型硅烷封端液体聚丁二烯双键含量高,对乙烯基热固性树脂具有更高的反应活性及相容性,与乙烯基热固性树脂反应后交联密度高,形成的无机-有机界面的间隙小,有利于降低固化物的吸水率。

硅烷封端液体聚丁二烯分子量在3000-5000。如果分子量过大,分子链空间位阻大,降低与中空玻璃微球的反应活性及反应固化程度;如果分子量过小,分子链上碳-碳不饱和双键含量低,与乙烯基热固性树脂的交联密度低。

进一步地,所述的固化剂包括2,5-二甲基-2,5-双(叔丁基过氧基)己烷、2,3-二甲基-2,3-二苯基丁烷、1,1-双(叔己基过氧化)-3,3,5-三甲基环己烷、过氧化苯甲酰、过氧化月桂酰、过氧化二叔丁基、过氧化二异丙苯、双叔丁基过氧化二异丙苯、过氧化苯甲酸叔丁酯、叔丁基过氧化特戊酸酯、过氧化甲乙酮、过氧化环己酮、过氧化二碳酸二异丙酯或过氧化碳酸二环己酯中的一种或多种。考虑到固化效率的控制,以上固化剂可以单独使用,也可以两种以上组合使用。

进一步地,所述的阻燃剂为溴化苯乙烯、十溴二苯醚、十溴二苯乙烷、乙撑双四溴邻苯二甲酰亚胺、三(2,6-二甲氧基苯)膦、10-(2,5-二羟基苯基)-9,10-二氢-9-氧杂-10-膦菲-10-氧化物或10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物中的一种或多种。

进一步地,所述的中空玻璃微球的粒径小于70μm。中空玻璃微球可以是未化学改性的,也可以是化学改性的。粒径小于70μm,如果粒径过大,会导致基板材料在后续加工过程中孔壁粗糙度过大,影响信号传输的一致性。

进一步地,该组合物还包括填料、硅烷偶联剂、增韧剂或溶剂中的一种或多种。

进一步地,所述的填料包括结晶型二氧化硅、熔融型二氧化硅、球型二氧化硅、氧化铝、氢氧化铝、氧化镁、氢氧化镁、碳酸钙、滑石、氮化铝、氮化硼、氮化硅、碳化铝硅、碳化硅、碳酸钠、碳酸镁、二氧化钛、氧化锌、氧化锆、钛酸钾、钛酸锶、钛酸钡、陶瓷纤维、钼酸锌、钼酸铵、磷酸钙、勃姆石或聚四氟乙烯粉体中的一种或多种。添加填料的主要作用在于调整树脂组合物的介电常数;降低组合物的膨胀系数;提升组合物的耐热性;提高组合物的阻燃效果;降低基板材料的吸水率。

一种由上述电子产品组件用热固性树脂组合物制成的电子产品组件,所述的电子产品组件包括半固化片、覆铜层压板或印刷电路板。

本发明的热固性树脂组合物可制成半固化片。所述半固化片的制备方法:将热固性树脂组合物制成胶液,然后将增强材料浸渍在胶液中形成层状物,该层状物经过高温加热形成半固化片,制作半固化片的烘烤温度在100-175℃之间。增强材料的实例并无特别限制,可为市售可用于各种印刷电路板的玻璃纤维布。

本发明还可以提供一种覆铜层压板。可采取如下方法制备:取至少一张如上述的半固化片及覆于所述半固化片一侧或两侧的金属铜箔并进行加热加压而得到。所述金属铜箔可为标准电解铜箔、反转铜箔、低轮廓铜箔或超低轮廓铜箔。加热加压条件可根据组合物的种类或覆铜层压板的厚度而适当调整。例如,可将压合温度设定为170-240℃,压力设定为1.0-6.0MPa。可进一步依照本领域已知的各种电路板制备工艺将覆铜层压板加工形成印刷电路板。

与现有技术相比,本发明具有以下优点:

(1)不需要对中空玻璃微球进行化学改性处理,能提高生产效率,降低能耗;

(2)硅烷封端液体聚丁二烯分子量在3000-5000,乙烯基含量在20-90%。相比于表面乙烯基聚苯醚树脂化学修饰的中空玻璃微球和乙烯基硅烷偶联剂化学修饰的中空玻璃球,本技术方案的中空玻璃微球表面具有数量更多的碳-碳不饱和双键,可以在固化交联过程中提高与乙烯基热固性树脂的交联密度,赋予中空玻璃微球与乙烯基热固性树脂更强的结合力,减少界面空隙,能更加有效降低基板材料的吸水率;

