一种仿骨头等级孔陶瓷基光热储存材料及制备方法

文档序号:870937 发布日期:2021-03-19 浏览:29次 >En<

阅读说明:本技术 一种仿骨头等级孔陶瓷基光热储存材料及制备方法 (Bone-like hierarchical pore ceramic-based photothermal storage material and preparation method thereof ) 是由 刘向雷 王浩蕾 宣益民 于 2020-11-27 设计创作,主要内容包括:本发明公开了一种仿骨头等级孔陶瓷基光热储存材料及其制备方法,仿照人体骨头结构采用发泡法制备了氮化铝等级孔结构,并在氮化铝骨架之上负载了一层氮化钛,最后通过真空浸渍的方法将无机盐浸入氮化铝-氮化钛骨架之中制得等级孔氮化铝陶瓷基光热储存材料。此种复合材料之中氮化铝等级孔结构形成连续的导热通道,大幅度提高了整体的热导率,热导率可达27W/m·K,极大改进了相变材料因热导率低导致的储/放热速率低的问题。负载的氮化钛使得此种复合材料可直接以太阳作为热源,氮化铝骨架快速导热,无机盐储存热量,是集吸收、传输、存储热量为一体的新型复合光热储存材料。(The invention discloses a bone-imitated hierarchical pore ceramic-based photothermal storage material and a preparation method thereof. The aluminum nitride hierarchical pore structure in the composite material forms a continuous heat conduction channel, the overall heat conductivity is greatly improved, the heat conductivity can reach 27W/m.K, and the problem of low heat storage/release rate of the phase change material caused by low heat conductivity is greatly improved. The loaded titanium nitride enables the composite material to directly use the sun as a heat source, the aluminum nitride framework conducts heat rapidly, and the inorganic salt stores heat, so that the composite material is a novel composite photo-thermal storage material integrating absorption, transmission and heat storage.)

一种仿骨头等级孔陶瓷基光热储存材料及制备方法

技术领域

本发明涉及用化学化工方法生产储能材料的技术领域和能源材料的科学与技术领域,具体地,本发明涉及一种仿骨头等级孔陶瓷基光热储存材料及制备方法。

背景技术

能源作为经济发展的支撑,随着社会的进步不断消耗,为此寻找可替代新能源尤为重要。太阳能作为地球资源的一大重要来源,且其供应持久,清洁安全,储存量丰富,对其开发和应用引起了广大研究人员的青睐。但太阳能辐射能量密度和辐射强度受季节、昼夜、阴晴等自然条件的限制存在极大的不稳定性和间歇性,因此十分迫切需要发展热能储存技术来缓解热能的供给和需求在时间、空间、强度上的不匹配,以及提高能源利用率,降低能源利用成本,有效提高能源利用的灵活性。

显热储能是现在最为普遍的储热方式,要求大的容积且主要用于储存温度较低的热能,一般低于150℃,用于取暖;热化学储热利用化学反应达到吸放热的目的,因为涉及化学反应所以反应设备精密且复杂,一般适用于较大型的系统;相变潜热储能利用物质的相变特性,温度达到相变点时吸收或释放的潜热,具有高蓄热密度,且吸放热过程接近等温等特点,因此相变材料受到人们的高度重视,并广泛应用于各种储能系统之中,如集中太阳能发电(CSP)、工业废热回收、电子器件冷却、医学药物运输、航空航天热防护。

相变储能技术的核心是相变材料,其潜热和传热直接影响了储能系统的效率和功率。无机盐作为中高温相变储热材料的首选,但实际应用中面临着很多挑战,纯无机盐热导率很低不利于蓄能系统的充放热,以太阳作为热源时,无法在太阳辐射能量密度最高时快速收集能量。目前常用的技术手段是在相变材料中添加高导热填料,如石墨烯,碳纳米管,或者将相变材料注入多孔结构中,如泡沫金属等。但是无机盐具有很强的腐蚀性,不利于碳基和金属材料的使用,于是采用耐腐蚀的陶瓷作为基底材料。

以太阳能作为热源时,常用的表面式蓄热系统表面温度高,内部传热环节多,热阻太大导致传热过慢无法及时将表面热量传输到储热材料中,使得大部分热量散失,最终效率低。

无机盐固液转化时,存在泄漏问题,为此可采用封装的方式防止无机盐泄漏,但是增加了传热介质与相变材料之间的热阻,降低了传热效率。

因此目前发展储热技术的难点是如何减少中间热阻,提高传热速率,增加系统储放热速率,减少热损失的同时提高储热密度。因此开发一种集光热转换,传热,储存为一体的复合光热材料十分有意义。

