陶瓷组件的制造

文档序号:1721947 发布日期:2019-12-17 浏览:24次 >En<

阅读说明:本技术 陶瓷组件的制造 (manufacture of ceramic components ) 是由 西里亚克·博卡尔 奥利维耶·皮若尔 于 2018-04-16 设计创作,主要内容包括:一种用于制造粘结的陶瓷粉末的方法,该粘结的陶瓷粉末包含至少一种添加的元素或化合物,所述粘结的陶瓷粉末尤其是基于氧化锆和/或氧化铝和/或铝酸锶,其特征在于,该方法包括通过物理气相沉积(PVD)和/或通过化学气相沉积(CVD)和/或通过原子层沉积(ALD)在粘结的陶瓷粉末上沉积至少一种添加的元素或化合物的步骤(E3)。(Method for manufacturing a bonded ceramic powder comprising at least one added element or compound, in particular based on zirconia and/or alumina and/or strontium aluminate, characterized in that it comprises a step (E3) of depositing at least one added element or compound on the bonded ceramic powder by Physical Vapour Deposition (PVD) and/or by Chemical Vapour Deposition (CVD) and/or by Atomic Layer Deposition (ALD).)

陶瓷组件的制造

技术领域

本发明涉及一种用于制造陶瓷粉末的方法和陶瓷组件。这样的陶瓷粉末和陶瓷组件可用于制表业和珠宝业。具体地,这样的组件可用于钟表,尤其是装饰性组件如表圈或功能性组件如机芯。

背景技术

在制表领域中,如同在珠宝中一样,已知使用陶瓷组件,尤其是装饰性组件。然而,使用这些陶瓷组件的一个限制因素是由于这样的事实:难以或甚至不可能获得某些颜色,特别是某些灰色色调,并且难以获得均匀、可预测且可再现的颜色。此外,获得特定的色调需要由初始组件生产整批材料,并且证明是费时且复杂的。

另一个限制因素还来自这样的事实:难以测试添加某些元素的作用,这些元素可以与已知陶瓷的成分结合使用,特别是为了获得陶瓷组件的某些特定机械性能。在这里,每个测试也很复杂,并且需要由初始成分生产整批材料。

用于制造陶瓷组件的常规方法包括第一阶段,其在于制备原料,即,陶瓷粉末,例如,基于氧化锆和/或氧化铝的陶瓷粉末。在该第一阶段中,该原料通常以陶瓷粉末的形式制备,可以向其中添加例如其他氧化物以增强陶瓷成分,或者颜料以获得着色材料。所述颜料通常是金属氧化物类型或稀土氧化物类型,并且通过液体途径将其添加到基础陶瓷粉末中并与之混合,因此使用载液来引入颜料。

用于制造陶瓷组件的方法的第二阶段在于将粘合剂掺入第一阶段所获得的陶瓷粉末中。这种粘合剂通常由一种或多种有机化合物组成。粘合剂的性质和比例取决于第三阶段中的预期方法,并且在该阶段结束时通常涉及具有粘合剂的陶瓷粉末。

第三阶段包括陶瓷组件的成型。为此,第一途径包括将颗粒的凝聚物与在第二阶段结束时获得的粘合剂一起压制的步骤:在此方法中,第二阶段将具有粘合剂的陶瓷粉末制备成喷雾干燥压制颗粒的形式。第二途径由注塑成型法来成型组成。在这种情况下,由第二阶段得到的制剂是具有粘合剂的陶瓷粉末,其被称为“进料”。第三途径由在模具中浇铸法成型(通常被称为注浆成型)组成。在这种情况下,由第二阶段得到的制剂是具有悬浮的粘合剂的陶瓷粉末,也被称为注浆或“浆液”。在第三阶段结束时,陶瓷组件具有与其最终形状接近的形状,并且含有陶瓷粉末和粘合剂。可以使用其他成型技术,例如,凝胶浇铸、冷冻浇铸或凝结浇铸技术。

第四阶段可以打磨陶瓷组件。该第四阶段包括第一步骤在于使组件脱脂,即,例如通过热处理或使用溶剂来去除粘合剂。第二步骤是将组件压实,从而除去由于去除粘合剂而产生的孔。第二步骤通常由烧结热处理(高温烧制)组成。陶瓷组件的最终颜色及其最终的机械性能仅在第四阶段结束时出现,并且源自于该组件的各种成分之间的反应以及炉中存在的气氛(其在热处理期间发挥作用)。这些反应是复杂的,并且有时是不可预测的。

