石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用

文档序号:899383 发布日期:2021-02-26 浏览:3次 >En<

阅读说明:本技术 石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用 (Graphene sieve grafted hyperbranched polyurethane self-repairing binder and preparation and application thereof ) 是由 杨应奎 和启明 何承恩 张金龙 王相刚 于 2020-10-22 设计创作,主要内容包括:本发明提供了一种石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用,能够提高电池的安全性和循环使用寿命,在加热、光照等刺激下加速自修复过程,并改善自修复效果。该自修复粘结剂的制备方法为:首先制备石墨烯筛GM,进而以氨基偶氮苯衍生物为功能化试剂,采用溶剂热法修饰GM,得到氨基功能化石墨烯筛NGM;然后共价接枝超支化聚氨酯HPU和自愈合功能基团SHG,得到石墨烯筛接枝超支化聚氨酯自修复复合材料NGM-HPU-SHG。NGM-HPU-SHG可用于超级电容器或锂/钠离子电池中,代替聚偏氟乙烯或聚四氟乙烯等传统粘结剂,获得更优异的电性能和自修复效果。(The invention provides a graphene sieve grafted hyperbranched polyurethane self-repairing binder, and preparation and application thereof, which can improve the safety and cycle service life of a battery, accelerate the self-repairing process under the stimulation of heating, illumination and the like, and improve the self-repairing effect. The preparation method of the self-repairing binder comprises the following steps: firstly, preparing a graphene sieve GM, and then modifying the GM by using an aminoazobenzene derivative as a functionalized reagent and adopting a solvothermal method to obtain an amino functionalized graphene sieve NGM; and then covalently grafting hyperbranched polyurethane HPU and a self-healing functional group SHG to obtain the graphene sieve grafted hyperbranched polyurethane self-healing composite material NGM-HPU-SHG. The NGM-HPU-SHG can be used in a super capacitor or a lithium/sodium ion battery to replace the traditional binders such as polyvinylidene fluoride or polytetrafluoroethylene and the like, and has more excellent electrical property and self-repairing effect.)

石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用

技术领域

本发明属于电化学电池技术领域,具体涉及一种石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用。

技术背景

近年来,随着可穿戴设备、柔性显示器和健康监测传感器等便携式柔性电子技术的快速发展,承载能量供给的柔性储能装置,尤其是电化学储能器件的研发备受关注。目前,柔性电化学储能器件主要面临两个问题:1)充放电过程中,随着离子的嵌入和脱嵌,电极材料会出现膨胀和收缩,容易造成电极粉化脱粘和利用率降低,进而导致容量下降和寿命衰减。2)传统锂离子电池、超级电容器等通常以脆性的无机材料为电极,在弯曲、折叠等机械形变过程中器件稳定性差,容易造成电极材料和集流体分离,或产生机械损伤,削弱其电化学性能,甚至还会因电解质泄露等引起安全问题。

电化学储能器件的电极由电极活性材料、导电剂、粘结剂和集流体等共同组成,其中粘结剂是电极中重要的辅助功能材料之一,虽然本身没有容量,在电池中所占的比重也很小,但却是整个电极的力学性能的主要来源,对电池的电化学性能有着重要的影响。聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶 (SBR)乳液和羧甲基纤维素(CMC)是目前常用的粘结剂。其中PVDF粘结性好、力学性能优异、耐电化学腐蚀能力强,目前已广泛应用于锂离子电池电极。然而,PVDF是结晶性聚合物,其结晶度高达50%左右,难以适应高比容量电极材料在充放电过程中的巨大体积膨胀,同时,也会严重阻碍电解质离子的扩散和循环,限制了电池的倍率性能。此外,随着充放电进行,PVDF粘结剂会发生副反应,破坏C-C和C-H键,稳定性下降,并消耗活性Li,导致电极活性材料从集流体上脱离、容量衰减、电池的循环性能大幅下降。