发明内容

针对现有储热技术的不足,本发明提供了一种仿骨头等级孔氮化铝陶瓷基光热储存材料及制备方法,通过发泡法制备高导热氮化铝等级孔结构,得到一种高导热,高光谱吸收,高储能密度的复合光热材料。

所述仿骨头等级孔氮化铝陶瓷基光热储存材料包括无机盐相变储热材料、光热材料、导热强化材料,其中无机盐相变材料质量占比为41.8%-46.4%,光热材料质量占比为1%-3%,导热强化材料质量占比为50.6%-57.2%。

进一步地,所述无机盐相变材料为硝酸锂和氯盐或碳酸盐一定比例混合共晶所制得,优选为NaCl和LiNO3混合共晶;所述的一种仿骨头等级孔陶瓷基光热储存材料,其特征在于,所述光热材料为氮化钛,粒径为50纳米;导热强化材料为导热率高的陶瓷材料,如碳化硅,氮化铝,氮化硼,二氧化硅等,优选为氮化铝,理论热导率达320W/m·K,且具有耐高温耐腐蚀的特性。

本发明提供了一种仿骨头等级孔陶瓷基光热储存材料制备方法,包括:

步骤1、因氮化铝水解的特性会影响导热性能,所以使用氮化铝之前需要对其进行抗水化处理;

步骤2、按照原料比例称取处理过的氮化铝粉末、Ib-104(酰胺-铵盐共聚物)、水混合均匀;

步骤3、将所述制备的浆料中加入不同量的发泡剂,机械搅拌发泡后倒入模具自然干燥两天制备等级孔氮化铝骨架前驱体;

步骤4、将所述制备的骨架前驱体置于马弗炉中作排胶处理制备骨架生胚;

步骤5、将所述制备的骨架生胚置于热压炉中,加热烧结得到等级孔氮化铝骨架;

步骤6、将所述制备的氮化铝骨架置于氮化钛与乙醇混合液中,反复浸渍后置于鼓风干燥箱中干燥后再置于马弗炉中烧制,得到等级孔氮化铝-氮化钛骨架。

步骤7、将所述制备的氮化铝-氮化钛骨架在无机盐相变材料中浸渍,得到等级孔陶瓷基光热储存材料。

进一步地,步骤1所述抗水化处理的方式是用聚氨酯和四乙烯五胺反应生成一层抗水膜包裹在氮化铝粉体之上。

进一步地,步骤2中组分混合优选为球磨混合。

进一步地,步骤3中所述的发泡剂为十二烷基硫酸三乙醇胺,发泡剂的含量为质量分数0.55%-0.75%。

进一步地,步骤4中所述的骨架前驱体排胶处理在空气中进行,加热温度为650-800℃,所述升温速率为1℃/min,保温时间为4h。

进一步地,步骤5中所述的骨架生胚的加热在惰性气体中进行,所述惰性气氛优选为氮气、氩气、氦气中的一种,特别优选为氮气;

进一步地,步骤5中骨架生胚的加热温度为1950℃,保温时间为4h。

优选地,步骤5中骨架生胚加热烧结使用的烧结剂为氧化钇、氧化铝、氧化镧、氟化钇、氟化钙,特别优选为氧化钇,在步骤1中与氮化铝粉混合。

进一步地,步骤6中的氮化钛和乙醇的浓度优选为1:100、2:100、3:100、4:100、5:100,特别优选为1:100;

优选地,步骤6中所述的反复浸渍次数为3-4次;

优选地,步骤6中所述鼓风干燥箱设定干燥温度为80-100℃;

优选地,步骤6中所述马弗炉设定温度为300℃,保温时间为1h。

进一步地,步骤7中所述的浸渍方法优选为真空浸渍。

本发明仿照骨头的多孔三维结构,用氮化铝制备出了多孔三维结构,在骨架表面加入氮化钛颗粒,与中温无机相变材料复合,提升复合材料热导率的同时,复合材料的光谱吸收率也大大提高,可以直接以太阳作为热源,吸光后氮化铝骨架快速导热,相变材料蓄热。