观察到,上面提到的用于制造陶瓷组件的常规方法具有多个缺点。具体地,所获得的颜色和最终性能取决于许多参数,如在第一阶段中形成的粉末的微观结构,特别是陶瓷晶粒的尺寸、颜料的尺寸、它们与陶瓷和烧结环境的反应性等。性能还取决于与其他制造阶段有关的所有其他因素,如最终组件中孔的尺寸和数量、晶界的组成、密度、颜料的百分比及其在基体内的分布、它们可能在烧结期间相互结合或与陶瓷原料或大气的成分结合、初始化合物的化学纯度,以及可能存在的内在和外在污染物。要考虑的参数如此众多使得难以预测并再现期望制造的某种颜色。如果着色颜料的含量少,则这种观察更为真实:因此,为了减轻这种缺点,所有现有方法都必须使用大量颜料。此外,某些方法试图通过基于复杂化学的添加步骤来改善结果,这自然具有使该制造方法进一步复杂化的缺点。

更重要的是,在实践中,难以管理陶瓷组件的颜色导致需要进行大量测试,包括从陶瓷粉末制备到最终成型来生成大量完整的样品,同时为每个样本改变一些上述参数以确定最佳方法。此外,当希望甚至略微改变颜色时,有必要重新开始整个方法,包括再次制备众多样品。因此,在实践中,寻找可控的陶瓷组件颜色(这对于将其用作装饰性元件通常是必需的)需要复杂且费力的开发步骤。

最后,尽管进行了众多测试,但迄今为止仍观察到,似乎无法使陶瓷组件获得具有某些颜色,特别是某些灰色,如由CIE L*a*b*颜色坐标(83;0;0.6)和CIE L*a*b*颜色坐标(47;0.2;-0.2)定义的那些。通常,不可能获得例如由接近0的a*和b*参数以及小于96的L*参数定义的颜色,特别是严格意义上的灰色。

因此,本发明的总体目标是提出一种不具有现有技术的缺点的用于制造陶瓷组件(特别是用于钟表)的解决方案。

更精确地,本发明的第一目的是提出一种用于制造陶瓷粉末和陶瓷组件的解决方案,从而能够获得具有改善性能的陶瓷,特别是颜色可控的陶瓷和/或特别是具有新颖或优化的性能(例如机械、热、电和摩擦学性能)的陶瓷。

本发明的第二目的是提出一种用于简化制造彩色陶瓷组件的解决方案。

本发明的第三目的是提出一种灰色陶瓷。

本发明的第四目的是提出一种改变可能已经着色的陶瓷粉末以便改变最终的陶瓷组件的所得颜色的简单方法。

发明内容

为此,本发明基于一种用于制造具有粘合剂的陶瓷粉末或陶瓷组件的方法,尤其是用于钟表或珠宝部件的具有粘合剂的陶瓷粉末或陶瓷组件,尤其是基于氧化锆和/或氧化铝和/或铝酸锶的具有粘合剂的陶瓷粉末或陶瓷组件,其中,该方法包括通过物理气相沉积(PVD)和/或通过化学气相沉积(CVD)和/或通过原子层沉积(ALD)在具有粘合剂的陶瓷粉末上沉积至少一种添加的元素或化合物的步骤。

本发明由权利要求所更具体地限定。

附图说明

参考附图,在以下

具体实施方式

的非限制性描述中将详细公开本发明的这些目的、特征和优点,其中:

