一种基于纳米线的μLED显示设计方法

文档序号:1615903 发布日期:2020-01-10 浏览:5次 >En<

阅读说明:本技术 一种基于纳米线的μLED显示设计方法 (Nanowire-based mu LED display design method ) 是由 郭太良 江宗钊 叶芸 严群 谢洪兴 姚剑敏 于 2019-10-16 设计创作,主要内容包括:本发明涉及一种基于纳米线的μLED显示设计方法,首先在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,然后将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。本发明能够简化结构,提升μLED的产业效率。(The invention relates to a mu LED display design method based on nanowires, firstly different nanowire materials capable of generating three primary colors of red, green and blue are grown on a substrate, then the different nanowire materials are respectively dissolved in different grids of a grid pool after insulated light curing glue, and are cured, and finally electrodes are arranged on the upper surface and the lower surface of the grid pool. The invention can simplify the structure and improve the industrial efficiency of the mu LED.)

一种基于纳米线的μLED显示设计方法

技术领域

本发明涉及LED设计领域,特别是一种基于纳米线的μLED显示设计方法。

背景技术

在平板显示技术领域中,μLED具备有诸多优势,最显著的是其具备低功耗、高亮度、超高清晰度、高色彩饱和度、更快的响应速度、更长的使用寿命和更高的工作效率等,可以说μLED是一种变革型的新型显示技术,有望取代TFT液晶显示器在平板显示领域内几乎所有的应用。

当下μLED的生产工艺延续传统LED制作的方式,将用于制作pn结材料通过各类薄膜生长的方法将尺寸局限在100um以下,层状的薄膜生长过程中难以避免的会有晶格失配的问题,这使得在层状μLED的制作过程中需要引入多种缓冲层或功能层来解决晶格失配、提高量子转换效率的问题,因此,层状结结构就变得较为复杂;μLED制作完成后需要将其切割为微米尺度的小型LED芯片,通过各类机械工具将芯片转移到电路基板上,这个过程由于拥有巨量的μLED芯片需要拾取,放置和组装,因此需要耗费大量的时间。为了解决以上问题,提升μLED产业效率,简化结构,开发、设计新型的μLED成为迫切的要求。

发明内容

有鉴于此,本发明的目的是提出一种基于纳米线的μLED显示设计方法,能够简化结构,提升μLED的产业效率。

本发明采用以下方案实现:一种基于纳米线的μLED显示设计方法,具体为:在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。当寻址信号通过对应电极后即可完成对应像素点亮以及图像显示。

进一步地,上述方法具体包括以下步骤:

步骤S1:生长用于产生红、绿、蓝三基色光源的纳米线材料(可以利用MOCVD的工艺手法),并进行端头正负电荷倾向性处理,生长完成后进行剥离;

步骤S2:将产生红、绿、蓝三基色光源的纳米线材料分别掺入光固化胶内并充分搅拌(包括机械、或磁力、或超声搅拌),将纳米线材料均匀地分散在光固化胶内,得到充分搅拌后的光固化胶-纳米线材料胶体;

步骤S3:将充分搅拌后的光固化胶-纳米线材料胶体分别对应注入对应红、绿、蓝三基色子像素的栅格池的栅格之内并进行光固化,光固化后利用激光切割的方式将溢出的固化胶体切除,得到子像素固化的μLED;其中,在注入红、绿、蓝纳米线材料混杂的胶体溶液的过程中,可依次将绿、蓝栅格池,红、蓝栅格池,红、绿栅格池进行遮挡,光固化后利用激光切割的方式将溢出的固化胶体切除;

步骤S4:在栅格池的上、下表面通过贴片电极贴合或生长电极的方法,使能够在交流电条件下工作的电极与对应子像素固化的μLED一一对应,利用激光切割的方式切取需要的显示尺寸。

进一步地,所述纳米线材料为在硅衬底上自下而上生长的能够产生红绿蓝三基色的不同的同质结材料,且同质结纳,其上、下两端分别为n、p掺杂,两个端顶分别呈负电倾向性和正电倾向性,在n、p同质结交界中心能够产生电子、空穴复合。

进一步地,所述纳米线的内径在40nm到60nm之间,长度在300nm到400nm之间,以提供合适的接触面积使pn结发生载流子复合进而进行辐射跃迁。

进一步地,步骤S1包括以下步骤:

步骤S11:对衬底进行清洗和处理;将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干;

步骤S12:将衬底放入物理气相沉积装置反应腔内,在一定反应腔体压力和金属源温度下,开始纳米线缓冲层的蒸镀,以解决衬底与纳米线在轴方向上的失配,纳米线在生长时沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,能够方便地在径向或轴向串接生长晶格失配的材料;经过缓冲层薄膜生长后可以进行直立纳米线材料的生长;