本发明所述中温光热储存材料是指此种储热材料的使用温度可达220℃。

与现有技术相比,本发明的显著优点是:

1、本发明采用氮化铝作为导热基材,性能稳定、耐高温、耐腐蚀,解决了熔融盐对金属基材的腐蚀和碳基基材高温氧化问题,热导率可达27W/m·K。

2、本发明采用多孔结构,提升复合材料总体热导率的同时,改善了相变材料固液变化时泄露的问题。

3、本发明在氮化铝骨架之上负载氮化钛,大大提高了光谱吸收率,吸收率可达98%,以太阳作为热源即可吸收热量并在高导热骨架之下及时传热至相变材料中储存。

本发明所述中温光热储存材料当骨架孔隙率为70%时在200℃温差下储能密度可达495J/g。

附图说明

图1为实施例1中抗水化处理效果处理氮化铝粉体和未处理粉体悬浮液表征PH图;

图2为实施例1中抗水化处理效果未处理粉体悬浮液干燥粉末表征XRD图;

图3为实施例1中抗水化处理效果处理粉体悬浮液干燥粉末表征XRD图;

图4为实施例1中合成的LiNO3-NaCl共晶盐热分析图;

图5为实施例1中合成的仿骨头等级孔氮化铝结构SEM图;

图6为实施例1中合成的仿骨头等级孔氮化铝-氮化钛复合相变材料与氮化铝骨架光谱图;

图7为实施例1中合成的仿骨头等级孔氮化铝热导率随孔隙率变化图。

具体实施方式

为了便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅是为了帮助理解本发明,不应视为对本发明的具体限制。

实施例1:

取质量比为100:3:75的1μm氮化铝粉末、氧化钇、无水乙醇,分别为35g、1.05g、26.25g置于球磨机中,转速为270rpm,球磨半个小时;之后加入0.2wt%的乙醇分散剂聚丙烯酸,继续以转速270rpm球磨半个小时;之后加入1wt%的聚氨酯以转速270rpm球磨半个小时;最后加入四乙烯五胺机械搅拌使其与聚氨酯反应生成抗水膜包裹在氮化铝粉体之上。

然后放入烘箱中干燥,制成抗水化的氮化铝粉体。取质量比为73%称取处理过的氮化铝粉体和水,并称取0.3wt%的Ib-104(作为凝胶剂、分散剂)与之混合置于球磨机中以270rpm球磨半个小时。

取出球磨后的浆料,称取取出浆料0.65wt%的发泡剂(十二烷基硫酸三乙醇胺)倒入浆料之中,机械搅拌700rpm发泡半小时。将发泡之后的多孔浆料倒入模具之中,待其成型之后从模具中取出,自然干燥两天后置于马弗炉空气气氛中以1℃/min的升温速率加热至650℃,将抗水化试剂全部去除。

之后将骨架生胚置于热压炉氮气气氛中加热至1950℃中烧结保温4小时,制得有良好强度和硬度的高导热氮化铝等级孔结构,采用激光导热法测得孔隙率为70%时热导率为25.182W/m·K。配制氮化钛与乙醇质量比为1:100的混合液,将制备好的氮化铝骨架浸于氮化钛乙醇混合液中,浸渍5分钟后置于鼓风烘箱中100℃干燥20分钟,来回浸渍干燥三次后置于马弗炉中空气中300℃烧制一小时。

成功制备得到具有高导热与高光谱吸收的氮化铝-氮化钛骨架,热导率为24.657W/m·K,光谱吸收率达98%。称取质量比为93.6:6.4的LiNO3和NaCl球磨2小时混合均匀,置于马弗炉中以5℃/min的升温速率升温至350℃,保温1小时制得LiNO3-NaCl共晶盐。

将上述氮化铝-氮化钛骨架与LiNO3-NaCl共晶盐置于管式炉中加热至300℃在抽真空浸渍4小时,制得仿骨头等级孔氮化铝基高导热中温光热储存材料,复合物热导率为24.931W/m·K,光谱吸收率达92%,储能密度达495J/g。

实施例2:

取质量比为100:3:75的2μm氮化铝粉末、氧化钇、无水乙醇,分别为35g、1.05g、26.25g置于球磨机中,转速为270rpm,球磨半个小时;之后加入0.2wt%的乙醇分散剂聚丙烯酸,继续以转速270rpm球磨半个小时;之后加入1wt%的聚氨酯以转速270rpm球磨半个小时。