图1示意性地示出了根据本发明的实施方式的用于制造钟表用有色陶瓷组件的方法的步骤的流程图。

图2示出了根据本发明的实施方式的第一实施例获得的陶瓷组件。

图3示出了根据本发明的实施方式的第二实施例获得的陶瓷组件。

图4示出了根据本发明的实施方式的第三实施例获得的陶瓷组件。

图5示出了根据本发明的实施方式的第四实施例获得的陶瓷组件。

图6是根据本发明的实施方式的七个示例性实施获得的陶瓷组件的结果表。

图7示出了通过本发明的实施方式获得的实施例4至7的陶瓷组件的亮度随铂含量的变化。

图8示出了通过本发明的实施方式获得的实施例4至7的陶瓷组件的色度参数a*随铂含量的变化。

图9示出了通过本发明的实施方式获得的实施例4至7的陶瓷组件的色度参数b*随铂含量的变化。

图10是根据本发明的实施方式的示例性实施获得的陶瓷组件的结果表。

图11是根据本发明的实施方式的三个示例性实施获得的陶瓷组件的结果表。

图12是根据本发明的实施方式的示例性实施获得的陶瓷组件的结果表。

图13示出了根据本发明的实施方式的第一实施例获得的陶瓷组件。

图14示出了根据本发明的实施方式的第二实例获得的陶瓷组件。

图15是根据本发明的实施方式的两个前述示例性实施获得的陶瓷组件的结果表。

具体实施方式

在下文中,陶瓷组件或粉末表示由主要包含至少一种陶瓷的多晶致密材料获得的组件或粉末,该至少一种陶瓷尤其是基于氧化锆和/或氧化铝和/或铝酸锶,例如,用氧化钇和/或氧化铈和/或氧化镁和/或氧化钙稳定的氧化锆。陶瓷粉末表示陶瓷(尤其是由基于氧化锆和/或氧化铝和/或铝酸锶的陶瓷)的精细颗粒组成的细碎固体形式的粉末。为了简化说明,对于主要包含陶瓷的精细颗粒但还包含其他添加元素如一种或多种颜料或用于增强陶瓷的氧化物如氧化钇的粉末,将以通用方式有意保留使用相同的术语“陶瓷粉末”。类似地,陶瓷组件表示例如通过烧结这种陶瓷粉末所获得的组件。因此,在所有情况下,陶瓷粉末或组件主要包括陶瓷类型的组件,即,该陶瓷类型的组件为至少50重量%,或甚至至少75重量%,或甚至至少90重量%。例如,陶瓷粉末或组件包含至少50重量%的氧化锆。

在所有情况下,陶瓷粉末均不含有机化合物。通用术语“具有粘合剂的陶瓷粉末”表示由陶瓷粉末和粘合剂组成的复合材料,通常由一种或多种比例可变的有机化合物组成,并且用于通过压制、通过注塑成型、通过浇注或通过其他技术来使部件成型。

(压制)颗粒表示待通过压制方法(例如冷或热单轴压制或者冷或热等静压制)成型的具有粘合剂的陶瓷粉末的凝聚物。颗粒通常包含1重量%至4重量%的有机化合物。

术语“可注射的陶瓷粉末”,通常也被称为“进料”,表示待通过高压或低压注射成型方法成型的具有粘合剂的陶瓷粉末。可注射的陶瓷粉末通常包含12重量%至25重量%的有机化合物。

术语“浆液”表示待通过注浆成型或凝胶浇铸成型的具有粘合剂的陶瓷粉末。浆料通常包含1重量%至25重量%的有机化合物。

根据本发明的实施方式的用于制造陶瓷组件的方法包括由图1的流程图示意性表示的阶段和步骤。

因此,该制造方法包括该各个的常规阶段P1至P4,即,制备陶瓷粉末(P1)、添加粘结剂(P2)、使组件成型(P3)和脱脂烧结热处理(P4)。由于这些阶段的常规部分是现有技术中已知的,因此在此阶段将不进行详细描述。因此,本领域技术人员将知道如何实现它们,包括根据任何现有的变型或等同方式。

本发明的实施方式与常规方法的不同之处,尤其在于增加了步骤E3,即通过真空干燥路径在具有粘合剂的陶瓷粉末上沉积至少一种添加的元素或化合物如着色元素。

根据第一实施方式变型,沉积步骤E3由物理气相沉积(缩写为PVD)和/或通过化学气相沉积(缩写为CVD)组成。

根据第二实施方式变型,沉积步骤E3由原子层沉积(缩写为ALD)组成。

因此,在制造方法的第二阶段P2之后,在具有粘合剂的陶瓷粉末上实施该沉积步骤E3。因此,它可以在包含有机化合物的陶瓷粉末上实施,例如在颗粒上或在注塑进料上实施。它在该方法的第三阶段P3之前实施。为了简化描述,通过实施本发明的沉积步骤E3所获得的包含一种或多种添加的元素或化合物的具有粘合剂的陶瓷粉末将继续被称为具有粘合剂的陶瓷粉末。

添加的元素或化合物,尤其是金属和/或氧化物和/或氮化物和/或碳化物,可以变化非常大。金属应理解为是指纯净的金属或合金。因此,它可以有利地是金属类化合物。为了简单起见,术语添加的元素或添加的化合物将在本文的其余部分中使用,而对于单种元素和化合物或合金不加区分。

