镀层钢板

文档序号:157113 发布日期:2021-10-26 浏览:33次 >En<

阅读说明:本技术 镀层钢板 (Coated steel sheet ) 是由 光延卓哉 真木纯 竹林浩史 高桥武宽 德田公平 于 2020-04-16 设计创作,主要内容包括:一种镀层钢板,具有钢板和镀层,所述镀层形成于所述钢板的表面的至少一部分,所述镀层的化学组成以质量%计含有Al:超过5.00%且为35.00%以下、Mg:3.00~15.00%、Si:0~2.00%、Ca:0~2.00%,余量包含Zn及杂质,所述镀层,在厚度方向截面中,(Al-Zn)相和MgZn-(2)相以层状排列的层状组织的面积率为10~90%,所述层状组织的层片间距为2.5μm以下,(Al-Zn)枝晶的面积率为35%以下。(A coated steel sheet has a steel sheet and a coating layer,the plating layer is formed on at least a part of the surface of the steel sheet, and the chemical composition of the plating layer contains, in mass%: more than 5.00% and 35.00% or less, Mg: 3.00-15.00%, Si: 0-2.00%, Ca: 0 to 2.00%, and the balance of Zn and impurities, wherein the coating layer contains an (Al-Zn) phase and MgZn in a cross section in the thickness direction 2 The area ratio of lamellar structure in which phases are arranged in a lamellar manner is 10 to 90%, the lamellar spacing of the lamellar structure is 2.5 [ mu ] m or less, and the area ratio of (Al-Zn) dendrites is 35% or less.)

镀层钢板

技术领域

本发明涉及镀层钢板。

本申请基于在2019年04月19日向日本申请的专利申请2019-080286号要求优先权,在此援引其内容。

背景技术

近年来,在汽车结构构件中,从防锈的观点出发,使用了镀层钢板,在日本国内市场主要应用了合金化热浸镀锌钢板等的热浸镀锌钢板。合金化热浸镀锌钢板是在对钢板实施热浸镀锌后进行合金化热处理,使Fe从钢板(基底钢板)向镀层内扩散,由此提高了焊接性、涂装后耐蚀性的钢板。但是,对于热浸镀锌钢板,要求涂装后耐蚀性、耐红锈性等耐蚀性进一步提高。

作为提高热浸镀锌钢板的耐蚀性的方法,可列举向Zn中添加Al。例如在建材领域中,作为高耐蚀性镀层钢板,Al-Zn系热浸镀层钢板被广泛地实用化。这样的Al-Zn系热浸镀层,由从熔融状态最初地结晶出的枝晶状的α-(Zn,Al)相(Al初晶部:在Al-Zn系二元状态图等中作为初晶而结晶出的α-(Zn,Al)相。不一定是富Al的相,作为Zn与Al的固溶体而结晶出)和形成于枝晶状的Al初晶部的间隙中的由Zn相和Al相构成的组织(Zn/Al混相组织)形成。Al初晶部钝化,且Zn/Al混相组织与Al初晶部相比Zn浓度高,因此腐蚀集中于Zn/Al混相组织。作为结果,腐蚀在Zn/Al混相组织中呈虫蛀状地进展,腐蚀进展路径变得复杂,因此腐蚀难以容易地到达基底钢板。由此,Al-Zn系热浸镀层钢板与镀层的厚度相同的热浸镀锌钢板相比具有优异的耐蚀性。

在将这样的Al-Zn系热浸镀层钢板用作为汽车外板面板的情况下,镀层钢板以在连续式热浸镀设备中实施了镀覆的状态被供于汽车制造厂等,因此一般在被加工成面板部件形状后实施化学转化处理,进而实施电沉积涂装、中涂涂装、上涂涂装的汽车用综合涂装。然而,使用了Al-Zn系热浸镀层钢板的外板面板,在涂膜产生了损伤时,起因于由上述的Al初晶部和Zn/Al混相组织这两相构成的独特的镀层相结构,以损伤部为起点在涂膜/镀层界面产生Zn的优先溶解(Zn/Al混相组织的选择性腐蚀)。其向涂装健全部的深处发展而引起大的涂膜鼓胀,结果存在不能够确保充分的耐蚀性(涂装后耐蚀性)这一课题。