最后加入四乙烯五胺机械搅拌使其与聚氨酯反应生成抗水膜包裹在氮化铝粉体之上。然后放入烘箱中干燥,制成抗水化的氮化铝粉体。取质量比为73%称取处理过的氮化铝粉体和水,并称取0.3wt%的Ib-104(作为凝胶剂、分散剂)与之混合置于球磨机中以270rpm球磨半个小时。取出球磨后的浆料,称取取出浆料0.65wt%的发泡剂(十二烷基硫酸三乙醇胺)倒入浆料之中,机械搅拌700rpm发泡半小时。将发泡之后的多孔浆料倒入模具之中,待其成型之后从模具中取出,自然干燥两天后置于马弗炉空气气氛中以1℃/min的升温速率加热至650℃,将抗水化试剂全部去除。之后将骨架生胚置于热压炉氮气气氛中加热至1950℃中烧结保温4小时,制得有良好强度和硬度的高导热氮化铝等级孔结构。配制氮化钛与乙醇质量比为1:100的混合液,将制备好的氮化铝骨架浸于氮化钛乙醇混合液中,浸渍5分钟后置于鼓风烘箱中100℃干燥20分钟,来回浸渍干燥三次后置于马弗炉中空气中300℃烧制一小时。

最后,成功制备得到具有高导热与高光谱吸收的氮化铝-氮化钛骨架。称取质量比为90:10的LiNO3和Li2CO3球磨2小时混合均匀,置于马弗炉中以5℃/min的升温速率升温至350℃,保温1小时制得LiNO3-Li2CO3共晶盐。将上述氮化铝-氮化钛骨架与LiNO3-Li2CO3共晶盐置于管式炉中加热至300℃在抽真空浸渍4小时,制得仿骨头等级孔氮化铝基高导热中温光热储存材料。

实施例3:

取质量比为100:3:75的1μm碳化硅粉末、氧化钇、无水乙醇,分别为35g、1.05g、26.25g置于球磨机中,转速为270rpm,取质量比为70%称取碳化硅粉体和水,并称取0.3wt%的Ib-104(作为凝胶剂、分散剂)与之混合置于球磨机中以270rpm球磨半个小时。取出球磨后的浆料,称取取出浆料0.65wt%的发泡剂(十二烷基硫酸三乙醇胺)倒入浆料之中,机械搅拌700rpm发泡半小时。将发泡之后的多孔浆料倒入模具之中,待其成型之后从模具中取出,自然干燥两天后置于马弗炉空气气氛中以1℃/min的升温速率加热至650℃,将Ib-104全部去除。之后将骨架生胚置于热压炉氮气气氛中加热至1950℃中烧结保温4小时,制得有良好强度和硬度的高导热碳化硅等级孔结构。配制氮化钛与乙醇质量比为1:100的混合液,将制备好的氮化铝骨架浸于氮化钛乙醇混合液中,浸渍5分钟后置于鼓风烘箱中100℃干燥20分钟,来回浸渍干燥三次后置于马弗炉中空气中300℃烧制一小时。成功制备得到具有高导热与高光谱吸收的碳化硅-氮化钛骨架。称取质量比为90:10的LiNO3和Li2CO3球磨2小时混合均匀,置于马弗炉中以5℃/min的升温速率升温至350℃,保温1小时制得LiNO3-Li2CO3共晶盐。将上述氮化铝-氮化钛骨架与LiNO3-Li2CO3共晶盐置于管式炉中加热至300℃在抽真空浸渍4小时,制得仿骨头等级孔碳化硅基高导热中温光热储存材料。

通过本实施例1-3制备的仿骨头等级孔氮化铝陶瓷基光热储存材料经试验测试可知,本发明采用氮化铝作为导热基材,性能稳定、耐高温、耐腐蚀,解决了熔融盐对金属基材的腐蚀和碳基基材高温氧化问题,热导率可达27W/m·K。;并采用多孔结构,提升复合材料总体热导率的同时,改善了相变材料固液变化时泄露的问题。

此外,本发明在氮化铝骨架之上负载氮化钛,大大提高了光谱吸收率,吸收率可达98%,以太阳作为热源即可吸收热量并在高导热骨架之下及时传热至相变材料中储存。其中,温光热储存材料当骨架孔隙率为70%时在200℃温差下储能密度可达495J/g。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种氮化硼复合陶瓷及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!