一种精确筛分气体分子对的混合基质膜的制备方法

文档序号:1678913 发布日期:2020-01-03 浏览:32次 >En<

阅读说明:本技术 一种精确筛分气体分子对的混合基质膜的制备方法 (Preparation method of mixed matrix membrane for accurately screening gas molecule pairs ) 是由 郑文姬 郭自兴 王秋晨 焉晓明 代岩 贺高红 于 2019-09-03 设计创作,主要内容包括:本发明公开了一种精确筛分气体分子对的混合基质膜的制备方法,属于膜分离技术领域。将活化后的MOF颗粒分散于离子液体溶液中,再使溶液中的低沸点溶剂充分挥发得到MOF/离子液体复合物。选用溶剂洗掉复合物表面离子液体,得到类核壳结构的不同离子液体含量复合物,再将其混入聚合物溶液,浇铸成膜。本方法从填充物有序调控填料孔道尺寸的角度可将MOF孔径修饰到一定范围内,实现了精确筛分具有不同尺寸的气体分子对,在其他物化性质相近而尺寸有差异的气体对分离过程中,提供一种新颖可行的思路。(The invention discloses a preparation method of a mixed matrix membrane for accurately screening gas molecule pairs, belonging to the technical field of membrane separation. Dispersing the activated MOF particles in an ionic liquid solution, and fully volatilizing a low-boiling-point solvent in the solution to obtain the MOF/ionic liquid compound. And (3) selecting a solvent to wash away ionic liquid on the surface of the compound to obtain compounds with different ionic liquid contents of the similar core-shell structure, mixing the compounds into a polymer solution, and casting to form a film. According to the method, the pore size of the MOF can be modified to a certain range from the angle of orderly regulating and controlling the pore size of the filler by the filler, so that the gas molecule pairs with different sizes are accurately screened, and a novel and feasible thought is provided in the separation process of other gas pairs with similar physicochemical properties and different sizes.)

一种精确筛分气体分子对的混合基质膜的制备方法

技术领域

本发明属于膜分离技术领域,具体涉及一种可以精确筛分不同尺寸气体分子对的混合基质膜制备的方法。

背景技术

CO2气体捕集已经成为21世纪人类社会亟需解决的国际性问题之一。CO2在大气中的浓度过高会加剧全球变暖,此外,CO2是天然气,煤田气,沼气等能源气的常见伴生气,如果不预先除去会造成运输过程中管道腐蚀,还会降低燃料热值影响供能效率。传统上对CO2的分离主要采用变压吸附、化学吸收、低温蒸馏等方法。气体膜分离技术是一种可用于CO2捕集的新型分离技术,相对于传统分离方法,它具有无相变、无需质量分离剂的再生过程、工艺条件温和、操作成本低、占地面积小等优点,近年来得到迅猛发展。膜材料是膜分离技术的关键部分。传统的聚合物膜材料用于CO2分离时,存在分离性能较低、塑化严重、不耐高温高压等问题,制约了CO2膜分离的工业化发展。因此,研究能同时满足分离要求和机械性能要求的膜材料是该领域的重点。

混合基质膜(MixedMatrixMembrane)是将无机膜的高分离性能和聚合物膜的机械性能及成本优势结合起来,满足未来膜分离工业要求的新型材料。无机填料的选择是制备高性能混合基质膜的关键。金属-有机框架化合物(MOFs)因其部分有机的本质,在膜材料中表现出更好的界面相容性。MOFs的孔道是由金属离子和有机配体共同组装而成的,因有机配体的功能化的多样性,MOFs的种类也在不断更新,目前已达到上万种。但MOFs的孔道尺寸一般大于气体分子动力学尺寸,无法理想地介于两种待分离气体之间,从而无法充分发挥填料的筛分效应。虽然可以通过金属离子置换,配体改性等方法进行孔结构修饰,但操作难度高,无法满足实际要求。

发明内容

基于现有技术中存在的问题,本发明的目的在于制备一种可以精确筛分不同尺寸气体分子对的混合基质膜。

本发明的技术方案:

