一种半导体核辐射探测器及其制备方法和应用

文档序号:1286119 发布日期:2020-08-28 浏览:14次 >En<

阅读说明:本技术 一种半导体核辐射探测器及其制备方法和应用 (Semiconductor nuclear radiation detector and preparation method and application thereof ) 是由 张明智 王可 邹继军 朱志甫 邓文娟 田芳 于 2020-05-29 设计创作,主要内容包括:本发明适用于核辐射探测技术领域,提供了一种半导体核辐射探测器及其制备方法和应用,该制备方法包括以下步骤:用溴甲醇溶液对CsPbBr&lt;Sub&gt;3&lt;/Sub&gt;单晶衬底的表面进行化学腐蚀处理;用氢溴酸溶液对化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层;对钝化层的中央部分进行刻蚀处理,形成刻蚀区域;在刻蚀区域上依次沉积第一内层金属电极、第一中层金属电极和第一外层金属电极;以及在衬底远离刻蚀区域一面上依次沉积第二内层金属电极、第二中层金属电极和第二外层金属电极,得到半成品;将半成品置于保护气氛下进行退火处理,得到半导体核辐射探测器。该半导体核辐射探测器可进行室温探测和无损探测,其具有探测极限低,方便携带等优点。(The invention is suitable for the technical field of nuclear radiation detection, and provides a semiconductor nuclear radiation detector and a preparation method and application thereof, wherein the preparation method comprises the following steps: bromomethanol solution for CsPbBr 3 Carrying out chemical corrosion treatment on the surface of the single crystal substrate; passivating one surface of the substrate subjected to the chemical corrosion treatment by using a hydrobromic acid solution to form a passivation layer; etching the central part of the passivation layer to form an etching area; depositing a first inner layer metal electrode, a first middle layer metal electrode and a first outer layer metal electrode on the etching area in sequence; depositing a second inner-layer metal electrode, a second middle-layer metal electrode and a second outer-layer metal electrode on one surface of the substrate far away from the etching area in sequence to obtain a semi-finished product; placing the semi-finished product in a protective atmosphere for annealing treatment to obtain a semiconductorA body nuclear radiation detector. The semiconductor nuclear radiation detector can be used for room temperature detection and nondestructive detection, and has the advantages of low detection limit, convenience in carrying and the like.)

一种半导体核辐射探测器及其制备方法和应用

技术领域

本发明属于核辐射探测技术领域,尤其涉及一种半导体核辐射探测器及其制备方法和应用。

背景技术

能源,尤其是新型能源,作为现代文明社会发展不可缺少的动力,一直都是科学界、工业界研究热点和研究难点。其中,核能,作为当今社会最高效、最丰富的清洁能源,因其丰富的能源储藏,而成为未来能源首要选择之一。但是,核能所具有的巨大破坏力,同样也使普通民众“谈核色变”、“避核远之”。因此,如何做好核检测和核检测工作,是和平开发核能不可缺少的首要前提工作。其中,核探测技术是核检测和核监测重要关键技术,核辐射探测设备和仪器的可靠性、灵敏度及抗干扰特性等性能直接影响生命财产安全,是和平开发核能过程中必不可少的工具。

目前在研并趋于成熟的是以CdTeZn和T1Br为代表的宽禁带半导体核辐射探测器,多年的研究使这类探测器达到高分辨率和高探测效率的性能要求,但是CdTeZn中Te组分偏析和TlBr中的离子极化始终成为制约它们应用发展难以逾越的难题。传统核辐射探测器存在的缺陷促使研制一种新型高探测能力的核探测器。为了解决上述问题,研制可室温进行使用的新型半导体核辐射探测器刻不容缓。

发明内容

本发明实施例的目的在于提供一种半导体核辐射探测器的制备方法,旨在解决背景技术中提出的问题。

本发明实施例是这样实现的,一种半导体核辐射探测器的制备方法,其包括以下步骤:

选择CsPbBr3单晶作为衬底;

用溴甲醇溶液对所述衬底的表面进行化学腐蚀处理,得到化学腐蚀处理后的衬底;

用氢溴酸溶液对所述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层;

对所述钝化层的中央部分进行刻蚀处理,形成刻蚀区域;

在所述刻蚀区域上依次沉积第一内层金属电极、第一中层金属电极和第一外层金属电极;以及在所述化学腐蚀处理后的衬底远离所述刻蚀区域一面上依次沉积第二内层金属电极、第二中层金属电极和第二外层金属电极,得到半成品;

