功能性结构体以及功能性结构体的制造方法

文档序号:1631265 发布日期:2020-01-14 浏览:25次 >En<

阅读说明:本技术 功能性结构体以及功能性结构体的制造方法 (Functional structure and method for manufacturing functional structure ) 是由 增田隆夫 中坂佑太 吉川琢也 加藤祯宏 福岛将行 稻森康次郎 高桥寻子 马场祐一郎 于 2018-05-31 设计创作,主要内容包括:本发明提供一种功能性结构体,其能抑制金属氧化物微粒彼此的凝聚,防止金属氧化物微粒的功能降低,长期发挥稳定的功能。功能性结构体(1)具备:多孔质结构的骨架体(10),其由沸石型化合物构成;以及至少一种金属氧化物微粒(20),其存在于骨架体(10)内,含有钙钛矿型氧化物,骨架体(10)具有相互连通的通路(11),金属氧化物微粒(20)存在于骨架体(10)的至少通路(11)。(The invention provides a functional structure which can inhibit the agglomeration of metal oxide particles, prevent the function of the metal oxide particles from being reduced, and exert a stable function for a long time. A functional structure (1) is provided with: a porous-structure skeleton (10) composed of a zeolite-type compound; and at least one metal oxide fine particle (20) which is present in the skeleton body (10) and contains a perovskite-type oxide, the skeleton body (10) has passages (11) that communicate with each other, and the metal oxide fine particle (20) is present in at least the passages (11) of the skeleton body (10).)

功能性结构体以及功能性结构体的制造方法

技术领域

本发明涉及一种具备由沸石型化合物构成的多孔质结构的骨架体和含有钙钛矿型氧化物的金属氧化物微粒的功能性结构体以及该功能性结构体的制造方法。

背景技术

作为以往用于发电厂、汽车等排出的氮氧化物(NOx)等排气、挥发性有机物质(VOC)的环境催化剂,例如可以列举出钙钛矿型氧化物(例如非专利文献1)。

作为使用钙钛矿型氧化物的环境催化剂,例如专利文献1中记载了一种分解催化剂,其作为氮氧化物分解催化剂的活性成分的金属复合氧化物中的至少一种的组成由通式AB1-xMxO3+-z(其中,A为从碱土元素中选择的一种金属,B为从钛族元素中选择的一种金属,M为从铁族、白金族或铜族元素中选择的一种金属,0<x<1,z为常温大气压下的金属氧化物的氧缺陷数或氧过剩数)来表示,作为催化活性成分的金属复合氧化物中的至少一种具有SrTiO3钙钛矿型晶体结构,此外,专利文献2中记载了一种氮氧化物分解催化剂,其使具有这样的钙钛矿型晶体结构的金属复合氧化物担载于碱性金属氧化物(MgO等)的载体。

然而,钙钛矿型氧化物容易因原料粉末烧成时(约600~1000℃)的热量而凝聚,因此存在如下倾向:细孔因该凝聚而闭塞,催化剂的比表面积减少,吸附和分解性能降低。此外,对于含有钙钛矿型氧化物的催化剂,用于使催化剂活化的温度高,虽然在800℃以上的温度下表现出较高的催化剂性能,但有时在650℃以下的温度下几乎不表现出催化剂性能。需要说明的是,催化剂性能是指例如氮氧化物的吸附性能等。

作为能够抑制容易受到烧成时、高温使用时产生的热量的影响而产生的钙钛矿型氧化物的凝聚的现有技术,例如专利文献3中所记载的内容。根据专利文献3的记载,催化剂由钙钛矿型复合氧化物、复合氧化物间隔物、贵金属构成,能通过含有复合氧化物间隔物来抑制钙钛矿型复合氧化物彼此的凝聚、由凝聚导致的细孔的闭塞,能使通过BET法计算出的比表面积增大,并且能将催化剂制成粉末状,当使用这样的粉末状催化剂(催化剂微粒)时,能够使催化剂的比表面积增大。

然而,在专利文献3中记载的催化剂中,对于将催化剂微粒保持(担载)于骨架体(载体)的使用方案并未进行任何公开,此外,在采用将具有上述构成的催化剂微粒保持在骨架体的结构的情况下,通常难以使骨架体的内部含有催化剂粒子,只能采用将催化剂粒子保持(固接)在骨架体的外表面的构成,若是该构成,则存在如下问题:催化剂微粒彼此容易因受到来自氮氧化物等排气(流体)的力(压力)、热量等的影响(作用)而产生凝聚(烧结)。

现有技术文献

专利文献

专利文献1:日本特开平11-151440号公报

专利文献2:日本特开2000-197822号公报

专利文献3:日本特开2010-99638号公报

非专利文献

非专利文献1:石原达己,“<专刊>持续发展的催化剂技术现状以及展望未来的环境催化剂现状与展望——排烟除臭、VOC、NO分解催化剂——”,工业材料,日刊工业新闻社,2017年1月号,第六十五卷,第一号,p.71-76

发明内容

发明要解决的问题

本发明的目的在于,提供一种功能性结构体,其能通过采用使具有功能(例如催化剂功能等)的金属氧化物微粒包含于由沸石型化合物构成的多孔质结构的骨架体的内部而适当存在的构成,来抑制金属氧化物微粒彼此的凝聚,防止金属氧化物微粒的功能降低,长期发挥稳定的功能。

技术方案

本发明人等为了达成上述目的进行了深入研究,结果发现了如下事实,并基于该发现完成了本发明,即,可得到一种功能性结构体,具备:多孔质结构的骨架体,其由沸石型化合物构成;以及至少一种金属氧化物微粒,其存在于骨架体内,骨架体具有相互连通的通路,金属氧化物微粒存在于骨架体的至少通路,由此,能抑制金属氧化物微粒的功能(例如催化剂功能等)的降低,实现寿命延长。

即,本发明的主旨构成如下。

[1]一种功能性结构体,其特征在于,具备:多孔质结构的骨架体,其由沸石型化合物构成;和至少一种金属氧化物微粒,其存在于所述骨架体内,含有钙钛矿型氧化物,所述骨架体具有相互连通的通路,所述金属氧化物微粒至少于所述骨架体的存在所述通路。

[2]根据上述[1]所述的功能性结构体,其特征在于,所述通路具有:由所述沸石型化合物的骨架结构划定的一维孔、二维孔以及三维孔中的任一种;和扩径部,其与所述一维孔、所述二维孔以及所述三维孔中的任一种均不同,并且