因此,亟待开发一种能够粘弹性好、离子导电率高、并且具有自修复功能的粘结剂,提高电极的倍率性能和安全性、稳定性。崔西明(自修复聚硅氧烷对锂硫电池储能特性的影响,哈尔滨工业大学硕士学位论文,2018,第四章)将自修复聚硅氧烷(PDMS-DFB)用作锂硫电池电极的粘结剂,替代传统的PVDF,可以自适应电极活性材料的体积变化,同时也可以自修复充放电过程中的损害,避免活性物质脱落,提高电极的循环稳定性。但是,该体系中PDMS-DFB的质量比高达50%,而电极活性材料仅为25%,限制了储能器件整体储能容量的提升。李娟娟报道了“基于聚丙烯酸的锂离子电池硅负极粘结剂的研究”(华南理工大学硕士学位论文,2019),通过将聚丙烯酸(PAA)与柔性聚合物复配,在一定程度上增加粘结剂的回弹性和韧性,可以更有效地应对硅粒子的巨大体积膨胀,提高循环稳定性。然而PAA主要是利用双重氢键,其自修复效率较低,而且聚合物的机械性能较差,循环500次后电极中就有裂纹产生,且容量保持率不高。

发明内容

本发明是为了解决上述问题而进行的,目的在于提供一种石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用,能够提高电池的安全性和循环使用寿命,在加热、光照等刺激下加速自修复过程,并改善自修复效果。

本发明为了实现上述目的,采用了以下方案:

<制备方法>

本发明提供一种石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法,其特征在于:首先制备石墨烯筛GM,进而以氨基偶氮苯衍生物为功能化试剂,采用溶剂热法修饰GM,得到氨基功能化石墨烯筛NGM;然后共价接枝超支化聚氨酯 HPU和自愈合功能基团,得到石墨烯筛接枝超支化聚氨酯自修复复合材料 NGM-HPU-SHG。

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法,还可以具有以下特征:石墨烯筛GM的制备方法为:将氧化石墨或氧化石墨烯超声分散至水溶液中得到浓度为1~2mg/mL的分散液,向分散液中加入0.1~10 mg/mL过渡金属盐溶液,过渡金属盐与氧化石墨烯的质量比为0.2:1~5:1,在 50~80℃下超声15~60min,100~180℃下水热反应4~12小时,随后去离子水洗涤、冷冻干燥得到粉体,再将粉体于300~800℃、惰性气体保护下热处理0.5~6小时,最后用稀盐酸浸泡、洗涤、冷冻干燥后得到。

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法,还可以具有以下特征:过渡金属盐溶液浓度为0.1~10mg/mL,过渡金属采用氯化铁、硫酸镍、硝酸钴中的任一种,过渡金属盐与氧化石墨烯的质量比为0.2: 1~5:1。

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法,还可以具有以下特征:石墨烯筛GM的制备方法为:将氧化石墨或氧化石墨烯超声分散至水溶液中得到浓度为1~2mg/mL的分散液,向分散液中加入适量的双氧水或高锰酸钾,30~80℃下反应0.5~6小时,随后离心、去离子水洗涤、再分散于水中,最后在100~180℃下水热反应4~12小时后冷冻干燥得到。

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法还可以具有以下特征:氧化石墨或氧化石墨烯:双氧水或高锰酸钾质量比=0.1:1~1:1。

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法,还可以具有以下特征:将石墨烯筛GM超声分散到N,N-二甲基甲酰胺DMF或 N-甲基吡咯烷酮NMP中,制成浓度1~2mg/mL的石墨烯筛GM分散液,滴加氨基偶氮苯衍生物,在120~180℃下反应6~24小时,得到氨基化石墨烯筛NGM,降温至0~50℃,滴加适量的二元异氰酸酯,继续反应2~12小时,使其与NGM表面的氨基发生反应,从而共价接枝到NGM表面,继而加入三元醇/胺和自修复功能单体,反应6~12小时,然后升温至50~120℃继续反应6~24小时,抽滤、洗涤、真空干燥后得到石墨烯筛接枝超支化聚氨酯自修复复合材料NGM-HPU-SHG;

反应方程如下:

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法,还可以具有以下特征:二元异氰酸酯包括1,6-六亚甲基二异氰酸酯HDI、二苯基甲烷二异氰酸酯MDI、甲苯二异氰酸酯TDI、4,4'-二环己基甲烷二异氰酸酯 HMDI,1,5-萘二异氰酸酯、三甲基-1,6-六亚甲基二异氰酸酯TMHDI、异佛尔酮二异氰酸酯IPDI中的一种或多种;

氨基偶氮苯衍生物包括4,4'-二氨基-偶氮苯、3,3'-二氨基-4,4'-二羟基-偶氮苯及其衍生物中的一种或多种,结构式为:

三元醇/胺为AB2型化合物,包括三乙醇胺、二异丙醇胺、丙三醇、三聚氰胺、二乙醇胺DEA及其同系物DDEGA和DTEGA中的至少一种;