新颖地,本发明还使得能够使用不能与现有解决方案一起使用的金属,如具有高于或等于1200℃,或甚至高于或等于1500℃的高熔点的贵金属。因此,本发明使得能够使用铂和/或铑和/或锇和/或钯和/或钌和/或铱作为添加的元素。作为变型,可以使用其他金属,并且可以用金、铝、银、铼、钛、钽或铌来补充前述清单。此外,根据下面的列表,以不完整的d壳为特征的过渡金属(铁、铬、钒、锰、钴、镍和铜)能够由于其根据本发明的特定沉积步骤E3的添加而获得特别空前的有利结果。同样,镧系元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu)能够在步骤E3期间掺杂具有粘合剂的陶瓷粉,并能够获得有利的颜色和/或性能。如上所述,添加的化合物因此可以是包含以上所列的一种或多种金属和镧系元素或者由其组成的合金。

因此,添加的化合物可以是通过将金属合金直接沉积在具有粘合剂的陶瓷粉末上或者通过将金属合金的多种元素相继沉积或同时沉积在具有粘合剂的陶瓷粉末上的组合所获得的金属化合物或合金。

类似地,添加的化合物可以是通过在具有粘合剂的陶瓷粉末上直接沉积氧化物、碳化物或氮化物或者通过尤其是在沉积室中或在沉积之后,例如在烧结所述陶瓷化合物的步骤期间,使金属沉积物与反应性气氛反应而获得的一种或多种金属的氧化物、碳化物或氮化物。

自然地,可以使用多种不同的添加的元素或化合物,并通过如上所述的一个或多个沉积步骤E3将其同时或相继沉积在相同的具有粘合剂的陶瓷粉末上。可用的额外化合物的这种增加自然地能够增加陶瓷的可能颜色以及其他可能的性能,特别是机械或摩擦学性能。

应当注意的是,本领域技术人员习惯于通过液体途径向陶瓷中添加彩色颜料。他们不习惯通过干式途径进行,或者不习惯直接在具有粘合剂的陶瓷粉末上进行沉积。在这种干式沉积期间,应考虑以下参数:

-粉末上沉积的均匀性,

-颗粒的形状和尺寸的均匀性,

-方法的温度,

-脱气的风险,

-(绝缘的)移动的细碎固体物的静电性质,

-装置材料的光洁度和性质;特别是必须正确选择在沉积物的性质和颗粒的粘合剂的性质之间的配对,以防止粉末粘附到设备上。

例如,在PVD沉积期间,有利地在具有粘合剂的陶瓷粉末上进行沉积,例如,在压制颗粒(平均尺寸为几十微米的量级)上或在尺寸较大的丸粒形式的可注射陶瓷粉末(平均尺寸为几毫米的量级)上进行沉积。因此,该途径将包括陶瓷粉末与有机化合物的混合基材组合在一起,其温度性能较差,最高温度为45℃。

此外,观察到,即使向陶瓷中添加非常少量的添加的化合物的情况下,本发明的方法也能够实现就陶瓷组件的新颖或改进的性能而言非常令人满意的结果。因此,与现有解决方案相比,不仅陶瓷组件的颜色因它是均质的和/或可以允许新色调而得到改善,而且这种改进的结果可以通过添加非常少量(尤其是其含量远低于常规方法中使用的着色颜料的含量)的添加的着色元素或化合物而获得。

例如,在使用PVD沉积方法的情况下,添加的元素或化合物的重量含量小于或等于5%,或甚至小于或等于3%,或甚至小于或等于2%。有利地,该含量大于或等于0.01%。有利地,该含量为0.01%至5%(含端点)或甚至0.01%至3%(含端点)。应注意的是,所有的重量含量都是在最终(执行制造方法的第四阶段之后)的陶瓷组件上或在脱脂的陶瓷粉末上测量的,即,不考虑粘合剂的重量。ALD沉积方法甚至用于获得更低的重量含量,可能小于或等于5%,但特别是小于或等于3%或2%,或甚至小于或等于1%,甚至小于或等于0.05%,或甚至小于或等于0.01%。有利地,这些含量大于或等于1ppm。有利地,这些含量为1ppm至0.01%,或甚至为1ppm至0.05%,或甚至为1ppm至5%。因此,本发明具有以下优点:用少量的添加的化合物材料或甚至非常少量的材料获得非常有利的结果,而不必每次都准备完整批次,并且另外能够迭代地修改基础批次。

此外,重要的是要强调,本发明的方法能够获得添加的化合物的均匀分布或良好分散,并因此最终获得具有均匀性能(例如颜色)的陶瓷组件。应当注意,由于添加的元素在该方法的第二阶段P2之后沉积,因此例如直接沉积在颗粒上,添加的化合物通过所使用的沉积方法而分布在颗粒表面上,并因此均匀地分布在具有粘合剂的陶瓷粉末上。沉积的一致性能够将涂层分布在粉末上,并且在金属涂层的情况下,粉末的静电变小。它的聚集较少。添加的化合物将特别均匀地分布在最终的烧结陶瓷组件中。