以提高耐蚀性为目的,也研究了向Al-Zn系镀层进一步添加Mg等元素。然而,推测为即使添加Mg,在Al-Zn系热浸镀层钢板也依然形成具有钝态皮膜的Al初晶部,因此在实施了涂装后,涂膜产生了损伤时的耐蚀性(涂装后耐蚀性)的课题没有得到解决。

针对这样的课题,在专利文献1中公开了一种涂装后耐蚀性优异的Zn系热浸镀层钢板。在专利文献1中公开了:在镀层含有Zn、Al、Mg及Si,且在镀层中层状Zn相和层状Al相交替地排列而成的层状组织以面积率的合计值计含有5%以上的情况下,在涂装了的状态下的涂膜鼓胀被抑制。

然而,在专利文献1中,虽然在某种程度上涂装后耐蚀性提高,但是其效果有限,不能够确保充分的涂装后耐蚀性。另外,在专利文献1的技术中,需要为了组织控制而实施复杂的热过程的处理,存在制造成本增加的课题。

在专利文献2中公开了一种Al-Zn系热浸镀层钢板,其特征在于,具有下述镀层,所述镀层以质量%计含有Al:25~90%及Sn:0.01~10%,而且含有总计为0.01~10%的选自Mg、Ca和Sr中的一种以上。在专利文献2中公开了:在上述的α-Al相的周围形成的Al氧化膜会由于Sn而导致破坏,α-Al相的溶解性提高,因此通过发生α-Al相和富Zn相这两者溶解的镀层的均匀腐蚀,能够抑制富Zn相的选择性腐蚀,涂装后耐蚀性提高。

然而,专利文献2的镀层钢板,存在与汽车用电沉积涂膜的密合性差的缺点。另外,在专利文献2中,由于必须添加Sn,因此存在合金成本增加、而且镀浴的管理变难这样的课题。

另外,在专利文献3中公开了一种化学转化处理钢板,该化学转化处理钢板以[Al/Zn/Zn2Mg三元共晶组织]在镀层最表面所占的比例为60面积%以上的Zn-Al-Mg合金热浸镀层钢板为基材,且镀层表面被化学转化皮膜覆盖。然而,在专利文献3中,通过控制化学转化皮膜的构成来谋求耐蚀性的提高。另外,为了提高与化学转化皮膜的反应性,关于镀层,以Al/Zn/Zn2Mg三元共晶组织为主相。因此认为在进行通常的化学转化处理的情况下,虽然化学转化处理性提高,但是镀层的组织控制不充分,不能够充分得到汽车用途所要求的涂装后耐蚀性。

因此,以往没有提出过能够确保近年来的汽车结构构件所要求的充分的涂装后耐蚀性的锌系热浸镀层钢板。

在先技术文献

专利文献

专利文献1:日本国专利第6350780号公报

专利文献2:日本国特开2015-214747号公报

专利文献3:日本国专利第4579715号公报

发明内容

本发明是鉴于上述课题而完成的。本发明的目的是以锌系热浸镀层钢板为前提,提供涂装后耐蚀性优异的镀层钢板。

本发明人对含有Al及Mg的锌系热浸镀层钢板的涂装后耐蚀性进行了研究。其结果发现,通过在将镀层的Al含量和Mg含量设为适当的范围的基础上,控制镀层的凝固从而控制镀层包含的相的构成及其面积率,从而涂装后耐蚀性提高。

本发明是基于上述见解而完成的。本发明的主旨如下。

(1)本发明的一方式涉及的镀层钢板,具有钢板和镀层,所述镀层形成于所述钢板的表面的至少一部分,所述镀层的化学组成以质量%计含有Al:超过5.00%且为35.00%以下、Mg:3.00~15.00%、Si:0~2.00%、Ca:0~2.00%,余量包含Zn及杂质,所述镀层,在厚度方向截面中,(Al-Zn)相和MgZn2相以层状排列的层状组织的面积率为10~90%,所述层状组织的层片间距为2.5μm以下,(Al-Zn)枝晶的面积率为35%以下。

(2)根据上述(1)所述的镀层钢板,所述镀层的所述化学组成以质量%计可以含有Al:11.00~30.00%、Mg:3.00~11.00%、Ca:0.03~1.00%之中的1种以上。

(3)根据上述(1)或(2)所述的镀层钢板,以质量%计可以进一步含有Sb:0.50%以下、Pb:0.50%以下、Cu:1.00%以下、Sn:1.00%以下、Ti:1.00%以下、Sr:0.50%以下、Ni:1.00%以下、Mn:1.00%以下、和Fe:2.00%以下。