所述金属氧化物微粒至少存在于所述扩径部。

[3]根据上述[2]所述的功能性结构体,其特征在于,所述扩径部使构成所述一维孔、所述二维孔以及所述三维孔中的任一种的多个孔彼此连通。

[4]根据上述[2]或[3]所述的功能性结构体,其特征在于,所述金属氧化物微粒的平均粒径大于所述通路的平均内径,并且小于等于所述扩径部的内径。

[5]根据上述[1]~[4]中任一项所述的功能性结构体,其特征在于,所述金属氧化物微粒是催化剂物质,所述骨架体是担载至少一种所述催化剂物质的载体。

[6]根据上述[1]~[5]中任一项所述的功能性结构体,其特征在于,相对于所述功能性结构体,含有0.5~2.5质量%的所述金属氧化物微粒的金属元素(M)。

[7]根据上述[1]~[6]中任一项所述的功能性结构体,其特征在于,所述金属氧化物微粒的平均粒径为0.1~50nm。

[8]根据上述[7]所述的功能性结构体,其特征在于,所述金属氧化物微粒的平均粒径为0.5nm~14.0nm。

[9]根据上述[1]~[8]中任一项所述的功能性结构体,其特征在于,所述金属氧化物微粒的平均粒径相对于所述通路的平均内径的比例为0.06~500。

[10]根据上述[9]所述的功能性结构体,其特征在于,所述金属氧化物微粒的平均粒径相对于所述通路的平均内径的比例为0.1~45。

[11]根据上述[10]所述的功能性结构体,其特征在于,所述金属氧化物微粒的平均粒径相对于所述通路的平均内径的比例为1.7~4.5。

[12]根据上述[1]~[11]中任一项所述的功能性结构体,其特征在于,所述通路的平均内径为0.1~1.5nm,所述扩径部的内径为0.5~50nm。

[13]根据上述[1]~[12]中任一项所述的功能性结构体,其特征在于,还具备至少一种其他金属氧化物微粒,其保持在所述骨架体的外表面。

[14]根据上述[13]所述的功能性结构体,其特征在于,存在于所述骨架体内的所述至少一种金属氧化物微粒的含量多于保持在所述骨架体的外表面的所述至少一种其他金属氧化物微粒的含量。

[15]根据上述[1]~[14]中任一项所述的功能性结构体,其特征在于,所述沸石型化合物是硅酸盐化合物。

[16]一种功能性结构体的制造方法,其特征在于,具有:

烧成工序,其对前体材料(B)进行烧成,所述前体材料(B)是使含金属的溶液含浸于用于得到由沸石型化合物构成的多孔质结构的骨架体的前体材料(A)而得到的,所述含金属的溶液包含从稀土类元素和碱土类金属中选择的至少一种元素以及从过渡金属中选择的至少一种元素来作为金属元素(M);和

水热处理工序,其对前体材料(C)进行水热处理,所述前体材料(C)是对所述前体材料(B)进行烧成而得到的。

[17]根据上述[16]所述的功能性结构体的制造方法,其特征在于,在所述烧成工序前,相对于所述前体材料(A),添加50~500质量%的非离子性表面活性剂。

[18]根据上述[16]或[17]所述的功能性结构体的制造方法,其特征在于,在所述烧成工序前,通过在所述前体材料(A)中分多次添加所述含金属的溶液而使所述含金属的溶液含浸于所述前体材料(A)。

[19]根据上述[16]~[18]中任一项所述的功能性结构体的制造方法,其特征在于,在所述烧成工序前使所述含金属的溶液含浸于所述前体材料(A)时,调整添加于所述前体材料(A)的所述含金属的溶液的添加量,以使换算成构成所述前体材料(A)的硅(Si)与添加于所述前体材料(A)的所述含金属的溶液中所含的金属元素(M)之比(原子数比Si/M)为10~1000。

[20]根据上述[16]所述的功能性结构体的制造方法,其特征在于,在所述水热处理工序中,将所述前体材料(C)与结构导向剂混合。

[21]根据上述[16]所述的功能性结构体的制造方法,其特征在于,所述水热处理工序在碱性环境下进行。

有益效果

根据本发明,能够提供一种功能性结构体,其能抑制金属氧化物微粒彼此的凝聚,抑制金属氧化物微粒的功能(例如催化剂功能等)的降低来实现寿命延长,能谋求资源节约而无需繁杂的更换作业。

附图说明

图1是为了理解本发明的实施方式的功能性结构体的内部结构而概略地示出的图,图1(a)是立体图(以横截面示出一部分),图1(b)是局部放大剖面图。

图2是用于说明图1的功能性结构体的功能的一例的局部放大剖面图,图2(a)是说明筛功能的图,图2(b)是说明催化剂功能的图。

图3是示出图1的功能性结构体的制造方法的一例的流程图。

图4是示出图1的功能性结构体的变形例的示意图。

具体实施方式

以下,参照附图,更详细地说明本发明的实施方式。

[功能性结构体的构成]

图1是概略地示出本发明的实施方式的功能性结构体的构成的图,图1(a)是立体图(以横截面示出一部分),图1(b)是局部放大剖面图。需要说明的是,图1中的功能性结构体表示其一例,本发明的各构成的形状、尺寸等并不限于图1。

如图1(a)所示,功能性结构体1具备:多孔质结构的骨架体10,其由沸石型化合物构成;以及至少一种金属氧化物微粒20,其存在于该骨架体10内,含有钙钛矿型氧化物。

金属氧化物微粒20是单独或通过与骨架体10配合而具有一种或多种功能的物质。此外,作为上述功能的具体例,可以列举出:催化剂功能、发光(或荧光)功能、吸光功能、识别功能等。金属氧化物微粒20优选例如是具有催化剂功能的催化剂物质。需要说明的是,在金属氧化物微粒20为催化剂物质时,骨架体10为担载至少一种催化剂物质的载体。

在功能性结构体1中,在图1(b)中,至少一种金属氧化物微粒20为多种金属氧化物微粒20、20……存在于骨架体10的多孔质结构的内部。金属氧化物微粒20优选为含有一种或多种钙钛矿型氧化物的金属氧化物微粒。在后文对钙钛矿型氧化物详细加以叙述。