一种精确筛分气体分子对的混合基质膜的制备方法,步骤如下:

选择具有不同大小、不同物化性质的室温离子液体(RTILs),将其和150℃条件下烘箱活化后的填料MOF粉末分散于溶剂A中,采用溶剂A自然挥发的方法得到RTILs/MOF复合物,选用溶剂B洗掉所制备复合物表面的游离离子液体,得到不同离子液体含量的RTILs/MOF复合物,记为[email protected],再将其混入聚合物溶液,浇铸成膜。

所述的RTILs和MOF的质量比为0.5~5;

所述的室温离子液体为1-乙基-3-甲基六氟磷酸盐[Emim][PF6]、1-丁基-3-甲基六氟磷酸盐[Bmim][PF6]、1-己基-3-甲基六氟磷酸盐[Hmim][PF6]、1-丁基-3-甲基双三氟甲磺酰亚胺盐[Bmim][Tf2N]或1-乙基-3-甲基双三氟甲磺酰亚胺盐[Emim][Tf2N]。

所述的MOF为带有笼-孔道结构的MOF,包括ZIF-71,ZIF-67,ZIF-7,ZIF-8,ZIF-90,ZIF-95或ZIF-100。

所述的溶剂A为丙酮、氯仿、***或二氯甲烷。

所述的溶剂B为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或二甲基亚砜。

所述的聚合物为聚醚共聚酰胺1657(Pebax1657)、聚酰亚胺、聚醚酰亚胺、聚醚砜或聚二甲基硅氧烷。

所述的聚合物用量根据公式确定:

Figure BDA0002189359140000021

本发明的有益效果:本发明所制备的离子液体@MOFs复合物中,离子液体的含量范围为3%~20%,将其混入Pebax1657制备混合基质膜后,在25度,0.3MPa的测试条件下,CO2渗透系数相较纯Pebax膜提高了92.1%可达115Barrer,CO2/N2分离选择性提高了54.5%达到85,超过2008年CO2/N2Roberson上限。

附图说明

图1是实施例1,ZIF-8,[Bmim][PF6]@ZIF-8复合物,[Bmim][PF6]的热失重曲线。

图2是实施例2,ZIF-8,[Bmim][PF6]@ZIF-8复合物,[Bmim][PF6]的热失重曲线。

图3是实施例3,ZIF-8,[Bmim][Tf2N]@ZIF-8复合物,[Bmim][Tf2N]的热失重曲线。

图4是实施例4,ZIF-71,[Emim][Tf2N]@ZIF-71复合物,[Emim][Tf2N]的热失重曲线。

具体实施方式

以下结合技术方案,进一步说明本发明的具体实施方式。

实施例1

选择离子液体1-丁基-3-甲基六氟磷酸盐([Bmim][PF6]),取0.07g[Bmim][PF6]加入20mL丙酮中,在低转速(<250r/min)下搅拌1小时使[Bmim][PF6]在丙酮中分布均匀,加入0.2g活化后的ZIF-8粉末后,水浴超声使ZIF-8充分分散在[Bmim][PF6]/丙酮溶液中,再通过搅拌自然挥发丙酮,得到[Bmim][PF6]/ZIF-8复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-8孔道内。N,N-二甲基甲酰胺洗-收集重复三次,每次十分钟,以确保ZIF-8表面的[Bmim][PF6]被彻底洗去。将洗完的复合物记为[Bmim][PF6]@ZIF-8。再将[Bmim][PF6]@ZIF-8放入150℃烘箱使N,N-二甲基甲酰胺充分挥发。待材料冷却后,称取一定质量将其混入3wt%的Pebax1657溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。

经热重测试表明,本实施例中所制备的[Bmim][PF6]@ZIF-8复合材料中[Bmim][PF6]为8.07%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为25%时,CO2渗透系数相较纯Pebax1657膜增加92.1%可达115Barrer,CO2/N2分离选择性增加54.5%达到85。