此外,在具有粘合剂的粉末上而不是在不具有粘合剂的陶瓷粉末上进行涂覆的事实具有以下优点:在易于购得的材料和较大尺寸的颗粒上进行处理,使其更易于在沉积设备中进行回收。

在所有前述情况下,对在第四阶段结束时获得的物体的分析表明了,添加的化合物的均匀分布保留在最终的陶瓷组件中。如果直接在压制颗粒上进行PVD沉积,则陶瓷组件的微观结构会根据反映压制颗粒的微观结构的超结构显示出其他的化合物颗粒的有序分布(参见图2和图3,稍后进行评论)。作为变型,通过在沉积后增加磨损步骤,可以使添加的化合物的小颗粒的分布完全均匀(参见图4和图5)。在沉积到注塑原料上的情况下,特别是在通过注塑螺杆塑化熔融混合物的步骤中,使添加的化合物的颗粒在材料中的分布均匀化。因此,在所有情况下,陶瓷组件包括在其体积中均匀分布的添加的元素,这使其具有由该添加的元素在陶瓷组件中均匀分布而提供的性质。

最后,本发明的实施方式的沉积步骤E3具有以下主要优点:

-可以得到在组成和含量上完全可控并且含量非常少的添加的元素或化合物的添加,因此可以实现对添加的化合物的微量计量。

-能够最终获得添加的化合物在陶瓷组件中的均匀分布;

-能够添加多种其他化合物,与现有解决方案相比,提高了可能的其他化合物的数量,提高了提供具有某些性能的陶瓷组件的可能性;

-它能够可靠、可重复且清洁地沉积其他化合物。

下面通过实施例进行举例说明本发明,该实施例能够制造具有常规技术无法生产的色调的灰色陶瓷组件。在所有这些实施例中,添加的化合物是铂,其通过PVD沉积而沉积在压制粉末上。图6的表中汇总了所有获得的结果,尤其是颜色方面的结果。

第一实施例是基于使用颗粒形式的具有粘合剂的陶瓷粉末,其含有3mol%氧化钇稳定的氧化锆(TZ3Y)并且包含0.25重量%的氧化铝和3重量%的有机粘合剂(REF1)。将50g的这些颗粒置于包含铂阴极的PVD室的振动碗中。将PVD室抽真空,然后用氩等离子体溅射铂。电感耦合等离子体(ICP)分析能够测定这些先前脱脂颗粒的铂含量。由该实施例获得的样品总体上含有2.26重量%的铂含量。然后,在单轴压机上将获得的包衣颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。在烧结后,将陶瓷丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。图2是通过扫描电子显微镜获得的所得陶瓷丸粒的图像,其示出了铂颗粒(亮点)的分布。该图能够突出显示在微观上层结构中铂颗粒围绕旧压制颗粒的有序分布。在组件的尺度上,颗粒的分布是均匀的。

第二实施例是由颗粒形式的粘结压制粉末制成,该粘结压制粉末含有3mol%的氧化钇稳定的氧化锆(TZ3Y)并且包含0.25重量%的氧化铝和3重量%的有机粘合剂(REF1)。将50g的这些颗粒置于包含铂阴极的PVD室的振动碗中。将PVD室抽真空,然后用氩等离子体溅射铂。电感耦合等离子体(ICP)分析能够测定这些先前脱脂颗粒的铂含量。由该实施例获得的样品总体上含有0.11重量%的铂含量。然后,在单轴压机上将获得的包衣颗粒压制在圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。在烧结后,将丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。图3是通过扫描电子显微镜获得的所得陶瓷丸粒的图像,其示出了铂颗粒(亮点)在晶界处的分布。在组件的尺度上,这种分布是均匀的。由于铂的含量非常低,这些铂颗粒不太明显。

在第三实施例中,取出在实施实施例1时所获得的一部分粉末。接下来,增加脱脂步骤,然后进行研磨(混合、湿磨)和粘结处理。在该处理中,将0.47g的PVA、0.71g的PEG20000和170ml的DI(去离子)水加入到实施例1的39.4g的脱脂粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨1小时。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将如此获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。来自该实施例的样品总体而言仍含有与实施例1相同含量的2.26重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。图4是通过扫描电子显微镜获得的所获得的陶瓷丸粒的图像,其示出了铂颗粒(亮点)在氧化锆晶粒内的微观均匀分布。来自实施例1和实施例3的抛光陶瓷之间的颜色差异在视觉上是无法察觉的(ΔE<1),并且是在该装置给出的测量误差之内;因此,对于人眼来说,这两个样品中铂颗粒的分布就所得颜色而言被认为是等效的。

