基于下转换发光的日盲紫外探测器、制备方法和探测相机

文档序号:859329 发布日期:2021-04-02 浏览:17次 >En<

阅读说明:本技术 基于下转换发光的日盲紫外探测器、制备方法和探测相机 (Solar blind ultraviolet detector based on down-conversion luminescence, preparation method and detection camera ) 是由 粘伟 唐义 丁明烨 苏云 郑国宪 单瑞* 董联庆 杨立欣 于 2020-12-16 设计创作,主要内容包括:本发明涉及基于下转换发光的日盲紫外探测器、制备方法和探测相机。所述日盲紫外探测器通过采用热蒸发法镀膜技术,将粉末状下转换纳米材料在可见光CCD芯片感光面形成一层均匀纳米薄膜,实现直接耦合,通过纳米薄膜吸收日盲段紫外光发射可见光的特性,从而实现高效的紫外光探测,有效解决天基紫外预警探测器面阵小、量子效率低的问题。(The invention relates to a solar blind ultraviolet detector based on down-conversion luminescence, a preparation method and a detection camera. The solar blind ultraviolet detector adopts a thermal evaporation method coating technology to form a layer of uniform nano film on a photosensitive surface of a visible light CCD chip by using a powdery down-conversion nano material, so that direct coupling is realized, and the characteristic that the nano film absorbs ultraviolet light at a solar blind section to emit visible light is utilized, so that efficient ultraviolet detection is realized, and the problems of small area array and low quantum efficiency of the space-based ultraviolet early warning detector are effectively solved.)

基于下转换发光的日盲紫外探测器、制备方法和探测相机

技术领域

本发明属于天基紫外预警领域,涉及基于下转换发光的日盲紫外探测器、制备方法和探测相机。

背景技术

紫外预警是天基预警的重要发展方向,相对红外预警具有虚警率和误警率低、无需制冷、系统简单、可有效抵抗激光武器致盲等优势。紫外探测器作为紫外预警系统中不可缺少器件,它的发展主要经历了三个阶段:第一阶段以紫外光电倍增管为代表,第二阶段为Si基紫外探测器,第三阶段为宽禁带半导体材料。受限于技术成熟度与使用条件,目前天基紫外预警并无有效的紫外探测器件,所用探测器均为光电倍增管形式,工作条件是真空、高压。常用的典型结构如图1所示,主要由入射窗、光电阴极、微通道板MCP、荧光屏、耦合光纤、可见光CMOS共6个部分组成。基本工作原理为:从入射窗入射的光子照射到光电阴极上,按一定的量子转换效率转化为光电子,在加速电场的作用下光电子进入MCP进行倍增,然后聚焦到荧光屏激发出可见光,通过光纤光锥将图像耦合到可见光CMOS上,最后由电子线路读出,完成从入射光到电子图像的转换。

上述探测器组件的优点是稳定性好、响应速度快,暗电流低、电流增益高。但这种探测器组件体积大、功耗大、价格高,必须使用光学窗口材料和滤光片,且量子效率只有10%-20%。

发明内容

本发明解决的技术问题是:克服现有技术的不足,提供基于下转换发光的日盲紫外探测器、制备方法和探测相机,解决天基紫外预警无有效探测器面阵小、量子效率低的问题。

本发明解决技术的方案是:一种基于下转换发光的日盲紫外探测器,该紫外探测器包括可见光CCD、下转换纳米材料薄膜,下转换纳米材料薄膜沉积在可见光CCD感光面上;

下转换纳米材料,用于实现日盲紫外谱段到可见光谱段的转换;

可见光CCD,为响应谱段为可见光谱段的探测器件,用于响应可见光,输出与可见光强度相对应的电流信号。

所述下转换纳米材料为稀土掺杂氟化物纳米材料。

所述下转换材料以Ce3+作为敏化剂,Tb3+作为发光离子,β-NaYF4为基体,三者按照1:2:4的离子浓度比例,利用溶剂热法进行纳米合成。

所述下转换材料薄膜具有宽带激发,窄带发射特性,激发波长范围为215nm~275nm,峰值在248nm;发射波长有四个峰值分别为485nm,542nm,581nm和621nm。

