Self-repairing polyethylene glycol composite material and preparation method thereof

文档序号:931950 发布日期:2021-03-05 浏览:30次 中文

阅读说明:本技术 一种自修复聚乙二醇复合材料及其制备方法 (Self-repairing polyethylene glycol composite material and preparation method thereof ) 是由 冯奕钰 高龙 封伟 张飞 陈灿 于 2019-08-30 设计创作,主要内容包括:本发明涉及一种自修复聚乙二醇复合材料及其制备方法,首先将过量的端基为氨基的聚乙二醇与丙二酰氯进行反应,生成一种嵌段聚合物,加入三氯化铁溶液,形成配位键,制得这种具有良好的自修复性能的聚乙二醇复合材料,其主要利用了三价铁形成的动态配位键,以及部分肽键中存在的氢键来达到自修复的目的。(The invention relates to a self-repairing polyethylene glycol composite material and a preparation method thereof, wherein excessive polyethylene glycol with an amino end group as a terminal group reacts with malonyl chloride to generate a block polymer, and ferric trichloride solution is added to form a coordination bond, so that the polyethylene glycol composite material with good self-repairing performance is prepared.)

1. A self-repairing polyethylene glycol composite material is characterized in that: the preparation method comprises the following steps:

1) uniformly dispersing amino-terminated polyethylene glycol and an acid-binding agent in an organic solvent, adding malonyl chloride, reacting in an ice bath under the protection of inert protective gas to enable the terminated amino group of the polyethylene glycol to react with chlorine atoms of the malonyl chloride, and embedding the malonyl chloride into a main chain of the polyethylene glycol;

2) adding an aqueous solution containing ferric ions into the reaction system in the step 1), and fully reacting to enable the ferric ions and the oxygen atoms of the carbonyl groups in the main chain of the polymer to form a coordination structure.

2. The self-healing polyethylene glycol composite of claim 1, wherein: in the steps 1) and 2), the reaction is fully carried out by stirring, and the stirring speed is 100-200 r/min.

3. The self-healing polyethylene glycol composite of claim 1, wherein: in the step 1), the molar ratio of the polyethylene glycol, the malonyl chloride and the acid-binding agent is 1 (1-2) to 2-5; the polyethylene glycol has a number average molecular weight of 2000-6000 g/mol-1(ii) a The organic solvent is dichloromethane, carbon tetrachloride or benzene; the acid-binding agent is triethylamine or pyridine; the inert protective gas is nitrogen, helium or argon.

4. The self-healing polyethylene glycol composite of claim 1, wherein: in the step 1, amino-terminated polyethylene glycol and an acid-binding agent are uniformly stirred and dispersed in an organic solvent in an ice bath at a temperature of between 5 ℃ below zero and 0 ℃, malonyl chloride is added, the mixture is stirred and reacted for 1 to 5 hours in the ice bath at the temperature of between 5 ℃ below zero and 0 ℃, then the temperature is increased to between 20 ℃ and 25 ℃, and the stirring and the reaction are continued for 40 to 60 hours.

5. The self-healing polyethylene glycol composite of claim 1, wherein: in the step 2), the aqueous solution containing ferric ions is an aqueous solution of ferric chloride or an aqueous solution of ferric sulfate.

6. A preparation method of a self-repairing polyethylene glycol composite material is characterized by comprising the following steps: the method comprises the following steps:

1) uniformly dispersing amino-terminated polyethylene glycol and an acid-binding agent in an organic solvent, adding malonyl chloride, reacting in an ice bath under the protection of inert protective gas to enable the terminated amino group of the polyethylene glycol to react with chlorine atoms of the malonyl chloride, and embedding the malonyl chloride into a main chain of the polyethylene glycol;

2) adding an aqueous solution containing ferric ions into the reaction system in the step 1), and fully reacting to enable the ferric ions and the oxygen atoms of the carbonyl groups in the main chain of the polymer to form a coordination structure.

7. The self-healing polyethylene glycol composite of claim 6, wherein: in the steps 1) and 2), the reaction is fully carried out by stirring, and the stirring speed is 100-200 r/min.

8. The self-healing polyethylene glycol composite of claim 6, wherein: in the step 1, the molar ratio of the polyethylene glycol, the malonyl chloride and the acid-binding agent is 1 (1-2) to 2-5; the polyethylene glycol has a number average molecular weight of 2000-6000 g/mol-1(ii) a The organic solvent is dichloromethane, carbon tetrachloride or benzene; the acid-binding agent is triethylamine or pyridine; the inert protective gas is nitrogen, helium or argon.

9. The self-healing polyethylene glycol composite of claim 6, wherein: in the step 1, amino-terminated polyethylene glycol and an acid-binding agent are uniformly stirred and dispersed in an organic solvent in an ice bath at a temperature of between 5 ℃ below zero and 0 ℃, malonyl chloride is added, the mixture is stirred and reacted for 1 to 5 hours in the ice bath at the temperature of between 5 ℃ below zero and 0 ℃, then the temperature is increased to between 20 ℃ and 25 ℃, and the stirring and the reaction are continued for 40 to 60 hours.