步骤S13:将覆有缓冲层薄膜的衬底放入多片式HVPE生长系统中,以衬底为下,开始低温生长纳米线,控制纳米线材料源、n、p掺杂气体,反应气体,载气以及正负电倾向处理使得纳米线自下而上生长成为正电倾向性p掺杂纳米线端头-p掺杂纳米线-n掺杂纳米线-负电倾向性n掺杂纳米线端头结构;

步骤S14:降温取出样品,即获得纳米线材料。

进一步地,对于不同基色的子像素,纳米线生长材料选择来自III-V族的不同直接带隙半导体化合物,如蓝光发光的子像素选用GaN、绿光发光的子像素选用InGaN、红光发光的子像素选用GaAs,但不限于此。

进一步地,所述光固化胶采用透明绝缘材料。光固化胶作为红、绿、蓝子像素不同纳米线材料的载体,室温常压下呈胶体,具有一定的流动性,能够室温固化,光固化胶选择介电常数较大的透明绝缘材料以实现透明显示。

其中,光固化胶材料可由不饱和聚酯树脂、丙烯酸系树脂、多硫醇/多烯树脂的齐聚物主成分搭配合适的稀释剂单体,光敏剂和助剂材料制备室温下,经过紫外光就可快速固化的透明绝缘光固化胶。

进一步地,所述栅格池采用透明绝缘材料。栅格池作为光固化胶、纳米线材料混合溶液固化的场所,同时每一个栅格作为一个红、绿、蓝子像素点,栅格池选择介电常数较大的透明绝缘材料以实现透明显示。

其中,所述电极依次间隔设置为不同基色的子像素单元的导电电极,电极尺寸、中心位置与栅格池尺寸、中心位置精确匹配。

进一步地,所述栅格池中的栅格为口字形,长度在16um-32um之间,宽度在9-18um之间,深度为9-18um。对波长在380nm至780nm之间的光线透过率大于等于90%,材料可以为有机材料,包括:聚乙烯(PE)、聚丙烯(PP)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚丙烯酸甲酯(PMA)、聚甲基丙烯酸甲酯(PMMA)、醋酸丁酸纤维素(CAB)、硅氧烷、聚氯乙烯(PVC)、聚乙烯醇(PVA)、聚对苯二甲酸乙二酯(PET)、改性聚对苯二甲酸乙二酯(PETG)、聚二甲基硅氧烷(PDMS)或环烯共聚物(COC)中的一种或几种;或无机材料,包括:玻璃、石英和透射陶瓷材料中的一种或几种。

进一步地,所述电极采用能够在交流电条件下工作的材料,包括但不限于石墨烯、PEDOT:PSS、金属银、铂或金。其中,电极可以是贴片电极,也可以是在μLED上后续生长的透明电极材料,由于该设计下μLED内纳米线均匀分布在胶体内,p端纳米线和n端纳米线分布未知,故为最大程度使pn结载流子复合发光,电极材料为能够在交流电条件下工作的材料。

综上,本发明的μLED显示设计利用同质pn结纳米线材料完成电子、空穴复合产生辐射跃迁,与层状结结构相比较,纳米线型pn结的工作电压更低、内量子效率也更高,而且纳米线的生长过程可以沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,克服了层状结构晶格失配的限制,同时在生长过程中可以进行各种微处理,提高了器件的工作效率。将纳米线与光固化胶相溶,通过均匀搅拌后在子像素栅格池内完成固化简化了层状μLED的结构。当子像素被选中时,电子、空穴在绝缘光固化胶内通过量子隧穿完成短距离的跃迁,注入纳米线内使pn结产生辐射跃迁,纳米线端头具有正负电子倾向性,可以完成载流子的导向,因此该结构下的μLED可在交流电状态下工作,且通过激光切割的方式就可获得所需要的显示尺寸,规避了巨量转移的问题,缩短了μLED的制作周期,大大提高了μLED的市场竞争力。

与现有技术相比,本发明有以下有益效果:

1、本发明的μLED显示设计方法主要利用纳米线材料pn结载流子复合发光进行子像素点亮,与普通传统μLED平面生长不同,半导体纳米线在生长时可以沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,因此半导体纳米线不仅可以在特定衬底上生长出来克服晶格失配的限制,还可以很方便的设计成各种复杂的结构;

2、通过纳米线形状的结阵列的电流比层状结的电流大,该种设计同时减小了工作电压。光固化胶与纳米线混杂在栅格池内通过光固化形成子像素点使得μLED的制作工艺简单易实现、结构更为简单。