骨架体10为多孔质结构,如图1(b)所示,优选具有通过形成多个孔11a、11a……而相互连通的通路11。在此,金属氧化物微粒20存在于骨架体10的至少通路11,优选保持在骨架体10的至少通路11。

通过这样的构成来限制金属氧化物微粒20在骨架体10内的移动,有效防止金属氧化物微粒20、20彼此的凝聚。其结果是,能有效抑制作为金属氧化物微粒20的有效表面积的减少,金属氧化物微粒20的功能长期持续。即,根据功能性结构体1,能抑制由金属氧化物微粒20的凝聚导致的功能的降低,能谋求作为功能性结构体1的寿命延长。此外,通过延长功能性结构体1的寿命,能降低功能性结构体1的更换频度,能大幅降低使用过的功能性结构体1的废弃量,能谋求资源节约。

通常在流体(例如氮氧化物(NOx)或者挥发性有机物质(VOC)等)中使用功能性结构体的情况下,可能从流体受到外力。该情况下,若金属氧化物微粒20仅以附着状态保持在骨架体10的外表面,则存在在来自流体的外力的影响下容易从骨架体10的外表面脱离的问题。与之相对,在功能性结构体1中,由于金属氧化物微粒20存在于骨架体10的至少通路11,优选保持在骨架体10的通路11,因此,即使受到来自流体的外力的影响,金属氧化物微粒20也难以从骨架体10脱离。即,认为:在功能性结构体1处于流体内的情况下,流体从骨架体10的孔11a流入通路11内,因此在通路11内流动的流体的速度因流路阻力(摩擦力)而比在骨架体10的外表面流动的流体的速度慢。由于这样的流路阻力的影响,存在于通路11内的金属氧化物微粒20从流体受到的压力比金属氧化物微粒在骨架体10的外部从流体受到的压力小。因此,能有效地抑制存在于骨架体11内的金属氧化物微粒20脱离,能长期稳定地维持金属氧化物微粒20的功能。需要说明的是,认为:骨架体10的通路11具有多处弯曲部、分支部,骨架体10的内部为越复杂的三维立体结构,如上所述的流路阻力越大。

此外,通路11优选具有:由沸石型化合物的骨架结构划定的一维孔、二维孔以及三维孔中的任一种;以及扩径部12,其与上述一维孔、上述二维孔以及上述三维孔中的任一种均不同,此时,金属氧化物微粒20优选至少存在于扩径部12,更优选至少包合于扩径部12。在此所说的一维孔是指,形成一维通道的隧道型或笼型的孔,或形成多个一维通道的隧道型或笼型的多个孔(多个一维通道)。此外,二维孔是指,多个一维通道二维连结而成的二维通道,三维孔是指多个一维通道三维连结而成的三维通道。

由此,能进一步限制金属氧化物微粒20在骨架体10内的移动,能进一步有效防止金属氧化物微粒20的脱离、金属氧化物微粒20、20彼此的凝聚。需要说明的是,在此所说的“包合”是指,金属氧化物微粒20内包于骨架体10的状态。此时,金属氧化物微粒20与骨架体10未必需要直接相互接触,也可以是在金属氧化物微粒20与骨架体10之间隔着其他物质(例如表面活性剂等)的状态下,金属氧化物微粒20间接保持在骨架体10。

图1(b)示出金属氧化物微粒20包合于扩径部12的情况,但并不仅限于该构成,也可以是金属氧化物微粒20以其一部分从扩径部12的外侧溢出的状态保持在通路11。此外,金属氧化物微粒20也可以部分埋设于扩径部12以外的通路11的一部分(例如通路11的内壁部分),或通过固接等进行保持。

此外,优选的是,扩径部12使构成上述一维孔、上述二维孔以及上述三维孔中的任一种的多个孔11a、11a彼此连通。由此,在骨架体10的内部设有与一维孔、二维孔或三维孔不同的单独的通路,因此能进一步发挥金属氧化物微粒20的功能。

此外,优选的是,通路11以在骨架体10的内部包括分支部或合流部的方式三维地形成,扩径部12设于通路11的上述分支部或合流部。

根据构成上述一维孔、二维孔以及三维孔中的任一种的孔11a的短径和长径的平均值,计算出形成于骨架体10的通路11的平均内径DF,例如为0.1~1.5nm,优选为0.5~0.8nm。此外,扩径部12的内径DE例如为0.5~50nm,优选为1.1~40nm,更优选为1.1~3.3nm。扩径部12的内径DE例如取决于后述的前体材料(A)的细孔径以及所包合的金属氧化物微粒20的平均粒径DC。扩径部12的内径DE是能够包合金属氧化物微粒20的大小。

骨架体10由沸石型化合物构成。作为沸石型化合物,例如可以列举出:沸石(铝硅酸盐)、阳离子交换型沸石、硅质岩等硅酸盐化合物;铝硼酸盐、铝砷酸盐、锗酸盐等沸石类似化合物;磷酸钼等磷酸盐系沸石类似物质等。其中,沸石型化合物优选为硅酸盐化合物。

沸石型化合物的骨架结构从FAU型(Y型或X型)、MTW型、MFI型(ZSM-5)、FER型(镁碱沸石)、LTA型(A型)、MWW型(MCM-22)、MOR型(丝光沸石)、LTL型(L型)、BEA型(β型)等中选择,优选为MFI型,更优选为ZSM-5。沸石型化合物中形成有多个具有与各骨架结构相应的孔径的孔,例如MFI型的最大孔径为0.636nm

Figure BDA0002290669380000071

平均孔径为0.560nm

Figure BDA0002290669380000072

存在金属氧化物微粒20为一次粒子的情况和金属氧化物微粒20为一次粒子凝聚而形成的二次粒子的情况,金属氧化物微粒20的平均粒径DC优选大于通路11的平均内径DF,并且小于等于扩径部12的内径DE(DF<DC≤DE)。这样的金属氧化物微粒20在通路11内优选包合于扩径部12来限制金属氧化物微粒20在骨架体10内的移动。因此,即使在金属氧化物微粒20从流体受到外力的情况下,也能抑制金属氧化物微粒20在骨架体10内的移动,也能有效防止分别包合于分散配置在骨架体10的通路11的扩径部12、12……的金属氧化物微粒20、20……彼此接触而凝聚。