(3)相比于外添加小分子的乙烯基硅烷偶联剂,硅烷封端液体聚丁二烯分子量更大,与中空玻璃微球结合后,中空玻璃微球表面具有更厚的疏水层,能够有效阻隔水气吸附在中空玻璃微球粗糙的表面;

(4)当树脂组合物中的主体树脂为聚丁二烯时,相似相容的特点使得中空玻璃微球与电性能优异的聚丁二烯树脂具有更加良好的相容性,制得的基板材料具有更低的吸水率和更加优异介电特性。

具体实施方式

下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

未做特别说明,以下实施例中各物质的参数如下所示:聚丁二烯优选分子量在1000-10000,且具有高乙烯基含量,1,2-双键含量大于50%;聚苯醚每一分子链所具有的官能基团的平均个数为1-3个;硅烷封端乙烯基热固性树脂为乙烯基含量在20-90%的硅烷封端液体聚丁二烯,硅烷封端液体聚丁二烯分子量在3000-5000;中空玻璃微球粒径小于70微米,具体牌号如表1所示:

表1

对比例1

将15g聚苯醚SA-9000、10g乙烯基交联剂TAIC、50g聚丁二烯B-2000、15g马来酸酐接枝聚丁二烯MA75、10g苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物G1648、15g含溴阻燃剂SAYTEX 3010、25g中空玻璃微球IM16K、150g球型二氧化硅FB-3Y和2g固化剂DCP溶于甲苯溶剂,搅拌分散均匀。用1080玻璃纤维布浸渍在以上胶液,在140℃烤箱中烘干溶剂,制得半固化片。将6张1080半固化片叠合,在两侧覆1oz厚度的超低轮廓铜箔,在压机中真空固化2h,固化温度为205℃,制成覆铜层压板。

其特性测试,参照以下测试方法进行:

(1)吸水率测试方法:参照IPC-TM-650 2.6.2.1所述的方法;

(2)常态Dk/Df测试方法:参照IPC-TM-650 2.5.5.5.C,频率10GHz;

(3)吸湿24h后Dk/Df测试方法:样品参照IPC-TM-650 2.6.2.1所述的方法吸湿处理24h,擦干样品表面水份后,参照参考IPC-TM-650 2.5.5.5.C所述方法测试Dk/Df值(样品不作烘烤处理),频率10GHz;

(4)Dk变化率=(吸湿24h后Dk值-常态Dk值)/常态Dk值*100%;

Df变化率=(吸湿24h后Df值-常态Df值)/常态Df值*100%

(5)PCT测试,参照IPC-TM-650 2.6.16.1,所述的方法经压力蒸煮进行吸湿5小时,在288℃锡炉中浸锡后观察是否发生分层爆板现象。

实施例1-8和对比例2-3相比仅仅在于组合物的组分、用量,具体如表2所示:

表2

表2(续)

由实施例和对比例性能测试可知,由本发明提供的树脂组合物制备的覆铜基板具有低的吸水率、低介电常数、低介电损耗以及优良的耐湿热特性,具体论证如下:

物性分析:水分子是极性物质,基板材料吸水后介电特性会变差,其中对Df值的恶化最为严重。从实施例1与对比例1-3可知,组合物中添加硅烷封端液体聚丁二烯后,基板材料的吸水率从0.24%降至0.14%,Df值的变化率从194%降至66%。说明硅烷封端液体聚丁二烯能降低基板材料的吸水率,提高基板材料在潮湿环境下的电信号稳定性,对基板电路的长期使用稳定性有预料不到的优良特性。其实,组分中的硅烷封端乙烯基热固性树脂主要是降低基板材料的吸水率,对常态下的Dk/Df值是没有贡献。只有当基板材料放置在潮湿环境下,硅烷封端乙烯基热固性树脂对Dk/Df的贡献才能体现出来。因为添加硅烷封端乙烯基热固性树脂后基板材料的吸水率大幅度降低,吸水率降低后,基板材料的Dk/Df变化率就小(水是极性分子,对Dk/Df值是起负面作用的)。

从实施例1-3可知,随着组分中硅烷封端液体聚丁二烯的份数增加,基板材料吸水率呈下降的趋势,Df值的变化率也相应降低,但是常态下的Df值会升高。硅烷封端液体聚丁二烯结构中的硅烷氧基是极性基团,添加量过大也会影响基板材料常态下的Df值。

从实施例4-8可知,可以调整组分中的中空玻璃微球份数、球型二氧化硅份数、热固性树脂的种类和份数来实现不同Dk/Df值的需求。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种可选择性响应的形状记忆聚合物结构及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!