在第四实施例中,取出在执行第二实施例时获得的一部分粉末。接下来,增加脱脂步骤,然后进行研磨和粘结处理。在该处理中,将0.46g的PVA、0.69g的PEG 20000和166ml的DI(去离子)水加入到实施例2的38.5g的脱脂粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨1小时。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。来自该实施例的样品总体而言仍含有与实施例2相同含量的0.11重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。图5是通过扫描电子显微镜获得的所得陶瓷丸粒的图像,其示出了铂颗粒(亮点)在氧化锆晶粒内的微观均匀分布。由于铂的含量非常低,在这种规模下这些铂颗粒不太明显。来自实施例2和实施例4的抛光陶瓷之间的颜色差异在视觉上是无法察觉的(ΔE<1),并且是在该装置给出的测量误差之内;因此,据认为,对于人眼来说,这两个样品中铂颗粒的分布就所得颜色而言是等效的。

在第五实施例中,将在进行第三实施例时获得的3.32g粉末取出并脱脂,以便在进行研磨处理之前与96.68g的市售粉末(3mol%氧化钇稳定的氧化锆,脱脂)混合。然后将1.2g的PVA、1.8g的PEG 20000和200ml的DI(去离子)水加入到100g的所获得的粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。该实施例的样品含有0.075重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。

在第六实施例中,将在进行第三实施例时获得的2.21g粉末取出并脱脂,以便在进行研磨处理之前与97.79g的市售粉末(3mol%氧化钇稳定的氧化锆,脱脂)混合。然后将1.2g的PVA、1.8g的PEG 20000和200ml的DI(去离子)水加入到100g的所获得的粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。该实施例的样品含有0.05重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。

在第七实施例中,将在进行第三实施例时获得的0.77g粉末取出并脱脂,以便在进行研磨处理之前与99.23g的市售粉末(3mol%氧化钇稳定的氧化锆,脱脂)混合。然后将1.2g的PVA、1.8g的PEG 20000和200ml的DI(去离子)水加入到100g的所获得的粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。该实施例的样品含有0.02重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。

图6示出了前面七个实施例的结果。引人注意的是,所有这些实施例能够获得灰色陶瓷。因此,通常,本发明的一个实施方式有利地能够制造灰色陶瓷,其特征在于两个参数a*和b*为-1至1(包括端值)。此外,引人注意的是,色调随铂含量的变化而变化,如图7至图9所示的。

作为变型,本发明的一个实施方式能够制造灰色陶瓷组件,其特征在于,两个参数a*和b*为-3至3(包括端值),或甚至-2至2(包括端值),或甚至-0.5至0.5(包括端值)。

应当注意的是,添加铂之后的磨损能够更好地将铂分散在材料中(参见图2至图5),并且不会显著改变在这些实施例中获得的陶瓷的颜色。还观察到与磨损有关的样品密度非常轻微的增加。然而,这种磨损仍然是可选的。

自然地,本发明不限于制造包含铂作为添加的化合物的陶瓷组件。能够用除铂之外的其他化合物,例如,用不与陶瓷的其他组分或烧结气氛反应的铑、钯或任何其他灰色贵金属,来获得灰色。此外,本发明不限于制造灰色陶瓷组件。实际上,能够通过改变添加的化合物来获得多种颜色。因此,图10的表给出了通过根据本发明的实施方式的方法用各种添加的化合物获得的陶瓷组件的几个实施例。更具体而言,在基于3mol%氧化钇稳定的氧化锆的陶瓷注射成型原料(添加或不添加氧化铝)上直接进行通过PVD沉积对各种添加的化合物的沉积测试。观察到,添加铁Fe产生了黄色非常淡的陶瓷。在纯稳定的氧化锆中添加铬Cr也会产生带有轻微的红色倾向的黄色陶瓷。沉积在已添加2wt%氧化铝的氧化锆上的铬会产生较轻但较红的材料。添加钒V使陶瓷呈黄色,而添加铝Al对基色几乎没有影响。