将所述半成品置于保护气氛下进行退火处理,得到所述半导体核辐射探测器。

作为本发明实施例的一种优选方案,所述溴甲醇溶液中溴甲醇的质量百分比浓度为3%~7%。

作为本发明实施例的另一种优选方案,所述氢溴酸溶液的pH值为4~5。

作为本发明实施例的另一种优选方案,所述步骤中,刻蚀处理的方法为等离子体刻蚀法。

作为本发明实施例的另一种优选方案,所述第一内层金属电极和所述第二内层金属电极均为Ti电极;所述第一中层金属电极为Pt电极或Ag电极;所述第二中层金属电极为Pt电极或Ag电极;所述第一外层金属电极为Au电极或Al电极;所述第二外层金属电极为Au电极或Al电极。

作为本发明实施例的另一种优选方案,所述第一内层金属电极和所述第二内层金属电极的厚度分别为10~30nm;所述第一中层金属电极和所述第二中层金属电极的厚度分别为30~50nm;所述第一外层金属电极和所述第二外层金属电极的厚度分别为50~100nm。

作为本发明实施例的另一种优选方案,所述保护气氛为Ar气氛。

作为本发明实施例的另一种优选方案,所述步骤中,退火处理的温度为60~100℃。

本发明实施例的另一目的在于提供一种采用上述制备方法制得的半导体核辐射探测器。

本发明实施例的另一目的在于提供一种上述半导体核辐射探测器在核辐射探测中的应用。

其中,作为全无机钙钛矿的典型代表,相比于CdZnTe和TlBr等材料,CsPbBr3具有以下较优的性能:较高的平均原子序数、较大的密度、较大的禁带宽度(2.25eV)、较高的电阻率(~1011Ω·cm)。尤其是CsPbBr3的电子和空穴的μ·τ分别达到了1.7×10-3和1.3×10-3cm2/V,其电子寿命甚至达到了2.54μs;此外,CsPbBr3还具有较低的熔点(567℃)、易于熔融生长等优势。

本发明实施例提供的一种半导体核辐射探测器的制备方法,通过以CsPbBr3单晶为衬底,并沉积有多层完全对称型和半对称型的复合金属电极结构,可以制得具有高探测性能和高稳定性的半导体核辐射探测器。该半导体核辐射探测器可进行室温探测、无损探测,而且具有探测极限低、方便携带等优点,其可广泛应用于各种核检测领域。具体的,内层金属电极和CsPbBr3衬底层之间具有优异的欧姆接触性能;中层金属电极具有优异的热稳定性能;外层金属电极具有优异的导电能力;通过多层金属复合结构型电极能显著提高有效电荷收集效率,从而可以增强半导体核辐射探测器对X射线、α粒子、γ射线的探测灵敏度以及探测效率。

附图说明

图1为本发明实施例提供的一种半导体核辐射探测器的制备方法的过程示意图。

图2为本发明实施例1制得的Au/Pt/Ti/CsPbBr3/Ti/Pt/Au型的半导体核辐射探测器的结构示意图。

图3为本发明实施例2制得的Au/Pt/Ti/CsPbBr3/Ti/Ag/Au型的半导体核辐射探测器的结构示意图。

图4为本发明实施例1制得的Au/Pt/Ti/CsPbBr3/Ti/Pt/Au型的半导体核辐射探测器对241Am(α粒子)的探测能谱图。

图中:1-衬底;2-钝化层;3-Ti电极;4-Pt电极;5-Au电极;6-Ag电极。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

如附图1和2所示,该实施例提供了一种完全对称型半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底1,并用质量百分比浓度为5%的溴甲醇溶液对该衬底1的表面进行化学腐蚀处理,以除去衬底1表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为4.5的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层2。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层2的中央部分进行刻蚀处理,以去除上述钝化层2的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积10nm厚的Ti电极3、30nm厚的Pt电极4和70nm厚的Au电极5,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积10nm厚的Ti电极3、30nm厚的Pt电极4和70nm厚的Au电极5,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于80℃的温度以及Ar气氛下进行退火处理24h,即可得到Au/Pt/Ti/CsPbBr3/Ti/Pt/Au型的半导体核辐射探测器。

实施例2

如附图1和3所示,该实施例提供了一种半对称型半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底1,并用质量百分比浓度为5%的溴甲醇溶液对该衬底1的表面进行化学腐蚀处理,以除去衬底1表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为4.5的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层2。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层2的中央部分进行刻蚀处理,以去除上述钝化层2的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积10nm厚的Ti电极3、30nm厚的Pt电极4和70nm厚的Au电极5,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积10nm厚的Ti电极3、30nm厚的Ag电极6和70nm厚的Au电极5,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于80℃的温度以及Ar气氛下进行退火处理24h,即可得到Au/Pt/Ti/CsPbBr3/Ti/Ag/Au型的半导体核辐射探测器。