10. The self-healing polyethylene glycol composite of claim 6, wherein: in the step 2), the aqueous solution containing ferric ions is an aqueous solution of ferric chloride or an aqueous solution of ferric sulfate.

Technical Field

The invention relates to a preparation method of a novel polyethylene glycol composite material with self-repairing performance, belonging to the field of functional composite materials.

Background

The ability to repair damage spontaneously is known as self-repair and is an important survival feature in nature. Therefore, there is a great need for a synthetic self-healing material that can extend its own useful life and reduce waste. Scientists skillfully design various supramolecular monomers and further prepare a series of novel supramolecular polymer materials. Supramolecular chemistry is essentially the chemistry of molecular aggregates formed based on non-covalent intermolecular forces, whereby these novel supramolecular polymer materials are based on various non-covalent forces, such as multiple hydrogen bonding, charge interactions, pi-pi stacking, metal coordination interactions, host-guest interactions, and the like.

The generally reported self-repairing materials mainly take self-repairing of hydrogen bonds, and self-repairing phenomena can also exist in some reversible chemical reactions. To have self-healing properties, polymers are required to have good mobility or flow under conditions such that the polymer matrix self-heals as the polymer chains diffuse along the polymer/polymer interface.

Polyethylene glycol materials have been widely used in various fields including daily necessities, textile industry, transportation industry, national defense industry, aerospace, building materials, electronic devices, and the like. However, these materials are susceptible to damage from external factors and self-aging during use, resulting in microcracks or even macrocracks, which drastically reduce their safety, sustainability and service life. Therefore, designing and preparing a high polymer material capable of self-repairing after mechanical damage is an effective means for prolonging the service life of the material.

Disclosure of Invention

The invention aims to overcome the defects of the prior art and provides a self-repairing polyethylene glycol composite material and a preparation method thereof.

The technical purpose of the invention is realized by the following technical scheme.

The invention relates to a polyethylene glycol composite material with self-repairing performance and a preparation method thereof, which comprises the following steps:

1) uniformly dispersing amino-terminated polyethylene glycol and an acid-binding agent in an organic solvent, adding malonyl chloride, reacting in an ice bath under the protection of inert protective gas to enable the terminated amino group of the polyethylene glycol to react with chlorine atoms of the malonyl chloride, and embedding the malonyl chloride into a main chain of the polyethylene glycol;

2) adding an aqueous solution containing ferric ions into the reaction system in the step 1), and fully reacting to enable the ferric ions and oxygen atoms of carbonyl groups in the main chain of the polymer to form a coordination structure;

in the steps 1) and 2), the reaction is fully carried out by stirring, and the stirring speed is 100-200 r/min;

in the step 1), the molar ratio of the polyethylene glycol, the malonyl chloride and the acid-binding agent is 1 (1-2) to 2-5; the polyethylene glycol has a number average molecular weight of 2000-6000 g/mol-1(ii) a The organic solvent is dichloromethane, carbon tetrachloride or benzene; the acid-binding agent is triethylamine or pyridine; the inert protective gas is nitrogen, helium or argon;

in the step 1, amino-terminated polyethylene glycol and an acid-binding agent are uniformly stirred and dispersed in an organic solvent in an ice bath at a temperature of between 5 ℃ below zero and 0 ℃, malonyl chloride is added, the mixture is stirred and reacted for 1 to 5 hours in the ice bath at the temperature of between 5 ℃ below zero and 0 ℃, then the temperature is increased to between 20 ℃ and 25 ℃, and the stirring and the reaction are continued for 40 to 60 hours;

in the step 2), the aqueous solution containing ferric ions is an aqueous solution of ferric chloride or an aqueous solution of ferric sulfate.

The invention has the beneficial effects that: the invention makes excessive polyethylene glycol with end group as amino react with malonyl chloride, in order to make polyethylene glycol fully react, excessive malonyl chloride can be selectively added to generate a block polymer, carbonyl is embedded into the main chain of the polymer, and after ferric ion solution is added, ferric ion and oxygen atom of carbonyl in the main chain of the polymer form a coordination structure, so as to prepare the polyethylene glycol composite material with good self-repairing performance.

Drawings

FIG. 1 is a comparison of polyethylene glycol composite material prepared by the present invention before and after repair.

Detailed Description

The following is a further description of the invention and is not intended to limit the scope of the invention. In the preparation, mechanical stirring is adopted, and the stirring speed is 150 r/min.

Example 1

1) 10 mol of amino-terminated polyethylene glycol (Mn 2000g mol)-1Calculated according to the molecular weight and the mass of the used medicine), adding 50ml of anhydrous dichloromethane solution and 25 moles of triethylamine, and stirring for 4 hours in an ice bath at the temperature of-5 ℃ under the protection of nitrogen;

2) then adding 20 mol of malonyl chloride into the solution obtained in the step 1), stirring for 4 hours in an ice bath at the temperature of-5 ℃, then raising the temperature to 25 ℃, and continuing stirring for 48 hours;

3) and finally, slowly adding 30ml of ferric trichloride solution with the concentration of 0.01mol/L, stirring to fully react, and after the reaction is finished, putting the mixture into a 100 ℃ oven to dry for 24 hours to obtain the polyethylene glycol composite material with the self-repairing performance and the coordination ratio of 1: 1.