优选地,本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂的制备方法中,自修复功能单体包括下列单体分子中的一种或多种:

其中,典型的狄-阿反应基团和多重氢键基团的可逆自修复反应如下所示:

<粘结剂>

进一步,本发明还提供一种石墨烯筛接枝超支化聚氨酯自修复粘结剂,其特征在于:采用尚文<制备方法>中所描述的方法制得。

<应用>

进一步,本发明还将<粘结剂>所描述的石墨烯筛接枝超支化聚氨酯自修复粘结剂用于超级电容器或锂/钠离子电池中。具体地,该石墨烯筛接枝超支化聚氨酯自修复粘结剂作为超级电容器或锂/钠离子电池的粘结剂,以代替聚偏氟乙烯或聚四氟乙烯等传统粘结剂,将电极活性材料、导电剂、石墨烯筛接枝自修复复合材料、N-甲基吡咯烷酮按一定质量比进行混合,其中,石墨烯筛接枝超支化聚氨酯自修复粘结剂在电极浆料中的固含量为2~20%,上述混合物经过研磨、球磨或超声后得到电极浆料,进而制备超级电容器或锂/钠离子电池电极。

发明的作用与效果

本发明提供的石墨烯筛接枝超支化聚氨酯自修复粘结剂中,由于石墨烯筛呈片状多孔结构,具有较大的比表面积,对电极活性材料具有更好的表面包覆和保护作用,能够有效防止电极粉化,提高储能器件的力学性能和循环稳定性;石墨烯筛的面内孔洞结构和HPU的超支化结构有利于离子的扩散,促进电极电化学反应的进行,提高倍率性能和充放电速度;HPU和自愈合功能基团能够发生协同作用,通过多重氢键、可逆化学键等及时修复电极内部的损伤,同时,粘结剂材料内部的自修复基团可在热、光(包括可见光和紫外光)环境下实现可逆反应,因此,可通过光、热等条件促使柔性储能器件实现自修复,该石墨烯接枝超支化聚氨酯自修复复合材料可应用于超级电容器、锂/钠离子电池中作为粘结剂,能够进一步提高柔性可穿戴设备的安全性和循环使用寿命,在加热、光照等刺激下加速自修复过程,并改善自修复效果。

附图说明

图1为实施例中制备的石墨烯筛GM接枝超支化聚氨酯自修复粘结剂的 TEM图;

图2为实施例中制备的采用GM接枝超支化聚氨酯自修复粘结剂作为粘结剂的锂离子电池电极在经过反复弯折-自修复后的SEM图;

图3为实施例中制备的GM接枝超支化聚氨酯自修复粘结剂的充放电循环稳定性曲线图;

图4为以传统PVDF为粘结剂的锂离子电池的循环稳定性曲线图;

图5为实施例中使用GM接枝超支化聚氨酯自修复粘结剂的电池的倍率性能曲线。

具体实施方式

以下结合附图对本发明涉及的石墨烯筛负载超支化聚氨酯自修复粘结剂及其制备与应用的具体实施方案进行详细地说明。

<实施例>

本实施例所提供的石墨烯筛接枝超支化聚脲-氨酯自修复粘结剂的制备方法为:

首先,称取1g氧化石墨分散到500mL水中,水浴超声2小时得到均匀的分散液,加入2g氯化铁,在50℃下超声60min,转移至水热反应釜中,在120℃下水热反应8小时,随后去离子水洗涤、冷冻干燥,随后将粉体于500℃、惰性气体保护下热处理4小时,最后用稀盐酸浸泡12小时、洗涤、冷冻干燥后得到石墨烯筛(GM)。

如图1所示,GM二维片层表面均匀分布着20~50nm直径的方形孔洞,结构均一的孔洞将有利于电化学反应过程中离子的扩散,从而提高电池的功率密度;同时孔洞边缘含有更多的反应活性位点,能够与氨基偶氮苯发生共价接枝反应,提高自愈合基团的接枝密度,从而改善粘结剂的自修复效能;此外,规则的方形孔洞,也有利于提升电极活性材料的利用率,从而提高电极的能量密度。

需要指出的是,通过改变过渡金属盐的浓度(0.2~10mg/mL)以及过渡金属盐与氧化石墨的质量比(0.2:1至5:1),可以方便地调控方形孔洞的大小和密度。而传统石墨烯筛的孔洞形状难以调控,且孔洞大小不一、分布不均,影响离子平均扩散速率,限制储能器件倍率性能的提升;同时容易造成GM片层结构稳定性差,力学强度显著降低,不利于提升储能器件的柔性和力学稳定性。