在金属氧化物微粒20的平均粒径DC为一次粒子和二次粒子的任一种的情况下,均优选为0.1~50nm,更优选为0.1nm以上且小于30nm,进一步优选为0.5nm~14.0nm,特别优选为1.0~3.3nm。此外,金属氧化物微粒20的平均粒径DC相对于通路11的平均内径DF的比例(DC/DF)优选为0.06~500,更优选为0.1~45,进一步优选为1.1~45,特别优选为1.7~4.5。

此外,在金属氧化物微粒的金属元素(M)的含量优选相对于功能性结构体1为0.5~2.5质量%,更优选相对于功能性结构体1为0.5~1.5质量%。需要说明的是,在此所说的“金属元素(M)”是指如后文所述在包含多种金属的钙钛矿型氧化物中,该氧化物中所含的所有金属,含量是指它们的总量。例如,在金属元素(M)为La和Mn的情况下,金属元素的含量(质量%)由{(La元素的质量+Mn元素的质量)/(功能性结构体1的所有元素的质量)}×100来表示。

钙钛矿型氧化物是包含稀土类、碱土类等离子半径大的金属离子(A离子)、离子半径小的

Figure BDA0002290669380000074

金属离子(B离子)的ABO3型化合物,作为催化剂的重要的钙钛矿是以稀土类元素(A位点)与过渡金属(B位点)的组合为基础的化合物,其催化剂特性主要取决于B位点的过渡金属的性质。

作为内包的钙钛矿催化剂种类,只要是满足钙钛矿的通式ABO3(A:从稀土类元素和碱土类金属中选择的至少一种元素,B:从过渡金属中选择的至少一种),并且具有催化活性的化合物即可,没有特别限定,但具体而言可以列举出:LaBO3(B=Mn、Cr、Co、Fe、Al、Pd、Mg)、BaZrO3、La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)、LaFe0.57Co0.38Pd0.05O3、Ba0.8La0.2Mn0.2O3等。

此外,金属氧化物微粒20含有钙钛矿型氧化物即可,例如可以由单一钙钛矿型氧化物构成,或者也可以由包含两种以上的钙钛矿型氧化物的复合氧化物、包含钙钛矿型氧化物和其他氧化物的复合氧化物构成。构成骨架体10的Si相对于构成金属氧化物微粒20的金属M的比例(Si/M、原子数比)优选为10~1000。若上述存在比例大于1000,则活性低,可能会无法得到充分的催化作用,另一方面,若上述存在比例小于10,则钙钛矿催化剂的存在比例过大,存在骨架体的强度降低的倾向。需要说明的是,在此所说的金属氧化物微粒20是指,存在于骨架体10的内部的微粒,优选保持或担载于骨架体10的内部的微粒,不包括附着在骨架体10的外表面的微粒。

作为其他的氧化物,例如可以列举出将下述任一种或两种以上作为主要成分的复合金属氧化物:氧化钴(CoOx)、氧化镍(NiOx)、氧化铁(FeOx)、氧化铜(CuOx)、氧化锆(ZrOx)、氧化铈(CeOx)、氧化铝(AlOx)、氧化铌(NbOx)、氧化钛(TiOx)、氧化铋(BiOx)、氧化钼(MoOx)、氧化钒(VOx)、氧化铬(CrOx)。

[功能性结构体的功能]

如上所述,功能性结构体1具备:多孔质结构的骨架体10;以及至少一种金属氧化物微粒20,其存在于该骨架体10内。功能性结构体1通过存在于骨架体内的金属氧化物微粒20与流体接触来发挥与金属氧化物微粒20相应的功能。具体而言,与功能性结构体1的外表面10a接触的流体从形成于外表面10a的孔11a流入骨架体10内部而引导至通路11内,移动通过通路11内,通过其他孔11a而向功能性结构体1的外部流出。在流体移动通过通路11内的路径中,通过与存在于通路11的金属氧化物微粒20接触,发生与金属氧化物微粒20的功能相应的反应(例如催化反应)。此外,骨架体是多孔质结构,因此功能性结构体1具有分子筛功能。

首先,使用图2(a),以流体例如是包含氮氧化物(NOx)的排气的情况为例,对功能性结构体1的分子筛功能进行说明。如图2(a)所示,由具有小于等于孔11a的孔径,换言之小于等于通路11的内径的大小的分子构成的排气成分(例如氮氧化物(NOx)成分)能浸入骨架体10内。另一方面,由具有大于孔11a的孔径的大小的分子构成的排气成分15无法浸入骨架体10内。如此,在流体包含多种排气成分的情况下,无法浸入骨架体10内的排气成分的反应被限制,能够使能浸入骨架体10内的排气成分(例如氮氧化物(NOx)成分)反应。

在通过反应而在骨架体10内生成的分子中,能仅将具有小于等于孔11a的孔径的大小的分子作为生成物而得到。另一方面,无法从孔11a向骨架体10的外部流出的分子转化成能向骨架体10的外部流出的大小的分子后,则能向骨架体10的外部流出。如此,通过使用功能性结构体1能选择性地得到特定的反应生成物。

在功能性结构体1中,如图2(b)所示,优选金属氧化物微粒20存在于通路11的扩径部12,更优选包合于通路11的扩径部12。在金属氧化物微粒20的平均粒径DC大于通路11的平均内径DF,且小于扩径部12的内径DE的情况下(DF<DC<DE),在金属氧化物微粒20与扩径部12之间形成小通路13。因此,如图2(b)中的箭头所示,浸入小通路13的流体(例如NOx成分等)与金属氧化物微粒20接触。各金属氧化物微粒20包合于扩径部12,因此在骨架体10内的移动被限制,能维持与浸入通路11的包含NOx成分等的流体的接触面积。

然后,当浸入通路11的NOx与金属氧化物微粒20接触时,能通过由金属氧化物微粒20进行的还原分解反应如下所示地分解并去除氮氧化物(NOx)。

2NO+2Vo+4e→2Nad+2OL 2-

2Nad→N2

2OL 2-→O2+2Vo+4e

(OL 2-为晶格氧,Vo为氧缺陷)

此外,金属氧化物微粒20也能通过氧化反应将VOC成分(CyHz)如下所示地分解为二氧化碳和水而去除。

CyHz+(y+z/4)O2→yCO2+z/2H2O

[功能性结构体的制造方法]

图3是示出图1的功能性结构体的制造方法的流程图。以下,对功能性结构体的制造方法的一例进行说明。

(步骤S1:准备工序)