(4)根据上述(1)~(3)的任一项所述的镀层钢板,所述镀层,在所述厚度方向截面中,所述层状组织的面积率可以为50~90%。

(5)根据上述(4)所述的镀层钢板,所述镀层,在所述厚度方向截面中,所述层状组织的面积率可以为70~90%。

(6)根据上述(1)~(5)的任一项所述的镀层钢板,在所述镀层与所述钢板之间可以具有平均厚度为0.05~3.0μm的由Al-Fe系金属间化合物构成的合金层。

(7)根据上述(1)~(5)的任一项所述的镀层钢板,所述钢板可以在所述钢板与所述镀层的界面侧的表层部具有内部氧化层。

(8)根据上述(6)所述的镀层钢板,所述钢板可以在所述钢板与所述合金层的界面侧的表层部具有内部氧化层。

根据本发明的上述方式,能得到涂装后耐蚀性优异的镀层钢板。本发明的镀层钢板很适合于汽车结构构件。因此,本发明通过汽车结构构件用镀层钢板的碰撞安全性提高和长寿命化而能够对产业的发展做出贡献。

附图说明

图1是示出本实施方式涉及的镀层钢板(实施例的No.15)的镀层的一例的图。

图2是示出以往的镀层钢板的镀层的一例的图。

具体实施方式

如图1所示,本发明的一实施方式涉及的镀层钢板(本实施方式涉及的镀层钢板)具有钢板1和形成于钢板1的表面的至少一部分的镀层2。另外,在本实施方式涉及的镀层钢板中,镀层2的化学组成以质量%计含有Al:超过5.00%且为35.00%以下、Mg:3.00~15.00%、Si:0~2.00%、Ca:0~2.00%,任意地含有Sb:0.50%以下、Pb:0.50%以下、Cu:1.00%以下、Sn:1.00%以下、Ti:1.00%以下、Sr:0.50%以下、Ni:1.00%以下、Mn:1.00%以下、和Fe:2.00%以下之中的1种以上,余量包含Zn及杂质。另外,本实施方式涉及的镀层钢板的镀层2,在厚度方向截面中,(Al-Zn)相和MgZn2相以层状排列的层状组织21的面积率为10~90%,层状组织21的层片间距为2.5μm以下,(Al-Zn)枝晶23的面积率为35%以下。

本实施方式涉及的镀层钢板也可以在钢板1与镀层2之间具有由含有Fe和Al的金属间化合物构成的合金层3。

<钢板>

本实施方式涉及的镀层钢板的镀层2是重要的,对于钢板1的种类没有特别限定。只要根据所应用的制品、所要求的强度、板厚等来决定即可。例如,能够使用JIS G3193:2008中记载的热轧钢板、JIS G3141:2017中记载的冷轧钢板。

钢板1优选在钢板1与镀层2的界面侧的表层部(在钢板1与镀层2之间形成有后述的合金层3的情况下,为钢板1与合金层3的界面侧的表层部)具有内部氧化层11。

内部氧化层11可通过在规定的气氛下对镀前的钢板进行退火而形成。通过在钢板1中存在内部氧化层11,从而在对钢板1进行热浸镀时,在镀层2中容易形成(Al-Zn)相和MgZn2相以层状排列的层状组织21。在要得到该效果的情况下,内部氧化层11的厚度优选为0.10~8.00μm。

[合金层]

本实施方式涉及的镀层钢板也可以在钢板1与镀层2之间形成合金层3。通过形成合金层3,钢板1与镀层2的密合性提高,因此是优选的。在要得到上述效果的情况下,合金层3的平均厚度优选为0.05~3.00μm。

合金层由Al-Fe系金属间化合物(例如Al-Fe合金层,或者,在镀层2含有Si的情况下为Al-Fe-Si合金层)构成。

合金层3的有无及厚度,可通过根据由EDS测定得到的元素分布像测定Al-Fe系金属间化合物的厚度而得到。

<镀层>

在本实施方式涉及的镀层钢板中,在钢板1的表面的至少一部分具备镀层2。镀层2可以形成于钢板1的一面,也可以形成于其两面。

镀层的附着量优选为15~250g/m2

[化学组成]