可选地,制造方法可以包括在不具有粘合剂的情况下将另一种化合物添加到陶瓷粉末中的先前步骤E1,例如,根据上面提到的常规方法或根据本领域技术人员已知的其他技术(例如,通过盐沉淀)添加着色颜料或任何其他化合物。实际上,本发明与所有其他现有方法保持兼容,并且可以与其互补,例如用于将其富集。该步骤E1可以在制造过程中的任何适当时刻进行。

作为变型并且可选地,制造方法可以包括特别是通过原子层沉积ALD将另一添加的元素或化合物添加到具有粘合剂的陶瓷粉末中的先前步骤E1。特别地,ALD沉积步骤能够例如通过添加添加的金属化合物使陶瓷粉末的表面具有导电性。这具有限制陶瓷粉末与粘合剂团聚(特别是随后在PVD腔室内)的风险的优点,因为这种具有粘合剂的陶瓷粉末的颗粒具有静电性质,该静电性质倾向于将它们聚集在一起并自然形成团聚物,这对于用添加的化合物均匀涂覆而言是不利的。应当注意的是,该第一导电元件不需要覆盖粉末颗粒的整个表面即可有效。观察到,在沉积步骤E3期间,通过PVD沉积在具有粘合剂的粉末上沉积添加的化合物是通过ALD沉积所形成的第一薄层促进的,从而形成限制颗粒团聚的导电子层。应当注意的是,通过ALD沉积所沉积的化合物可以与通过PVD沉积所沉积的化合物相同。作为变型,通过ALD和通过PVD沉积的两种化合物是不同的,以便将其性质结合。

作为变型,因此可以在进行该方法的第二阶段P2之前,在不具有粘合剂的陶瓷粉末上进行经由先前步骤E1通过ALD沉积添加的元素或化合物。如此富集的陶瓷粉末可以在第二阶段P2期间经历连续的分散/湿磨步骤,以使其与有机化合物结合,然后对其喷雾干燥,由此在该方法的第二阶段P2结束时从中制备颗粒。因此,该第二阶段P2能够使所述添加的元素或化合物均匀分布。

如上所述,用于对陶瓷组件着色的现有技术解决方案是复杂的并且并不总是令人满意的。此外,当期望通过使用根据现有技术的颜料预先着色的陶瓷组件改变(甚至略微改变)色调时,用传统技术似乎很难做到,特别是因为颜料在烧结期间趋于彼此反应。因此,根据现有技术,改变有色陶瓷的强度(亮度)和/或颜色的色调是漫长而费力的:实际上,每次尝试都需要创建一批新的具有新化学成分的陶瓷粉末,然后制造注模原料,直至最终的(烧结和抛光的)陶瓷组件。

利用本发明的方法,进行该颜色或强度的这种改变变得容易得多。更一般而言,容易对陶瓷组件的性能进行任何其他修改。

因此,本发明的一个实施方式基于用于制造陶瓷粉末或陶瓷组件(特别是基于氧化锆和/或氧化铝和/或铝酸锶)的方法,该方法包括以下步骤:

-提供包含着色颜料或更通常至少一种添加的或添加的化合物的具有粘合剂的陶瓷粉末,从而能够通过由这种具有粘合剂的陶瓷粉末制造陶瓷组件而获得具有第一颜色或更通常具有第一性能的陶瓷组件;

-通过物理气相沉积PVD和/或通过化学气相沉积CVD和/或通过原子层沉积ALD在所述具有粘合剂的所述陶瓷粉末上沉积至少一种着色的或添加的元素或化合物E3;

-完成由包括沉积的添加的化合物的具有粘合剂的陶瓷粉末制造陶瓷组件以获得陶瓷组件,该陶瓷组件的颜色是与所述第一颜色不同的第二颜色,或更普遍地该陶瓷组件具有与第一性能不同的第二性能。

通过这种方法,通过添加根据本发明的实施方式的添加的化合物,可以容易地将由具有粘合剂的市售陶瓷粉末获得的第一性质改变成第二性质。由于本发明的该实施方式使用易于实施、控制和再现的步骤E3,因此容易进行多次测试以通过反复试验来获得陶瓷组件的期望的最终性能,而无需在陶瓷粉末制备阶段进行费力的干预。

因此,用于制造陶瓷组件的方法可以重复以下步骤:在所述具有粘合剂的陶瓷粉末上沉积至少一种添加的化合物,改变所述添加的化合物或甚至是添加的化合物本身的含量,并且完成陶瓷组件的制造,直到足够接近所需的结果为止。