如图3所示,首先,准备用于得到由沸石型化合物构成的多孔质结构的骨架体的前体材料(A)。前体材料(A)优选为规则性中孔物质,可以根据构成功能性结构体的骨架体的沸石型化合物的种类(组成)进行适当选择。

在此,在构成功能性结构体的骨架体的沸石型化合物为硅酸盐化合物的情况下,规则性中孔物质优选是包含细孔径为1nm~50nm的细孔在一维、二维或三维大小均匀且规则性地展开而成的Si-O骨架的化合物。这样的规则性中孔物质根据合成条件作为各种合成物而得到,作为合成物的具体例,例如可以列举出:SBA-1、SBA-15、SBA-16、KIT-6、FSM-16、MCM-41等,其中优选MCM-41。需要说明的是,SBA-1的细孔径为10nm~30nm,SBA-15的细孔径为6nm~10nm,SBA-16的细孔径为6nm,KIT-6的细孔径为9nm,FSM-16的细孔径为3nm~5nm,MCM-41的细孔径为1nm~10nm。此外,作为这样的规则性中孔物质,例如可以列举出:中孔二氧化硅、中孔硅铝酸盐、中孔金属硅酸盐等。

前体材料(A)可以是市售品和合成品的任一种。在合成前体材料(A)的情况下,可以通过公知的规则性中孔物质的合成方法来进行。例如,制备包含含有前体材料(A)的构成元素的原料和用于规定前体材料(A)的结构的模板剂的混合溶液,根据需要调整pH,进行水热处理(水热合成)。之后,回收(例如过滤)通过水热处理得到的沉淀物(生成物),根据需要进行清洗和干燥,进一步进行烧成,由此可得到作为粉末状的规则性中孔物质的前体材料(A)。在此,作为混合溶液的溶剂,例如可以使用水或醇等有机溶剂或者它们的混合溶剂等。此外,原料根据骨架体的种类来选择,例如可以列举出:四乙氧基硅烷(TEOS)等二氧化硅剂、气相二氧化硅、石英砂等。此外,作为模板剂,可以使用各种表面活性剂、嵌段共聚物等,优选根据规则性中孔物质的合成物的种类来选择,例如在制作MCM-41的情况下,优选为十六烷基三甲基溴化铵等表面活性剂。水热处理例如可以在密闭容器内在80℃~800℃、5小时~240小时、0kPa~2000kPa的处理条件下进行。烧成处理例如可以在空气中在350℃~850℃、2小时~30小时的处理条件下进行。

(步骤2:含浸工序)

接着,使含金属的溶液含浸于所准备的前体材料(A)来得到前体材料(B)。

含金属的溶液是包含从稀土类元素和碱土类金属中选择的至少一种元素以及从过渡金属中选择的至少一种元素作为金属元素(M)的溶液即可,例如能通过使含有金属元素(M)的金属盐溶解于溶剂来进行制备。作为这样的金属盐,例如可以列举出:氯化物、氢氧化物、氧化物、硫酸盐、硝酸盐等金属盐,其中优选为硝酸盐。作为溶剂,例如可以使用水或醇等有机溶剂或者它们的混合溶剂等。

使含金属的溶液含浸于前体材料(A)的方法没有特别限定,例如优选在后述的烧成工序前,一边搅拌粉末状的前体材料(A),一边分多次少量地添加含金属的溶液。此外,从含金属的溶液更容易浸入前体材料(A)的细孔内部的观点出发,优选在前体材料(A)中添加含金属的溶液之前预先添加表面活性剂作为添加剂。认为这样的添加剂具有覆盖前体材料(A)的外表面的作用,其会抑制之后添加的含金属的溶液附着于前体材料(A)的外表面,含金属的溶液更容易浸入前体材料(A)的细孔内部。

作为这样的添加剂,例如可以列举出聚氧乙烯油基醚、聚氧乙烯烷基醚、聚氧乙烯烷基苯基醚等非离子性表面活性剂。认为:这些表面活性剂分子尺寸大而无法浸入前体材料(A)的细孔内部,因此不会附着于细孔的内部,不会阻碍含金属的溶液浸入细孔内部。作为非离子性表面活性剂的添加方法,例如优选在后述的烧成工序前,相对于前体材料(A)添加50~500质量%的非离子性表面活性剂。若非离子性表面活性剂相对于前体材料(A)的添加量小于50质量%,则难以表现上述的抑制作用,若相对于前体材料(A)添加多于500质量%的非离子性表面活性剂,则粘度过度上升,因此不优选。因此,将非离子性表面活性剂相对于前体材料(A)的添加量设为上述范围内的值。

此外,添加于前体材料(A)的含金属的溶液的添加量优选考虑含浸于前体材料(A)的含金属的溶液中所含的金属元素(M)的量(即,存在于前体材料(B)内的金属元素(M)的量)来适当调整。例如,优选在后述的烧成工序前调整添加于前体材料(A)的含金属的溶液的添加量,以使换算成构成前体材料(A)的硅(Si)与添加于前体材料(A)的含金属的溶液中所含的金属元素(M)之比(原子数比Si/M)为10~1000,更优选调整为50~200。例如,在前体材料(A)中添加含金属的溶液之前,在前体材料(A)中添加表面活性剂作为添加剂的情况下,通过将添加于前体材料(A)的含金属的溶液的添加量设为换算成原子数比Si/M为50~200,可以使金属氧化物微粒的金属元素(M)相对于功能性结构体的含量为0.5~2.5质量%。在前体材料(B)的状态下,如果含金属的溶液的金属浓度、上述添加剂的有无,其他温度、压力等各条件相同,则存在于其细孔内部的金属元素(M)的量与添加于前体材料(A)的含金属的溶液的添加量大致成比例。此外,存在于前体材料(B)内的金属元素(M)的量与构成存在于功能性结构体的骨架体内的金属氧化物微粒的金属元素的量成比例关系。因此,通过将添加于前体材料(A)的含金属的溶液的添加量控制在上述范围内,能够使含金属的溶液充分含浸于前体材料(A)的细孔内部,进而能够调整存在于功能性结构体的骨架体内的金属氧化物微粒的量。