对本实施方式涉及的镀层钢板的镀层2的化学组成进行说明。

Al:超过5.00%且为35.00%以下

Al在包含铝(Al)、锌(Zn)、镁(Mg)的镀层2中是对确保涂装后耐蚀性有效的元素。另外,在本实施方式涉及的镀层钢板的镀层2中是为了形成层状组织21而需要的元素。另外,Al也是有助于合金层3(Al-Fe合金层)的形成,对确保镀层密合性有效的元素。为了充分得到上述效果,将Al含量设定为超过5.00%。优选为11.00%以上。

另一方面,当Al含量超过35.00%时,(Al-Zn)枝晶的面积率变高,涂装后耐蚀性、镀层的切断端面的耐蚀性降低。因此,Al含量设为35.00%以下。优选为30.00%以下。

Mg:3.00~15.00%

Mg是具有提高镀层2的涂装后耐蚀性的效果的元素。另外,在本实施方式涉及的镀层钢板的镀层2中,是为了形成层状组织21而需要的元素。在要充分得到上述效果的情况下,优选将Mg含量设为3.00%以上。

另一方面,当Mg含量超过15.00%时,不能够充分地形成层状组织21,涂装后耐蚀性降低,而且镀层的加工性降低。另外,产生镀浴的渣滓产生量增大等制造上的问题。因此,将Mg含量设为15.00%以下。优选为11.00%以下。

Si:0~2.00%

Si是与Mg一起形成化合物从而有助于涂装后耐蚀性的提高的元素。另外,Si也是在钢板1上形成镀层2时抑制在钢板1与镀层2之间形成的合金层形成得过度厚,从而具有提高钢板1与镀层2的密合性的效果的元素。因此,也可以含有。在要得到上述效果的情况下,优选将Si含量设为0.10%以上。更优选为0.20%以上。

另一方面,当使Si含量超过2.00%时,在镀层中结晶出过量的Si,另外,不能够充分地形成层状组织21,涂装后耐蚀性降低。另外,招致镀层的加工性降低。因此,将Si含量设为2.00%以下。更优选为1.50%以下。Si不需要必须含有,下限为0%。

Ca:0~2.00%

当在镀层中含有Ca时,伴随Mg含量的增加而在镀覆操作时容易形成的渣滓的形成量减少,镀覆制造性提高。因此,也可以含有Ca。Ca不需要必须含有,下限为0%,但在要得到上述效果的情况下,优选将Ca含量设为0.03%以上,更优选设为0.10%以上。

另一方面,当Ca含量多时,不能够充分形成层状组织21,而且,以CaZn11相为首的Ca系金属间化合物作为其他的金属间化合物相以面积率计生成10%以上,涂装后耐蚀性降低。另外,镀层的平面部的涂装后耐蚀性本身有劣化的倾向,有时焊接部周围的耐蚀性也劣化。因此,即使在含有Ca的情况下,Ca含量也设为2.00%以下。优选为1.00%以下。

本实施方式涉及的镀层钢板的镀层2的化学组成,将具有上述化学组成、余量为Zn及杂质作为基础。杂质的含量优选为5.0%以下,更优选为3.0%以下。

然而,本实施方式涉及的镀层钢板的镀层2,也可以进一步在以下的范围内含有例如Sb、Pb、Cu、Sn、Ti、Sr、Ni、Mn、Fe来代替一部分Zn。这些元素可以不必包含,因此含量的下限为0%。另外,这些元素即使以杂质水平含有,也不会对镀层的特性造成实质性的影响。

Sb:0.50%以下

Sr:0.50%以下

Pb:0.50%以下

当在镀层2中含有Sr、Sb、Pb时,镀层2的外观发生变化,形成锌花,确认到金属光泽的提高。然而,当这些元素的含量超过0.50%时,会形成各种各样的金属间化合物相,加工性及耐蚀性恶化。另外,当这些元素的含量变得过量时,镀浴的粘性上升,镀浴的建浴本身大多变得困难,不能够制造镀层性状良好的镀层钢板。因此,优选将Sr含量设为0.50%以下、将Sb含量设为0.50%以下、将Pb含量设为0.50%以下。

Sn:1.00%以下

Sn在含有Zn、Al、Mg的镀层2中是使Mg溶出速度上升的元素。当Mg的溶出速度上升时,平面部耐蚀性恶化。因此,优选将Sn含量设为1.00%以下。

Cu:1.00%以下

Ti:1.00%以下

Ni:1.00%以下

Mn:1.00%以下

这些元素是有助于提高耐蚀性的元素。另一方面,当这些元素的含量变得过量时,镀浴的粘性上升,镀浴的建浴本身大多变得困难,不能够制造镀层性状良好的镀层钢板。因此,优选将各元素的含量分别设为1.00%以下。