然后,称取400mg上述GM超声分散到100mL N,N-二甲基甲酰胺(DMF)中, 称取200mg 4,4'-二氨基-偶氮苯溶解于20mL DMF中,加入到上述GM分散液中, 150℃下反应12小时,得到氨基功能化石墨烯筛(NGM),随后降温至室温,另外称取300mg甲苯二异氰酸酯(TDI)溶解于20mL DMF中,将TDI溶液滴加到上述 NGM分散液中,并超声分散20分钟,20℃反应12小时。

接着称取105mg二乙醇胺(DEOA)和100mg双(4-羟苯基)二硫醚(DPDS)溶解到40mLDMF中,随后滴加到上述NGM/TDI溶液中,机械搅拌下于20℃反应 12小时,然后升温至60℃连续反应24小时,整个反应在氮气或氩气气氛中进行。反应完毕后将反应混合液直接倒入盛装大量水的烧杯中沉淀,将沉淀物过滤,然后在真空干燥箱中80℃下真空干燥,得到石墨烯筛接枝超支化聚脲-氨酯复合材料(NGM-HPU-SHG)。

将石墨烯筛接枝的超支化聚脲-氨酯复合材料作为可自修复粘结剂应用于锂离子电池:

将四氧化三钴纳米颗粒、乙炔黑、石墨烯筛接枝超支化聚脲-氨酯复合材料按7:2:1质量比进行混合,研磨、超声后得到电极浆料,进而制备柔性电极。将该柔性电极表面引入刮痕,经过光照后,电极材料可以很快修复创口,并且经过1000 次反复弯折后,其表面没有明显裂纹产生,见图2,说明其具有良好的自修复能力和机械韧性。

进而以用锂片为对比电极,1M LiPF6(FEC:DMC=1:1,V/V)为电解液, Celgard3501隔膜为隔膜组装半电池。组装的锂离子半电池使用LAND-CT2001A 测试仪检测电池的充放电性能,设置电流密度为1000mAg-1,设置电压范围为 0.01V~3.0V。如附图3所示,组装的半电池在1000mAg-1的电流密度下首次放电容量可达到2476mAhg-1,可逆容量为1104mAhg-1

循环200次和500次之后的可逆容量分别为1079和783mAhg-1,容量保持率分别为97.7%和70.9%;而采用传统PVDF作为粘结剂的对比样的首次可逆容量 2138mAhg-1,循环100次之后的可逆容量降为431mAhg-1,容量保持率仅为43.5%,如图4所示。对比可知,使用可自修复粘结剂后,电池的比容量和循环稳定性得到显著的提高。

附图5为使用自修复粘结剂的电池倍率性能曲线,在电流密度为20和1000 mA g-1时的充电比容量分别为1210和950mAh g-1,电流密度提高50倍后的容量保持率高达78%,其优异的倍率性能一方面源于电极活性材料的纳米结构,另一方面归因于自修复粘结剂的面内多孔结构和高度支化的立体结构,有利于提高电解质离子的扩散动力学特性,提升电极材料的倍率性能。

与文献对比:Pan等人(ACS Appl.Energy Mater.2018,1,6919-6926)以含三硫碳、羧酸和氨基功能基团的自修复粘结剂,提升锂硫电池的循环稳定性,其在循环100次后的容量保持率为90.1%,在0.2C和2.0C的可逆容量分别为773.3和 488mAh g-1,电流密度提升10倍后的容量保持率为63.1%。

Zhang等人通过原位聚合法制备了硅-海藻酸钠-聚苯胺复合材料,在硅的嵌锂和脱锂过程中,海藻酸钠-聚苯胺发生氢键自愈合作用,提高电极的循环稳定性,该材料在200mA g-1下初始容量约为1750mAh g-1,循环200圈后的容量降为 1217.2mAh g-1,保持率约为70%;同时,其在0.2和4A g-1电流密度下的容量分别为1897.5和373.8mAh g-1,电流密度提高20倍后的容量保持率仅为20%。

对比可知,文献报道的自修复电池的循环稳定性和倍率性能都明显低于采用本发明自修复粘结剂NGM-HPU-SHG的电池。

以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的石墨烯筛接枝超支化聚氨酯自修复粘结剂及其制备与应用并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于十四核银纳米团簇的二维晶态超电电极材料及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!