3、本发明通过激光切割的方式对栅格进行切割就可以获得所需要的显示尺寸,避免了传统μLED用于显示行业的巨量转移问题。

附图说明

图1为本发明实施例设计方法所设计的μLED显示结构截面示意图。

图2为本发明实施例的纳米线的截面结构示意图。

图3为本发明实施例的栅格池结构示意图。

图4为本发明实施例的光固化胶-纳米线混合溶液图。

图5为本发明实施例的方法流程示意图。

图中,10为红色μLED,11为衬底,12为缓冲层,13为正电倾向性纳米线端头,14是p型掺杂的纳米线材料,15为纳米线,16是n型掺杂的纳米线材料,17是负电倾向性纳米线端头,20为绿色μLED,25为光固化胶,30为蓝色μLED,40是栅格池,50电极绝缘部分,60为电极。

具体实施方式

下面结合附图及实施例对本发明做进一步说明。

应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

如图5所示,本实施例提供了一种基于纳米线的μLED显示设计方法,具体为:在衬底上生长能够产生红、绿、蓝三基色的不同纳米线材料,将不同纳米线材料分别溶于绝缘的光固化胶后分别栅格池的不同栅格中,并进行固化,最后在栅格池的上、下表面设置电极。当寻址信号通过对应电极后即可完成对应像素点亮以及图像显示。

在本实施例中,上述方法具体包括以下步骤:

步骤S1:生长用于产生红、绿、蓝三基色光源的纳米线材料(可以利用MOCVD的工艺手法),并进行端头正负电荷倾向性处理,生长完成后进行剥离;

步骤S2:将产生红、绿、蓝三基色光源的纳米线材料分别掺入光固化胶内并充分搅拌(包括机械、或磁力、或超声搅拌),将纳米线材料均匀地分散在光固化胶内,得到充分搅拌后的光固化胶-纳米线材料胶体;

步骤S3:将充分搅拌后的光固化胶-纳米线材料胶体分别对应注入对应红、绿、蓝三基色子像素的栅格池的栅格之内并进行光固化,光固化后利用激光切割的方式将溢出的固化胶体切除,得到子像素固化的μLED;其中,在注入红、绿、蓝纳米线材料混杂的胶体溶液的过程中,可依次将绿、蓝栅格池,红、蓝栅格池,红、绿栅格池进行遮挡,光固化后利用激光切割的方式将溢出的固化胶体切除;

步骤S4:在栅格池的上、下表面通过贴片电极贴合或生长电极的方法,使能够在交流电条件下工作的电极与对应子像素固化的μLED一一对应,利用激光切割的方式切取需要的显示尺寸。

在本实施例中,所述纳米线材料为在硅衬底上自下而上生长的能够产生红绿蓝三基色的不同的同质结材料,且同质结纳,其上、下两端分别为n、p掺杂,两个端顶分别呈负电倾向性和正电倾向性,在n、p同质结交界中心能够产生电子、空穴复合。

在本实施例中,所述纳米线的内径在40nm到60nm之间,长度在300nm到400nm之间,以提供合适的接触面积使pn结发生载流子复合进而进行辐射跃迁。

在本实施例中,步骤S1包括以下步骤:

步骤S11:对衬底进行清洗和处理;将样品依次在去离子水、乙醇和去离子水中进行超声清洗,除去表面残留的污染物,用氮气吹干;

步骤S12:将衬底放入物理气相沉积装置反应腔内,在一定反应腔体压力和金属源温度下,开始纳米线缓冲层的蒸镀,以解决衬底与纳米线在轴方向上的失配,纳米线在生长时沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,能够方便地在径向或轴向串接生长晶格失配的材料;经过缓冲层薄膜生长后可以进行直立纳米线材料的生长;

步骤S13:将覆有缓冲层薄膜的衬底放入多片式HVPE生长系统中,以衬底为下,开始低温生长纳米线,控制纳米线材料源、n、p掺杂气体,反应气体,载气以及正负电倾向处理使得纳米线自下而上生长成为正电倾向性p掺杂纳米线端头-p掺杂纳米线-n掺杂纳米线-负电倾向性n掺杂纳米线端头结构;

步骤S14:降温取出样品,即获得纳米线材料。

在本实施例中,对于不同基色的子像素,纳米线生长材料选择来自III-V族的不同直接带隙半导体化合物,如蓝光发光的子像素选用GaN、绿光发光的子像素选用InGaN、红光发光的子像素选用GaAs,但不限于此。