Fe:2.00%以下

Fe在制造镀层时作为杂质而混入到镀层中。有时含有至2.00%左右,但如果为该范围,则对本实施方式涉及的镀层钢板的特性的不良影响小。因此,优选将Fe含量设为2.00%以下。更优选为1.50%以下,进一步优选为1.00%以下。

镀层2的化学成分采用以下的方法测定。

首先,获得利用含有抑制钢基体(钢材)的腐蚀的抑制剂的酸将镀层剥离溶解而得到的酸液。接着,通过采用ICP分析来对所得到的酸液进行测定,从而能够得到镀层2的化学组成(在镀层2与钢板1之间形成有合金层3的情况下,成为镀层2与合金层3的合计的化学组成,但由于合金层3薄,因此影响小)。关于酸种类,只要是能够溶解镀层的酸即可,没有特别限制。化学组成作为平均化学组成而测定。

在想要得到合金层3和镀层2的各自的化学组成的情况下,通过GDS(高频辉光放电光谱分析)来得到各元素的定量分析的检量线。然后,测定作为对象的镀层的深度方向的化学成分即可。例如,从制作的镀层钢板制取数个30mm见方的样品来作为GDS用样品。从镀层的表层开始实施氩离子溅射,得到深度方向的元素强度廓线。而且,如果制作各元素纯金属板等的标准试样并预先得到元素强度廓线,则能够由强度廓线进行浓度换算。在化学组成的分析中使用GDS的情况下,优选将分析面积设为Φ4mm以上来测定10次以上,采用各部位的成分的平均值。溅射速度优选为约0.04~0.10μm/秒的范围。

[镀层中所包含的组织(相)]

如图1所示,本实施方式涉及的镀层钢板的镀层2包含(Al-Zn)相和MgZn2相以层状排列的层状组织21,其面积率为10~90%,另外,在本实施方式涉及的镀层钢板的镀层2中,(Al-Zn)枝晶23的面积率为35%以下。

通常,当将浸渍于含有Zn、Mg、Al的镀浴中的钢板冷却时,如图2所示,在镀层中生成作为初晶的(Al-Zn)枝晶23、和Zn/Al/MgZn2三元共晶组织24。该(Al-Zn)枝晶23,耐蚀性低,因此即使是进行了钢板的涂装的情况,在涂膜产生了瑕疵的情况等下也在镀层的内部进行腐蚀,产生涂膜鼓胀。

与此相对,(Al-Zn)相和MgZn2相以层状排列的层状组织21,耐蚀性高,因此即使是涂膜产生了瑕疵的情况,也能够抑制在镀层内部的腐蚀的进展。

即,在本实施方式涉及的镀层钢板的镀层2中,将有助于涂装后耐蚀性的提高的(Al-Zn)相和MgZn2相以层状排列的层状组织21的在镀层中的面积率设为10%以上。层状组织的面积率优选为50%以上,更优选为70%以上。层状组织21不仅具有使涂装后耐蚀性提高的效果,而且具有也使耐LME(液体金属致脆开裂)性提高的效果。另一方面,在以上述的化学组成为前提的情况下,使层状组织21的面积率超过90%在工业上不容易做到。因此,将层状组织的面积率设为90%以下。

另外,在本实施方式涉及的镀层钢板的镀层2中,将使涂装后耐蚀性降低的(Al-Zn)枝晶23的面积率设为35%以下。(Al-Zn)枝晶23的面积率优选为少,也可以为0%。

层状组织21是(Al-Zn)相和MgZn2相以层状排列的组织,但其层片间距越微细,涂装后耐蚀性及耐LME性的提高效果越大,能得到充分的性能的层片间距为2.5μm以下(2500nm以下),优选为500nm以下。这样的层状组织也被称为羽毛状组织。

Zn/Al/MgZn2三元共晶组织以面积%计由Zn相:45~60%、MgZn2相:35~45%、Al相:3~10%构成,与此相对,层状组织21是各相的分率以面积%计为Zn相:0~10%、MgZn2相:40~65%、Al相:30~45%的组织。