在使含金属的溶液含浸于前体材料(A)后,可以根据需要进行清洗处理。作为清洗溶液,能够使用水或醇等有机溶剂或者它们的混合溶液。此外,优选的是,在使含金属的溶液含浸于前体材料(A),并根据需要进行了清洗处理后,进一步实施干燥处理。作为干燥处理,可以列举出一晩左右的自然干燥、150℃以下的高温干燥。需要说明的是,若在含金属的溶液中所含的水分、清洗溶液的水分大量残留在前体材料(A)中的状态下进行后述的烧成处理,则作为前体材料(A)的规则性中孔物质的骨架结构恐怕会被破坏,因此优选充分干燥。

(步骤S3:烧成工序)

接着,对使含金属的溶液含浸于用于得到由沸石型化合物构成的多孔质结构的骨架体的前体材料(A)而得到的前体材料(B)进行烧成,得到前体材料(C)。

烧成处理例如优选在空气中在350℃~850℃、2小时~30小时的处理条件下进行。通过这样的烧成处理,含浸于规则性中孔物质的孔内的金属成分结晶生长,在孔内形成金属氧化物微粒。

(步骤S4:水热处理工序)

接着,制备将前体材料(C)与结构导向剂混合而成的混合溶液,对将所述前体材料(B)烧成而得到的前体材料(C)进行水热处理,得到功能性结构体。

结构导向剂是用于规定功能性结构体的骨架体的骨架结构的模板剂,例如能够使用表面活性剂。结构导向剂优选根据功能性结构体的骨架体的骨架结构来选择,例如优选为四甲基溴化铵(TMABr)、四乙基溴化铵(TEABr)、四丙基溴化铵(TPABr)等表面活性剂。

前体材料(C)与结构导向剂的混合可以在本水热处理工序中进行,也可以在水热处理工序前进行。此外,上述混合溶液的制备方法没有特别限定,可以同时混合前体材料(C)、结构导向剂、溶剂,也可以在溶剂中将前体材料(C)和结构导向剂分别分散在各溶液的状态后,将各分散溶液混合。作为溶剂,例如能够使用水或醇等有机溶剂或者它们的混合溶剂等。此外,优选在进行水热处理前,预先使用酸或碱来调整混合溶液的pH。

能够通过公知的方法来进行水热处理,例如优选在密闭容器内在80℃~800℃、5小时~240小时、0kPa~2000kPa的处理条件下进行。此外,优选在碱性环境下进行水热处理。

虽然在此的反应机制未必明确,但通过将前体材料(C)作为原料进行水热处理,作为前体材料(C)的规则性中孔物质的骨架结构逐渐被破坏,但是在前体材料(C)的细孔内部的金属氧化物微粒的位置大致维持不变,通过结构导向剂的作用,形成作为功能性结构体的骨架体的新的骨架结构(多孔质结构)。如此得到的功能性结构体具备多孔质结构的骨架体和存在于骨架体内的金属氧化物微粒,进而骨架体具有通过其多孔质结构使多个孔相互连通的通路,金属氧化物微粒的至少一部分存在于骨架体的通路,优选保持在骨架体的通路。

此外,在本实施方式中,在上述水热处理工序中,制备将前体材料(C)与结构导向剂混合而成的混合溶液,对前体材料(C)进行水热处理,但并不限于此,也可以对前体材料(C)进行水热处理而不将前体材料(C)与结构导向剂混合。

优选的是,在回收(例如过滤)水热处理后得到的沉淀物(功能性结构体)后,根据需要进行清洗、干燥以及烧成。作为清洗溶液,可以使用水或醇等有机溶剂或者它们的混合溶液。作为干燥处理,可以列举出一晩左右的自然干燥、150℃以下的高温干燥。需要说明的是,若在沉淀物中残留大量水分的状态下进行烧成处理,则作为功能性结构体的骨架体的骨架结构恐怕会被破坏,因此优选充分干燥。此外,烧成处理例如可以在空气中在350℃~850℃、2小时~30小时的处理条件下进行。通过这样的烧成处理,附着于功能性结构体的结构导向剂被烧掉。此外,根据使用目的,也能够不对回收后的沉淀物进行烧成处理而直接使用功能性结构体。例如,在功能性结构体的使用环境为氧化性环境的高温环境的情况下,在使用环境中暴露一定时间,由此,结构导向剂被烧掉,可得到与进行烧成处理的情况同样的功能性结构体,因此能直接使用。

[功能性结构体1的变形例]

图4是示出图1的功能性结构体1的变形例的示意图。

在图1的功能性结构体1中示出了具备骨架体10和存在于骨架体10内的金属氧化物微粒20的情况,但并不仅限于该构成,例如,如图4所示,功能性结构体2也可以进一步具备保持在骨架体10的外表面10a的至少一种其他金属氧化物微粒30。

其他金属氧化物微粒30是发挥一种或多种功能的物质。其他金属氧化物微粒30所具有的功能可以与金属氧化物微粒20所具有的功能相同,也可以不同。其他金属氧化物微粒30所具有的功能的具体例与对金属氧化物微粒20进行的说明的功能相同,其中优选具有催化剂功能,此时金属氧化物微粒30为催化剂物质。此外,在金属氧化物微粒20、30双方为具有相同的功能的物质的情况下,其他金属氧化物微粒30的材料可以与金属氧化物微粒20的材料相同,也可以不同。根据本构成,能使保持在功能性结构体2的金属氧化物微粒的含量增加,能进一步促进金属氧化物微粒的功能发挥。

该情况下,优选的是,存在于骨架体10内的至少一种金属氧化物微粒20的含量多于保持在骨架体10的外表面10a的至少一种其他金属氧化物微粒30的含量。由此,保持在骨架体10的内部的金属氧化物微粒20的功能成为支配性的功能,稳定地发挥金属氧化物微粒的功能。

以上,对本发明的实施方式的功能性结构体进行了描述,但本发明并不限于上述实施方式,能基于本发明的技术思想进行各种变形和变更。

实施例

(实施例1~384)

[前体材料(A)的合成]

制作将二氧化硅剂(四乙氧基硅烷(TEOS),和光纯药工业株式会社制)与作为模板剂的表面活性剂混合而成的混合水溶液,适当进行pH调整,在密闭容器内,在80℃~350℃下进行100小时的水热处理。之后,过滤所生成的沉淀物,通过水和乙醇进行清洗,进而在空气中在600℃下进行24小时的烧成,得到表1~8所示的种类和孔径(nm)的前体材料(A)。需要说明的是,表面活性剂根据前体材料(A)的种类(“前体材料(A)的种类:表面活性剂”)使用以下的物质。