The self-repairing property is realized by utilizing Fe3+The coordination of (a) and the self-repairing capability of the formed dynamic coordination bond. And testing the self-repairing performance of the obtained polyethylene glycol composite material, sampling, scratching a trace with a knife, and recovering after 8 hours at room temperature.

Example 2

1) 10 mol of amino-terminated polyethylene glycol (Mn 2000g mol)-1Calculated according to the molecular weight and the mass of the used medicine), 50ml of anhydrous dichloromethane solution and 25 moles of triethylamine are added, and the mixture is stirred for 4 hours in an ice bath at the temperature of minus 5 ℃ under the protection of nitrogen;

2) then adding 20 mol of malonyl chloride into the solution obtained in the step 1), stirring for 4 hours in an ice bath at the temperature of-5 ℃, then raising the temperature to 25 ℃, and continuing stirring for 48 hours;

3) and finally, slowly adding 30ml of ferric trichloride solution with the concentration of 0.02mol/L, stirring to fully react, and after the reaction is finished, putting the mixture into a 100 ℃ oven to dry for 24 hours to obtain the polyethylene glycol composite material with the self-repairing performance and the coordination ratio of 1: 2.

The self-repairing property is realized by utilizing Fe3+The coordination of (a) and the self-repairing capability of the formed dynamic coordination bond. And testing the self-repairing performance of the obtained polyethylene glycol composite material, sampling, marking a trace with a knife, and recovering after 10 hours at room temperature.

Example 3

1) 10 mol of amino-terminated polyethylene glycol (Mn 2000g mol)-1Calculated according to the molecular weight and the mass of the used medicine), adding 50ml of anhydrous dichloromethane solution and 25 moles of triethylamine, and stirring for 4 hours in an ice bath at the temperature of-5 ℃ under the protection of nitrogen;

2) then adding 20 mol of malonyl chloride into the solution obtained in the step 1), stirring for 4 hours in an ice bath at the temperature of-5 ℃, then raising the temperature to 25 ℃, and continuing stirring for 48 hours;

3) and finally, slowly adding 30ml of ferric trichloride solution with the concentration of 0.03mol/L, stirring to fully react, and after the reaction is finished, putting the mixture into a 100 ℃ oven to dry for 24 hours to obtain the polyethylene glycol composite material with the self-repairing performance and the coordination ratio of 1: 3.

The self-repairing property is realized by utilizing Fe3+The coordination of (a) and the self-repairing capability of the formed dynamic coordination bond. And testing the self-repairing performance of the obtained polyethylene glycol composite material, sampling, scratching a trace with a knife, and recovering after 12 hours at room temperature.

Example 4

1) 10 mol of amino-terminated polyethylene glycol (Mn 2000g mol)-1Calculated according to the molecular weight and the mass of the used medicine), adding 50ml of anhydrous dichloromethane solution and 25 moles of triethylamine, and stirring for 4 hours in an ice bath at the temperature of-5 ℃ under the protection of nitrogen;

2) then adding 20 mol of malonyl chloride into the solution obtained in the step 1), stirring for 4 hours in an ice bath at the temperature of-5 ℃, then raising the temperature to 25 ℃, and continuing stirring for 48 hours;

3) and finally, slowly adding 30ml of ferric trichloride solution with the concentration of 0.04mol/L, stirring to fully react, and after the reaction is finished, putting the mixture into a 100 ℃ oven to dry for 24 hours to obtain the polyethylene glycol composite material with the self-repairing performance and the coordination ratio of 1: 4.

The self-repairing property is realized by utilizing Fe3+The coordination of (a) and the self-repairing capability of the formed dynamic coordination bond. And testing the self-repairing performance of the obtained polyethylene glycol composite material, sampling, scratching a trace with a knife, and recovering after 14 hours at room temperature.

The mechanical properties of the polyethylene glycol composite material prepared in the four embodiments before and after repair are respectively tested. The electronic tensile testing machine UTM2230 for mechanical property test has a specimen length of 20mm, a thickness of 5mm and a width of 10mm, and is used for stretching at a constant stretching speed of 10mm/min, wherein the maximum tensile force of the stretcher is 100N, and the test temperature is 25 ℃ at room temperature. The test conditions are shown in table 1:

TABLE 1 initial state of polyethylene glycol composite and mechanical property test results after repair

The preparation of the self-repairing polyethylene glycol composite material can be realized by adjusting the process parameters according to the content of the invention, the performance basically consistent with that of the embodiment of the invention is shown, and the recovery efficiency can reach 80-90% after the room temperature is recovered for 8-14 h.

Although the methods and techniques of the present invention have been described in terms of preferred embodiments, it will be apparent to those of ordinary skill in the art that variations and/or rearrangements of the methods and techniques described herein may be made without departing from the spirit and scope of the invention. It is expressly intended that all such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and content of the invention.

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种聚合物基体、电解质及其制备方法、电池极片、锂离子电池

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!