在本实施方式涉及的镀层钢板的镀层2中,作为上述的层状组织21及(Al-Zn)枝晶23以外的相,也可以包含块状MgZn2相、Zn/Al/MgZn2三元共晶组织24、其他的金属间化合物。剩余部分的合计优选为50%以下,更优选为30%以下。

块状MgZn2相有助于涂装后耐蚀性的提高。在要得到充分的效果的情况下,优选将块状MgZn2相的面积率设为5%以上。另一方面,从加工性的观点出发,优选为40%以下。

Zn/Al/MgZn2三元共晶组织24的面积率优选设为45%以下。当Zn/Al/MgZn2三元共晶组织24的面积率超过45%时,涂装后耐蚀性有可能降低。

另外,MgSi2相或其他的金属间化合物,使涂装后耐蚀性降低,因此优选以面积率计分别设为10%以下。更优选以合计的面积率计设为10%以下。作为其他的金属间化合物相,可列举例如CaZn11相、Al2CaSi2相、Al2CaZn2相等。

关于镀层的组织(各相的面积率、层片间距),采用以下的方法测定。

从本实施方式涉及的镀层钢板制取在与轧制方向垂直的方向上为25mm×在轧制方向上为15mm的尺寸的样品,以该样品的镀层的厚度方向成为观察面的方式埋入到树脂中,进行研磨后,得到镀层的截面SEM像及基于EDS的元素分布像。从不同的5个样品以各1个视场、合计5个视场(倍率1500倍:60μm×50μm/1个视场)拍摄镀层的截面EDS映射像,从图像算出镀层中的层状组织、块状MgZn2相、Zn/Al/MgZn2三元共晶组织、(Al-Zn)枝晶、其他的金属间化合物的面积率。

此时,如果由Al和Zn构成的α相和MgZn2相的层片间距为2.5μm以下,则判断为层状组织,如果短径超过2.5μm,则判断为块状MgZn2相,如果为层片间距2.5μm以下的Zn相和α相和MgZn2的层状组织,则判断为Zn/Al/MgZn2三元共晶组织,如果短径为2.5μm以上,则判断为(Al-Zn)枝晶,在除了Zn、Al、Mg及Si以外的金属在相中含有10%以上的情况下,判断为其他的金属间化合物。

另外,层状组织的层片间距,通过由SEM观察来测定形成层状组织的相之中的面积率最低的相的相邻两相的间距,算出其10处的平均值从而求出。

另外,层状组织、构成Zn/Al/MgZn2三元共晶组织的Zn相、MgZn2相、Al相的面积率,能够采用使用图像处理软件等将截面SEM像上的该组织存在的区域用线包围并算出用线包围的区域的面积的方法来求出。

<制造方法>

接着,对本实施方式涉及的镀层钢板的优选的制造方法进行说明。本实施方式涉及的镀层钢板,不论制造方法,如果具有上述的特征就能得到其效果。然而,根据以下的方法,能够稳定地制造,因此是优选的。

具体而言,本实施方式涉及的钢板能够采用包括以下的工序(I)~(IV)的制造方法来制造。

(I)对钢板进行还原退火的退火工序

(II)将钢板浸渍于含有Al、Mg、Zn的镀浴中而制成镀层原板的镀覆工序

(III)将上述镀层原板以平均冷却速度为15℃/秒以上的冷却速度冷却至(Al-Zn/MgZn2二元共晶温度-30)℃~(Al-Zn/MgZn2二元共晶温度-10)℃的冷却停止温度的控制冷却工序

(IV)在上述控制冷却工序后,以平均冷却速度成为5℃/秒以下的方式冷却至335℃以下的缓冷(缓慢冷却)工序

[退火工序]

在退火工序中,先于镀覆工序,对采用公知的方法得到的钢板(热轧钢板或冷轧钢板)进行退火。关于退火条件,可以为公知的条件,例如在露点为-10℃以上的5%H2-N2气体气氛下加热至750~900℃,保持30~240秒。

然而,在要在钢板中形成内部氧化层的情况下,优选将退火温度设为800~870℃、将退火时间设为60~130秒。当形成有内部氧化层时,可通过控制冷却、缓冷来促进层状组织21的形成。

[镀覆工序]