·MCM-41:十六烷基三甲基溴化铵(CTAB)(和光纯药工业株式会社制)

·SBA-1:Pluronic P123(BASF社制)

[前体材料(B)和(C)的制作]

接着,根据构成表1~8所示的种类的金属氧化物微粒的金属元素(M),将含有该金属元素(M)的金属盐溶解于水来制备含金属的水溶液。需要说明的是,金属盐根据金属氧化物微粒的种类(“金属氧化物微粒:金属盐”)使用以下的物质。

·LaMnO3:使用La-Mn硝酸盐(La(NO3)3·6H2O(99%)和Mn(NO3)2·9H2O(99%),均为和光纯药工业株式会社制)

·BaMnO3:使用Ba-Mn硝酸盐(Ba(NO3)2(99%)和Mn(NO3)2·9H2O(99%),均为和光纯药工业株式会社制)

·LaAlO3:使用La-Al硝酸盐(La(NO3)3·6H2O(99%)和Al(NO3)3·9H2O(99%),均为和光纯药工业株式会社制)

·LaCoO3:使用La-Co硝酸盐(La(NO3)3·6H2O(99%)和Co(NO3)2·6H2O(99%),均为和光纯药工业株式会社制)

接着,将含金属的水溶液分多次少量添加于粉末状的前体材料(A),在室温(20℃±10℃)下干燥12小时以上,得到前体材料(B)。

需要说明的是,在表1~8所示的有无添加剂的添加一栏为“有”的情况下,对添加含金属的水溶液之前的前体材料(A)进行添加作为添加剂的聚氧乙烯(15)油基醚(NIKKOLBO-15V,日光化学株式会社制)的水溶液的前处理,之后,如上所述添加含金属的水溶液。此外,对于有无添加剂的添加一栏为“无”的情况,未进行通过如上所述的添加剂进行的前处理。

此外,调整添加于前体材料(A)的含金属的水溶液的添加量,以使换算成构成前体材料(A)的硅(Si)与该含金属的水溶液中所含的金属元素(M)之比(原子数比Si/M)时的数值为表1~8的值。

接着,在空气中在600℃下,对含浸了如上所述地得到的含金属的水溶液的前体材料(B)进行24小时的烧成,得到前体材料(C)。

[功能性结构体的合成]

将如上所述地得到的前体材料(C)与表1~8所示的结构导向剂混合来制作混合水溶液,在密闭容器内,在80℃~350℃、表1~8所示的pH以及时间的条件下进行水热处理。之后,过滤所生成的沉淀物,进行水洗,在100℃下进行12小时以上的干燥,进而在空气中在600℃下进行24小时的烧成,得到具有表1~8所示的骨架体和作为催化剂物质的金属氧化物微粒的功能性结构体(实施例1~384)。

(比较例1)

在比较例1中,氢氧化物钙钛矿前体的起始原料使用了与实施例同样的原料。在搅拌下的19%氨水中滴加0.1mol/l的La-Mn硝酸盐混合水溶液。滴加后进行过滤,在110℃下干燥一晩,得到氢氧化物钙钛矿前体。将所得的钙钛矿氢氧化物前体与MFI型的硅质岩以Si/M比=100的方式添加于纯水中,通过超声波使其分散,并进行蒸干、烧成,由此得到在骨架体的外表面担载有LaMnO3的硅质岩。除了添加金属的工序以外,通过与实施例52~57同样的方法合成MFI型硅质岩。

(比较例2)

在比较例2中,除了省略使LaMnO3担载于骨架体的外表面的工序以外,通过与比较例1同样的方法合成MFI型硅质岩。

[评价]

在如下所示的条件下,对上述实施例的功能性结构体和比较例的硅质岩进行各种特性评价。

[A]剖面观察

通过粉碎法制作观察试样,使用透射电子显微镜(TEM)(TITAN G2,FEI公司制)对上述实施例的功能性结构体和比较例1的金属氧化物微粒担载硅质岩进行剖面观察。

其结果是,在上述实施例的功能性结构体中,确认了在包含硅质岩或沸石的骨架体的内部存在并保持有金属氧化物微粒。另一方面,在比较例1的硅质岩中,仅在骨架体的外表面附着有金属氧化物微粒,在骨架体的内部不存在金属氧化物微粒。

[B]骨架体的通路的平均内径和金属氧化物微粒的平均粒径

在通过在上述评价[A]中进行的剖面观察拍摄的TEM图像中,任意选择500个骨架体的通路,测定各自的长径和短径,根据其平均值计算出各自的内径(N=500),进而求出内径的平均值,作为骨架体的通路的平均内径DF。此外,对于金属氧化物微粒,同样从上述TEM图像任意选择500个金属氧化物微粒,测定各自的粒径(N=500),求出其平均值,作为金属氧化物微粒的平均粒径DC。结果在表1~8中示出。

[C]含金属的溶液的添加量与包合于骨架体内部的金属量的关系

以原子数比Si/M=50、100、200、1000(M=Co、Ni、Fe、Cu)的添加量,制作使金属氧化物微粒包合于骨架体内部的功能性结构体,之后,测定包合于以上述添加量制作出的功能性结构体的骨架体内部的金属量(质量%)。需要说明的是,分别以与实施例1~384中的原子数比Si/M=100、200、1000的功能性结构体同样的方法调整含金属的溶液的添加量来制作本测定中原子数比Si/M=100、200、1000的功能性结构体,原子数比Si/M=50的功能性结构体除了含金属的溶液的添加量不同以外,以与原子数比Si/M=100、200、1000的功能性结构体同样的方法进行制作。

金属量的定量通过ICP(高频感应耦合等离子体)单体或组合ICP和XRF(荧光X射线分析)来进行。XRF(能量色散型荧光X射线分析装置“SEA1200VX”,SII NanoTechnology公司制)在真空环境、加速电压15kV(使用Cr过滤器)或在加速电压50kV(使用Pb过滤器)的条件下进行。

XRF是通过荧光强度计算出金属的存在量的方法,无法通过XRF单体计算出定量值(按质量%换算)。因此,通过ICP分析对以Si/M=100来添加金属的功能性结构体的金属量进行定量,基于XRF测定结果和ICP测定结果计算出以Si/M=50和小于100来添加金属的功能性结构体的金属量。