实施例3

如附图1所示,该实施例提供了一种完全对称型半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底,并用质量百分比浓度为3%的溴甲醇溶液对该衬底的表面进行化学腐蚀处理,以除去衬底表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为4的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层的中央部分进行刻蚀处理,以去除上述钝化层的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积30nm厚的Ti电极、50nm厚的Ag电极和50nm厚的Au电极,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积30nm厚的Ti电极、50nm厚的Ag电极和50nm厚的Au电极,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于100℃的温度以及Ar气氛下进行退火处理1h,即可得到Au/Ag/Ti/CsPbBr3/Ti/Ag/Au型的半导体核辐射探测器。

实施例4

如附图1所示,该实施例提供了一种完全对称型的半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底,并用质量百分比浓度为7%的溴甲醇溶液对该衬底的表面进行化学腐蚀处理,以除去衬底表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为5的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层的中央部分进行刻蚀处理,以去除上述钝化层的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积20nm厚的Ti电极、40nm厚的Pt电极和100nm厚的Al电极,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积20nm厚的Ti电极、40nm厚的Pt电极和100nm厚的Al电极,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于60℃的温度以及Ar气氛下进行退火处理12h,即可得到Al/Pt/Ti/CsPbBr3/Ti/Pt/Al型的半导体核辐射探测器。

实施例5

如附图1所示,该实施例提供了一种半对称型的半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底,并用质量百分比浓度为6%的溴甲醇溶液对该衬底的表面进行化学腐蚀处理,以除去衬底表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为4的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层的中央部分进行刻蚀处理,以去除上述钝化层的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积20nm厚的Ti电极、40nm厚的Pt电极和80nm厚的Au电极,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积20nm厚的Ti电极、40nm厚的Ag电极和80nm厚的Al电极,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于90℃的温度以及Ar气氛下进行退火处理20h,即可得到Au/Pt/Ti/CsPbBr3/Ti/Ag/Al型的半导体核辐射探测器。

实施例6

如附图1所示,该实施例提供了一种半对称型的半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底,并用质量百分比浓度为4%的溴甲醇溶液对该衬底的表面进行化学腐蚀处理,以除去衬底表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为5的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层的中央部分进行刻蚀处理,以去除上述钝化层的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积10nm厚的Ti电极、30nm厚的Ag电极和70nm厚的Al电极,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积10nm厚的Ti电极、30nm厚的Ag电极和70nm厚的Au电极,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于80℃的温度以及Ar气氛下进行退火处理24h,即可得到Al/Ag/Ti/CsPbBr3/Ti/Ag/Au型的半导体核辐射探测器。

实施例7

如附图1所示,该实施例提供了一种完全对称型的半导体核辐射探测器的制备方法,其包括以下步骤:

S1、选择CsPbBr3单晶作为衬底,并用质量百分比浓度为7%的溴甲醇溶液对该衬底的表面进行化学腐蚀处理,以除去衬底表面的氧化层,得到化学腐蚀处理后的衬底。

S2、用pH值为5的氢溴酸溶液对上述化学腐蚀处理后的衬底的其中一面进行钝化处理,形成钝化层。

S3、采用刻蚀方法制备结构掩模,即利用现有技术中的等离子体刻蚀法对上述钝化层的中央部分进行刻蚀处理,以去除上述钝化层的中央部分,形成刻蚀区域。

S4、在上述刻蚀区域上依次沉积20nm厚的Ti电极、40nm厚的Ag电极和100nm厚的Al电极,形成顶层金属复合结构型电极。

S5、采用物理气相沉积方法,在上述化学腐蚀处理后的衬底远离所述刻蚀区域一面上(即未经钝化和刻蚀的一面)依次沉积20nm厚的Ti电极、40nm厚的Ag电极和100nm厚的Al电极,形成底层金属复合结构型电极,得到半成品。

S6、将上述半成品置于80℃的温度以及Ar气氛下进行退火处理12h,即可得到Al/Ag/Ti/CsPbBr3/Ti/Ag/Al型的半导体核辐射探测器。

综上,本发明实施例提供的半导体核辐射探测器的制备方法的机理在于:

(1)CsPbBr3单晶材料本身,载流子电子和空穴具有高且相同数量级的载流子迁移率寿命积,探测器对电子型载流子和空穴载流子的有效电荷收集效率都高,依照此机理可制备成完全对称型的半导体核辐射探测器。

(2)CsPbBr3单晶衬底与惰性金属Ti可以形成优异的欧姆接触,金属Pt、金属Ag、金属Al具有优异的电导性,依照此机理可制备成半对称型半导体核辐射探测器。

另外,在室温下,将上述实施例1得到的Au/Pt/Ti/CsPbBr3/Ti/Pt/Au型的半导体核辐射探测器对241Am(α粒子)进行探测,其探测能谱如附图4所示。从图4中可以看出,本发明实施例制得的半导体核辐射探测器可以进行室温检测,且具有探测极限低等优点。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:高计数率多气隙电阻板室探测器的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!