实施例2

选择离子液体1-丁基-3-甲基六氟磷酸盐([Bmim][PF6]),取0.3g[Bmim][PF6]加入20mL氯仿中,在低转速(<250r/min)下搅拌1小时使[Bmim][PF6]在丙酮中分布均匀,加入0.2g活化后的ZIF-8粉末后,水浴超声使ZIF-8充分分散在[Bmim][PF6]/氯仿溶液中,再通过搅拌自然挥发氯仿,得到[Bmim][PF6]/ZIF-8复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-8孔道内。二甲基亚砜洗-收集重复三次,每次十分钟,以确保ZIF-8表面的[Bmim][PF6]被彻底洗去。将洗完的复合物记为[Bmim][PF6]@ZIF-8。再将[Bmim][PF6]@ZIF-8放入150℃烘箱使二甲基亚砜充分挥发。待材料冷却后,称取一定质量将其混入3wt%的Pebax1657溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。

经热重测试表明,本实施例中所制备的[Bmim][PF6]@ZIF-8复合材料中[Bmim][PF6]为12.05%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为10%时,CO2渗透系数相较纯Pebax1657膜增加71.6%可达101Barrer,CO2/N2分离选择性增加62.9%达到90。

实施例3

选择离子液体1-丁基-3-甲基双三氟甲磺酰亚胺盐[Bmim][Tf2N],取0.7g[Bmim][Tf2N]加入20mL丙酮中,在低转速(<250r/min)下搅拌1小时使[Bmim][Tf2N]在丙酮中分布均匀,加入0.2g活化后ZIF-8粉末后,水浴超声使ZIF-8充分分散在[Bmim][Tf2N]/丙酮溶液中,再通过搅拌自然挥发丙酮,得到[Bmim][Tf2N]/ZIF-8复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-8孔道内。N,N-二甲基甲酰胺洗-收集重复三次,每次十分钟,以确保ZIF-8表面的[Bmim][Tf2N]被彻底洗去。将洗完的复合物记为[Bmim][Tf2N]@ZIF-8。再将[Bmim][Tf2N]@ZIF-8放入150℃烘箱使N,N-二甲基甲酰胺充分挥发。待材料冷却后,称取一定质量将其混入3wt%的聚酰亚胺溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。

经测试表明,本实施例中所制备的[Bmim][Tf2N]@ZIF-8复合材料中[Bmim][Tf2N]为8%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为15%时,CO2渗透系数相较纯聚酰亚胺膜增加了155%可达28.7Barrer,CO2/N2分离选择性增加了42%达到24.5。

实施例4

选择离子液体1-乙基-3-甲基双三氟甲磺酰亚胺盐[Emim][Tf2N],取0.5g[Emim][Tf2N]加入20mL氯仿中,在低转速(<250r/min)下搅拌1小时使[Emim][Tf2N]在氯仿中分布均匀,加入0.2g活化后ZIF-71粉末后,水浴超声使ZIF-71充分分散在[Emim][Tf2N]/氯仿溶液中,再通过搅拌自然挥发氯仿,得到[Emim][Tf2N]/ZIF-71复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-71孔道内。N,N-二甲基乙酰胺洗-收集重复三次,每次十分钟,以确保ZIF-71表面的[Emim][Tf2N]被彻底洗去。将洗完的复合物记为[Emim][Tf2N]@ZIF-71。再将[Emim][Tf2N]@ZIF-71放入150℃烘箱使N,N-二甲基乙酰胺充分挥发。待材料冷却后,称取一定质量将其混入3wt%聚醚酰亚胺的溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。

经测试表明,本实施例中所制备的[Emim][Tf2N]@ZIF-71复合材料中[Emim][Tf2N]为18.4%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为10%时,CO2渗透系数相较纯聚醚酰亚胺膜增加了64%可达30.5Barrer,CO2/N2分离选择性增加了59%达到20.6。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高MOF填料含量气体分离膜的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类