其结果是,确认了至少在原子数比Si/M为50~1000的范围内随着含金属的溶液的添加量的增加,包合于功能性结构体的金属量增加。

[D]性能评价

对于上述实施例的功能性结构体和比较例的硅质岩,对金属氧化物微粒(催化剂物质)所具有的催化能力(性能)进行评价。结果在表1~8中示出。

(1)催化活性

通过以下的条件对催化活性进行评价。

首先,将功能性结构体0.2g填充于常压流通式反应装置中,将氮气(N2)作为载气(5ml/min),在400℃下进行2小时的丁基苯(重质油的模型物质)的分解反应。反应结束后,通过气相色谱质量分析法(GC/MS)对回收的生成气体和生成液进行成分分析。需要说明的是,在生成气体的分析装置中,使用TRACE 1310GC(Thermo Fisher Scientific株式会社制,检测器:热导检测器),在生成液的分析装置中,使用TRACE DSQ(Thermo FisherScientific株式会社制,检测器:质量检测器,离子化方法:EI(离子源温度250℃,MS传输线温度320℃,检测器:热导检测器))。

进而,基于上述成分分析的结果,求出分子量小于丁基苯的化合物(具体为苯、甲苯、乙苯、苯乙烯、异丙基苯、甲烷、乙烷、乙烯、丙烷、丙烯、丁烷、丁烯等)的产率(mol%)。作为分子量小于生成液中所含的丁基苯的化合物的物质量的总量(mol)相对于反应开始前的丁基苯的物质量(mol)的百分比(mol%),计算出上述化合物的产率。

在本实施例中,将分子量小于生成液中所含的丁基苯的化合物的产率为40mol%以上的情况判定为催化活性(分解能力)优异,设为“◎”,将产率为25mol%以上且小于40mol%的情况判定为催化活性良好,设为“○”,将产率为10mol%以上且小于25mol%的情况判定为催化活性不良但为合格水平(可以),设为“Δ”,然后将产率小于10mol%的情况判定为催化活性差(不可以),设为“×”。

(2)耐久性(寿命)

通过以下的条件对耐久性进行评价。

首先,回收在上述评价(1)中使用的功能性结构体,在650℃下加热12小时,得到加热后的功能性结构体。接着,使用所得的加热后的功能性结构体,通过与上述评价(1)同样的方法进行丁基苯(重质油的模型物质)的分解反应,进而通过与上述评价(1)同样的方法进行生成气体和生成液的成分分析。基于所得的分析结果,通过与上述评价(1)同样的方法求出分子量小于丁基苯的化合物的产率(mol%)。进而,与由加热前的功能性结构体得到的上述化合物的产率(在上述评价(1)中求出的产率)进行比较,比较由加热后的功能性结构体得到的上述化合物的产率被维持的程度。具体而言,计算出由上述加热后的功能性结构体得到的上述化合物的产率(在本评价(2)中求出的产率)相对于由加热前的功能性结构体得到的上述化合物的产率(在上述评价(1)中求出的产率)的百分比(%)。在本实施例中,由加热后的功能性结构体得到的上述化合物的产率(在本评价(2)中求出的产率)与由加热前的功能性结构体得到的上述化合物的产率(在上述评价(1)中求出的产率)相比,将产率维持在80%以上的情况判定为耐久性(耐热性)优异,设为“◎”,将产率维持在60%以上且小于80%的情况判定为耐久性(耐热性)良好,设为“○”,将产率维持在40%以上且小于60%的情况判定为耐久性(耐热性)不良但为合格水平(可以),设为“Δ”,然后将产率降低至小于40%的情况判定为耐久性(耐热性)差(不可以),设为“×”。对于比较例1~2,也进行与上述评价(1)和(2)同样的性能评价。需要说明的是,比较例2是骨架体本身,不具有金属氧化物微粒。因此,在上述性能评价中,仅填充比较例2的骨架体来代替功能性结构体。结果在表8中示出。

[表1]

Figure BDA0002290669380000181

[表2]

Figure BDA0002290669380000191

[表3]

[表4]

[表5]

Figure BDA0002290669380000221

[表6]

Figure BDA0002290669380000231

[表7]

Figure BDA0002290669380000241

[表8]

Figure BDA0002290669380000251

根据表1~8可清楚地知道,与仅在骨架体的外表面附着有金属氧化物微粒的硅质岩(比较例1)或不具有任何金属氧化物微粒的骨架体本身(比较例2)相比,通过剖面观察确认了在骨架体的内部保持有金属氧化物微粒的功能性结构体(实施例1~384)在丁基苯的分解反应中显示出优异的催化活性,作为催化剂的耐久性也优异。

此外,对在上述评价[C]中测定出的包合于功能性结构体的骨架体内部的金属量(质量%)与分子量小于生成液中所含的丁基苯的化合物的产率(mol%)的关系进行评价。评价方法设为与在上述[D]“性能评价”中的“(1)催化活性”进行的评价方法相同。

根据其结果可知,在各实施例中,当将添加于前体材料(A)的含金属的溶液的添加量换算成原子数比Si/M(M=La和Mn)为50~200(金属氧化物微粒的金属元素(M)的含量相对于功能性结构体为0.5~2.5质量%)时,分子量小于生成液中所含的丁基苯的化合物的产率为32mol%以上,丁基苯的分解反应中的催化活性为合格水平以上。

另一方面,与不具有任何金属氧化物微粒的比较例2的骨架体本身相比,仅在骨架体的外表面附着有金属氧化物微粒的比较例1的功能性结构体在丁基苯的分解反应中的催化活性被改善,但与实施例1~384的功能性结构体相比,作为催化剂的耐久性差。

此外,不具有任何金属氧化物微粒的比较例2的骨架体本身在丁基苯的分解反应中几乎没有显示出催化活性,与实施例1~384的功能性结构体相比,催化活性和耐久性双方都差。

符号说明

1 功能性结构体

10 骨架体

10a 外表面

11 骨架体的通路

11a 孔

12 通路的扩径部

20 金属氧化物微粒

30 金属氧化物微粒

DC 金属氧化物微粒的平均粒径

DF 通路的平均内径

DE 扩径部的内径

30页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:CO变换或逆变换催化剂结构体及其制造方法、CO变换或逆变换反应装置、二氧化碳和氢的制造方法、以及一氧化碳和水的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!