所述下转换材料薄膜的厚度取值范围是30nm到800nm。

所述下转换材料薄膜通过热蒸发法的方式沉积在可见光CCD感光面。

本发明提供的另一个技术方案是:上述基于下转换发光的日盲紫外探测器的制备方法,包括如下步骤:

S1、拆除可见光CCD的感光面窗口,可见光CCD器件的感光面裸露在外面;

S2、将拆除感光面窗口的可见光CCD和下转换材料放置在真空舱内,下转换材料放置在蒸发舟上,可见光CCD放置的蒸发舟上方,感光面朝下;

S3、采用电阻式蒸发原理,利用电流在蒸发舟上加热下转换材料,使其熔化蒸发,从而在探测器芯片表面上沉积下转换材料薄膜,实现材料和探测器的直接耦合。

所述步骤S3中控制电流大小为100A±0.5A,保持蒸发速率为1埃/秒到1.5埃/秒之间。

本发明提供的又一个技术方案是:一种日盲紫外探测相机,该相机包括权利要求1所述的日盲紫外探测器、紫外镜头和紫外滤光片;进入紫外镜头的紫外光经过紫外滤光片,紫外滤光片将可见光及近紫外光滤除,使得到达日盲紫外探测器薄膜表面的紫外光集中在日盲谱段。

本发明与现有技术相比的有益效果是:

(1)、本发明采用下转换纳米材料实现日盲紫外谱段到可见光谱段的转换,再通过材料与可见光CCD的直接耦合,扩大了现有紫外探测器的感应面积,提高了量子效率。

(2)、本发明纳米材料为稀土掺杂氟化物纳米材料,属于无机物,具有窄带吸收、窄带发射、极高的光转换效率,优异的物理、化学稳定性及光稳定性,低生物毒性等特点。

(3)、本发明下转换纳米材料以Ce3+离子作为敏化剂、Tb3+作为发光离子,β-NaYF4为基体、利用溶剂热法进行纳米合成,Ce3+吸收紫外光子,然后将能量传递给Tb3+离子,Tb3+离子发生辐射跃迁,从而实现高效的下转换(转移)发光现象。

(4)、本发明基于下转换发光的日盲紫外探测器的制备方法通过调节所加电流大小,可方便控制镀膜材料的蒸发速率,保证膜层表面均匀光滑;

(5)、本发明提供的日盲紫外谱段相机增加了高性能紫外滤光片,满足到达探测器薄膜表面的紫外光集中在日盲谱段,以减少其他谱段光对成像的影响。

附图说明

图1为本发明实施例微通道电子倍增探测器示意图;

图2为本发明实施例稀土掺杂氟化物纳米材料发光原理示意图;

图3为本发明实施例下转换纳米材料吸收与发射谱段图示;

图4本发明实施例热蒸发镀膜示意图;

图5本发明实施例镀膜CCD相机反射式测量光路示意图。

具体实施方式

下面结合实施例对本发明作进一步阐述。

本发明提供了一种基于下转换发光的日盲紫外探测器,该日盲紫外探测器包括可见光CCD、下转换纳米材料薄膜,下转换纳米材料薄膜沉积在可见光CCD感光面上。各部分特点在于:

下转换纳米材料,用于实现日盲紫外谱段到可见光谱段的转换;

可见光CCD,为响应谱段为可见光谱段的探测器件,用于响应可见光,输出与可见光强度相对应的电流信号,实现对日盲紫外谱段的有效探测。

所述下转换纳米材料为稀土掺杂氟化物纳米材料。属于无机物,具有窄带吸收、窄带发射、极高的光转换效率,优异的物理、化学稳定性及光稳定性,低生物毒性等特点。

所述下转换纳米材料以Ce3+作为敏化剂,Tb3+作为发光离子,β-NaYF4为基体,三者按照1:2:4的离子浓度比例,利用溶剂热法进行纳米合成。Ce3+吸收紫外光子,然后将能量传递给Tb3+离子,Tb3+离子发生辐射跃迁,从而实现高效的下转换(转移)发光现象,发光颜色为绿光。如图2所示。