在本实施例中,所述光固化胶采用透明绝缘材料。光固化胶作为红、绿、蓝子像素不同纳米线材料的载体,室温常压下呈胶体,具有一定的流动性,能够室温固化,光固化胶选择介电常数较大的透明绝缘材料以实现透明显示。

其中,光固化胶材料可由不饱和聚酯树脂、丙烯酸系树脂、多硫醇/多烯树脂的齐聚物主成分搭配合适的稀释剂单体,光敏剂和助剂材料制备室温下,经过紫外光就可快速固化的透明绝缘光固化胶。

在本实施例中,所述栅格池采用透明绝缘材料。栅格池作为光固化胶、纳米线材料混合溶液固化的场所,同时每一个栅格作为一个红、绿、蓝子像素点,栅格池选择介电常数较大的透明绝缘材料以实现透明显示。

其中,所述电极依次间隔设置为不同基色的子像素单元的导电电极,电极尺寸、中心位置与栅格池尺寸、中心位置精确匹配。

在本实施例中,所述栅格池中的栅格为口字形,长度在16um-32um之间,宽度在9-18um之间,深度为9-18um,其中栅格壁与栅格池的外壁之间的距离在1um到3um之间。对波长在380nm至780nm之间的光线透过率大于等于90%,材料可以为有机材料,包括:聚乙烯(PE)、聚丙烯(PP)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚丙烯酸甲酯(PMA)、聚甲基丙烯酸甲酯(PMMA)、醋酸丁酸纤维素(CAB)、硅氧烷、聚氯乙烯(PVC)、聚乙烯醇(PVA)、聚对苯二甲酸乙二酯(PET)、改性聚对苯二甲酸乙二酯(PETG)、聚二甲基硅氧烷(PDMS)或环烯共聚物(COC)中的一种或几种;或无机材料,包括:玻璃、石英和透射陶瓷材料中的一种或几种。

在本实施例中,所述电极采用能够在交流电条件下工作的材料,包括但不限于石墨烯、PEDOT:PSS、金属银、铂或金。其中,电极可以是贴片电极,也可以是在μLED上后续生长的透明电极材料,由于该设计下μLED内纳米线均匀分布在胶体内,p端纳米线和n端纳米线分布未知,故为最大程度使pn结载流子复合发光,电极材料为能够在交流电条件下工作的材料。

如图1所示,10为红色μLED,20为绿色μLED,30为蓝色μLED,40是栅格池,50电极绝缘部分,60为电极。用于红绿蓝三色的μLED的纳米线材料分别为GaN、InGaN、GaAs,电极采用贴片式,绝缘部分为二氧化硅,导电部分为Ag。如图2,纳米线的生长在11衬底上,其材质为单质硅,在硅衬底上利用MOCVD方法依次生长12缓冲层(其材料为AlN),13正电倾向性纳米线端头,14p型掺杂的纳米线材料,16n型掺杂的纳米线材料,17负电倾向性纳米线端头,在纳米线材料生长完成后通过离心剥离。如图3所示,40是栅格池,呈矩形“口”字分布,厚度为1um,且每个栅格长16um,宽9um,深度也为9um,材料为透明的二氧化硅绝缘材料,光线透过率大于90%。如图4所示,15是纳米线,25为光固化胶,其为甲基丙烯酸环氧树脂为主体的μV光固化胶粘剂,将离心分离的的纳米线与μV胶通过机械搅拌的方式使得碳纳米线均匀的分散在胶体内,通过紫外固化形成单基色的子像素μLED。

综上,本实施例的μLED显示设计利用同质pn结纳米线材料完成电子、空穴复合产生辐射跃迁,与层状结结构相比较,纳米线型pn结的工作电压更低、内量子效率也更高,而且纳米线的生长过程可以沿着侧面和垂直于结界面两个方向上释放由于衬底和纳米线材料晶格不匹配引起的应力应变,克服了层状结构晶格失配的限制,同时在生长过程中可以进行各种微处理,提高了器件的工作效率。将纳米线与光固化胶相溶,通过均匀搅拌后在子像素栅格池内完成固化简化了层状μLED的结构。当子像素被选中时,电子、空穴在绝缘光固化胶内通过量子隧穿完成短距离的跃迁,注入纳米线内使pn结产生辐射跃迁,纳米线端头具有正负电子倾向性,可以完成载流子的导向,因此该结构下的μLED可在交流电状态下工作,且通过激光切割的方式就可获得所需要的显示尺寸,规避了巨量转移的问题,缩短了μLED的制作周期,大大提高了μLED的市场竞争力。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种非电学接触、无外部载流子注入、无巨量转移的μLED发光与显示器件及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类