在镀覆工序中,在退火后的降温过程中,使钢板1浸渍于镀浴而形成镀层2,从而制成镀层原板。

镀浴优选含有Al:超过5.00%且为35.00%以下、Mg:3.00~15.00%、Si:0~2.00%、Ca:0~2.00%,且余量包含Zn及杂质。镀浴的组成与所形成的镀层的组成大致相同。

[控制冷却工序]

在控制冷却工序中,利用N2等擦拭气体对镀覆工序后的(从镀浴提起的)镀层原板调整镀层附着量后进行冷却。在冷却时,以平均冷却速度成为15℃/秒以上的方式冷却至(Al-Zn/MgZn2二元共晶温度-30)℃~(Al-Zn/MgZn2二元共晶温度-10)℃的冷却停止温度。

通过在上述的条件下进行冷却,抑制了(Al-Zn)枝晶的生成,并且,形成层状组织的生成核,在接下来的缓冷工序中生成层状组织。

当平均冷却速度低于15℃/秒时,(Al-Zn)相和MgZn2相不会形成层状组织,大量地生成(Al-Zn)枝晶,涂装后耐蚀性降低。

另外,当冷却停止温度低于(Al-Zn/MgZn2二元共晶温度-30)℃时,在接下来的缓冷工序中难以生成充分量的层状组织。另外,当高于(Al-Zn/MgZn2二元共晶温度-10)℃时,变得不能够满足α相和MgZn2相共晶凝固的条件,作为结果,成为较多地生成(Al-Mg)枝晶的原因。

平均冷却速度的上限不需要限定,但从设备等的制约出发,可以设为40℃/秒以下。

Al-Zn/MgZn2二元共晶温度例如能够由Zn-Al-Mg三元系的液相面投影图求出。

[缓冷工序]

在缓冷工序中,将控制冷却停止后的镀层原板以平均冷却速度成为5℃/秒以下的方式冷却至335℃以下。

通过该缓冷工序,在控制冷却工序中形成的层状组织的生成核成长,能获得规定的层状组织的面积率。

当直到335℃以下为止的平均冷却速度超过5℃/秒时,核成长不充分,层状组织的面积率变得不充分。

根据上述的制造方法,能够得到本实施方式涉及的镀层钢板。

实施例

(实施例1)

作为供于退火、镀覆的钢板,准备了板厚1.6mm的冷轧钢板(0.2%C-2.0%Si-2.3%Mn)。

将该钢板切断成100mm×200mm后,使用分批式的热浸镀试验装置继续地进行退火及热浸镀。

在退火时,在氧气浓度为20ppm以下的炉内,在由含有5%的H2气体且余量为N2的气体构成、且露点为0℃的气氛下,在860℃进行了120秒钟的退火。

在退火后,在N2气体中将钢板空冷,在钢板温度到达浴温+20℃的时候,使其在表1所示的浴温的镀浴中浸渍约3秒。镀浴组成及所形成的镀层的组成如表1所示。

对于形成有镀层的镀层原板,在表1中所示的条件下进行控制冷却及缓冷来冷却至室温。

钢板的温度,使用点焊于镀层原板中心部的热电偶来测定。

对于得到的镀层钢板,采用以下的方法测定镀层中所含的各相的面积率及层状组织的层片间距。

从得到的镀层钢板制取在与轧制方向垂直的方向上为25mm×在轧制方向上为15mm的尺寸的样品,以该样品的镀层的厚度方向成为观察面的方式埋入到树脂中,进行研磨后,得到镀层的截面SEM像及基于EDS的元素分布像。从不同的5个样品以各1个视场、合计5个视场(倍率1500倍:60μm×50μm/1个视场)拍摄镀层的截面EDS映射像,从图像算出镀层的层状组织、块状MgZn2相、Zn/Al/MgZn2三元共晶组织、(Al-Zn)枝晶、其他的金属间化合物的面积率。

另外,层状组织的层片间距,通过由SEM观察来测定形成层状组织的相之中的面积率最低的相的相邻两相的间距,算出其10处的平均值从而求出。

另外,在钢板与镀层之间形成有合金层的情况下,通过从由EDS测定得到的元素分布像测定Al-Fe系金属间化合物的厚度,从而得到合金层的厚度。

图1是表1、表2中的No.15的SEM像(BSE像)。在镀层中含有层状组织(羽毛状组织-图1中的21)、块状MgZn2相(图1中的22),在镀层与钢板的界面形成有合金层(图1中的3)。而且,在钢板的表层部形成有内部氧化层(图1中的11)。另外,关于层状组织,均是以面积%计由Zn相:0~10%、MgZn2相:40~65%、Al相:30~45%构成的组织。