所述下转换纳米材料薄膜具有宽带激发,窄带发射特性,激发波长范围为215nm~275nm,峰值在248nm;发射波长有四个峰值分别为485nm,542nm,581nm和621nm,如图3所示。

可见光CCD指响应谱段为可见光谱段的探测器件,其基本组成单元是MOS电容器。当可见光子入射时,会在MOS电容器的半导体材料中激发出电子,电子积累在MOS电容器等待转移读出。读出电压通过对半导体材料的栅极电压进行预设顺序的操作,可以将电荷顺序传递,最后在输出级输出。

所述下转换纳米材料薄膜的厚度取值范围是30nm到800nm。

所述下转换纳米材料薄膜通过热蒸发法的方式沉积在可见光CCD感光面,即在高真空下,采用电阻式蒸发原理,利用大电流在蒸发舟上加热所蒸镀的下转换纳米材料,使其在高温下熔化蒸发,从而在探测器芯片表面上沉积下转换纳米材料薄膜,实现材料和探测器的直接耦合。

上述探测器采用下转换纳米材料通过热蒸发法镀膜技术,在可见光CCD芯片感光面形成一层均匀纳米薄膜,实现直接耦合,通过纳米薄膜吸收日盲段紫外光发射可见光的特性,从而实现高效的紫外光探测。

本发明还提供了一种日盲紫外探测相机,该相机包括上述日盲紫外探测器、紫外镜头和紫外滤光片;进入紫外镜头的紫外光经过紫外滤光片,紫外滤光片将可见光及近紫外光滤除,使得到达日盲紫外探测器薄膜表面的紫外光集中在日盲谱段。最终可实现215nm-275nm紫外谱段的探测,要求在光学系统中增加高性能紫外滤光片,满足到达探测器薄膜表面的紫外光集中在日盲谱段,以减少其他谱段光对成像的影响。

上述基于下转换发光的日盲紫外探测器的制备方法,包括如下步骤:

S1、拆除可见光CCD的感光面窗口,可见光CCD器件的感光面裸露在外面;

S2、将拆除感光面窗口的可见光CCD和下转换纳米材料放置在真空舱内,真空度为1×10-5Pa。下转换纳米材料放置在蒸发舟上,可见光CCD放置的蒸发舟上方,感光面朝下;

S3、采用电阻式蒸发原理,利用电流在蒸发舟上加热下转换纳米材料,使其熔化蒸发,从而在探测器芯片表面上沉积下转换纳米材料薄膜,实现材料和探测器的直接耦合。

通过调节所加电流大小,可方便控制镀膜材料的蒸发速率。本发明中为保证膜层表面均匀光滑,所述步骤S3中控制电流大小为100A±0.5A,保持蒸发速率为1埃/秒到1.5埃/秒之间。

实施例1:

本发明某一具体实施例将高效的下转换纳米材料与可见光CCD通过热蒸发的方式进行耦合,如图4所示,其中下转换纳米材料具有宽带激发,窄带发射特性,激发波长范围为215nm~275nm,峰值在248nm;发射波长有四个峰值分别为485nm,542nm,581nm和621nm。拆除可见光CCD的感光面窗口,可见光CCD器件的感光面裸露在外面,使纳米材料薄膜与CCD感光面可直接接触。热蒸发过程中,真空度保持为1×10-5Pa,通过控制电流大小始终处于100A±0.5A,进而保持蒸发速率为1埃/秒到1.5埃/秒之间,以此条件进行100分钟热蒸发镀膜,可完成600nm膜层厚度。

将镀膜CCD器件安装在可见光相机上,换紫外镜头并在光学系统中增加高性能紫外滤光片,将绝大部分可见光及近紫外光滤除,满足到达探测器薄膜表面的紫外光集中在日盲谱段,以减少其他谱段光对成像的影响,实现215nm-275nm紫外谱段的探测。如图5所示,使用中心波长250nm、功率为35mW紫外LED阵列灯照射靶标,通过新型紫外CCD相机拍摄靶标反射紫外光成像,可定性验证基于下转换发光的新型紫外探测器性能。

本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:芯片转移方法及设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类