另外,对于得到的镀层钢板以及分别市售的镀Zn钢板(No.52)、合金化镀Zn钢板(No.53)及电镀Zn钢板(No.54),评价了涂装后耐蚀性。

具体而言,从镀层钢板制取50×100mm的样品,实施磷酸Zn处理(Zn系磷化处理)(SD5350体系:日本ペイント·インダストリアルコーディング公司制规格),然后,以厚度成为20μm的方式实施电沉积涂装(PN110パワーニックス(注册商标)灰色:日本ペイント·インダストリアルコーディング公司制规格),在烘烤温度150℃进行了20分钟的烘烤。然后,形成了到达钢板(钢基体)的交叉切割伤(40×√2两条)。将该涂装镀层钢板供于按照JASO(M609-91)进行的复合循环腐蚀试验,测定交叉切割伤周围的8个部位的最大鼓胀宽度,求出平均值,由此评价了涂装后耐蚀性。

在上述的JASO(M609-91)的循环数为180循环时,从交叉切割伤开始的涂膜鼓胀宽度小于1.5mm的情况评价为“AA”,为1.5~2.5mm的情况评价为“A”,涂膜鼓胀宽度超过2.5mm的情况评价为“B”。

另外,除了上述的涂膜鼓胀以外,耐红锈性也根据JASO(M609-91)进行了评价。在循环数为240循环时未从交叉切割伤产生红锈的情况评价为“AA”,在循环数为120循环以上且小于240循环时产生了红锈的情况评价为“A”,在循环数为60循环以上且小于120循环时产生了红锈的情况评价为“B”,在循环数小于60循环时产生了红锈的情况评价为“C”。

如果涂膜鼓胀、耐红锈性这两者为A或AA,则判断为涂装后耐蚀性优异。

将结果示于表2。

表1

表2

由表1、表2的结果可知,在以规定的镀浴组成、以适当的冷却条件来制作的发明例中,由(Al-Zn)相和MgZn2相以层状排列的层状组织构成的羽毛状组织的面积率为10~90%,层状组织的层片间距为2.5μm(2500nm)以下,(Al-Zn)枝晶的面积率为35%以下。另外,其结果,涂装后耐蚀性优异。

另一方面,关于镀浴的组成或冷却条件不适当的比较例,镀层的构成脱离本发明范围,涂装后耐蚀性差。

(实施例2)

对作为发明例的试验No.3~6、8~15、19~27、33~35、38~49评价了耐LME性。

具体而言,从镀层钢板制取1块200×20mm的样品,供于热拉伸试验,测定在800℃下的应力应变曲线。在热拉伸试验中,将拉伸速度设为5mm/分钟、将夹头间距设为112.5mm,测定所得到的应力应变曲线中的直至达到最大应力为止的应变量。与未实施镀覆的钢板样品比较该应变量,将为85%以上的情况评价为“AA”,将为70~80%的情况评价为“A”。

将结果示于表3。

由表3可知,虽然任一例子都具有一定以上的耐LME性,但是,层状组织的面积率为70%以上的发明例,耐LME性更优异。

表3

区分 No. 耐LME性
实施例 3 A
实施例 4 A
实施例 5 A
实施例 6 A
实施例 8 A
实施例 9 A
实施例 10 A
实施例 11 A
实施例 12 A
实施例 13 A
实施例 14 AA
实施例 15 AA
实施例 19 A
实施例 20 AA
实施例 21 A
实施例 22 AA
实施例 23 A
实施例 24 AA
实施例 25 AA
实施例 26 AA
实施例 27 AA
实施例 33 AA
实施例 34 AA
实施例 35 AA
实施例 38 A
实施例 39 AA
实施例 40 A
实施例 41 AA
实施例 42 A
实施例 43 A
实施例 44 A
实施例 45 A
实施例 46 A
实施例 47 A
实施例 48 A
实施例 49 A

附图标记说明

1 钢板

2 镀层

3 合金层

11 内部氧化层

21 (Al-Zn)相(图中的黑色相)与MgZn2相的层状组织

22 块状MgZn2

23 (Al-Zn)枝晶

24 Zn/Al/MgZn2三元共晶组织

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:不锈钢表面上的稳定的锰铬铁矿尖晶石

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!