在实践中,因此能够实现以下步骤:选择含有着色颜料的具有粘合剂的陶瓷粉末,从而能够获得接近所需第二颜色的第一颜色,然后通过添加其他着色化合物来改变颜色,直到它已经足够接近所需的颜色。如前所述,可以实施相同的方法来改变颜色以外的任何性能。

有利地,选择至少一种添加的化合物,以使其不与已经存在于具有粘合剂的陶瓷粉末中添加的化合物(例如着色颜料)反应。

存在于具有粘合剂的陶瓷粉末中的颜料可包含选自金属氧化物、稀土氧化物、铝酸钴和/或磷光颜料中的一种或多种元素。

在包含铝酸钴(蓝色颜料)的陶瓷组件的情况下,以下三个实施例(编号为实施例8至10)说明了此原理。结果显示在图11的表中。

在第八实施例中,首先使用含有0.25重量%的氧化铝的3mol%的氧化钇稳定的氧化锆(TZ3Y)的市售陶瓷粉末对陶瓷组件进行着色,在该市售陶瓷粉末中添加了3重量%的有机粘合剂以及通过常规湿法(REF2)得到的1重量%的CoAl2O4颜料。所得到的悬浮液通过喷雾干燥进行干燥和制粒。然后将颗粒压制以获得样品。对该样品进行脱脂和烧结以获得蓝色的陶瓷组件,其特征在于以下CIEL*a*b*参数(50.5;-0.7;-19.4)。

根据本发明的实施方式,首先使上述具有粘合剂的陶瓷粉末(REF2)进行脱脂;取出其中的99g。也对在第一实施例中获得的粉末进行脱脂;取出其中的1g。将两个取出的样品合并。然后将1.2g的PVA、1.8g的PEG 20000和200ml的DI水加入到100g的这种已改变的陶瓷粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最终,根据本领域技术人员已知的周期,将其在1450℃的空气中烧结两个小时。来自该第八实施例的样品含有0.02重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。然后记录修改后的颜色(参见图11)。

第九实施例首先考虑制造3mol%的氧化钇稳定的氧化锆(TZ3Y)粉末,该粉末包含3重量%的有机粘合剂以及0.5重量%的通过常规湿法(REF3)掺入的CoAl2O4颜料。所得到的悬浮液通过喷雾干燥进行干燥和制粒。然后将颗粒压制以获得样品。对该样品进行脱脂和烧结。所获得的陶瓷为蓝色,具有CIE L*a*b*参数(52.0;-1.9;-15.5)。

接下来,用于制造该基于氧化锆的陶瓷组件的颗粒(REF3)进行脱脂。将1g来自第一实施例的脱脂粉末加入99g的该脱脂陶瓷粉末中。随后,将1.2g的PVA、1.8g的PEG 20 000和200ml的去离子水加入到这100g的混合粉末中。将获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。来自该第九实施例的样品含有0.02重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。因此,陶瓷组件具有已修改的颜色(请参见图11中显示的参数)。

在第十实施例中,陶瓷组件由3mol%的氧化钇稳定的氧化锆(TZ3Y)的商业粉末形成,该商业粉末含有通过常规湿法(REF3)添加的0.25重量%的氧化铝、3重量%的有机粘合剂和0.5重量%的CoAl2O4颜料。所得到的悬浮液通过喷雾干燥进行干燥和制粒。然后将颗粒压制以获得样品。对该样品进行脱脂和烧结。所获得的陶瓷为蓝色,具有CIE L*a*b*参数(52.0;-1.9;-15.5)。

根据实施方式,首先对用于制造前述陶瓷组件的颗粒(REF3)进行脱脂。接下来,将1.8g来自实施例1的脱脂的陶瓷粉末加入到98.2g的该经脱脂的陶瓷粉末中。然后将1.2g的PVA、1.8g的PEG 20000和200ml的去离子水加入到100g的已改变的陶瓷粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的空气中烧结2小时。因此,来自第十实施例的样品包含0.036重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。因此,陶瓷组件具有已修改的颜色(请参见图11中显示的参数)。

前面的三个实施例是基于本发明实施方式的应用,从而易于从着色的陶瓷粉末开始获得所需的颜色,该陶瓷粉末的颜色最终被改变。

更一般而言,本发明的实施方式易于与将至少一种化合物添加到具有粘合剂的陶瓷粉末中的所有其他技术兼容。因此,本发明可以与任何其他技术,特别是与常规方法结合,以获得具有新颖性能的任何类型的陶瓷。

举例来说,第十一实施例考虑了3mol%氧化钇稳定的氧化锆的陶瓷粉,通过常规湿法(REF4)向其中添加了30重量%的发光颜料Sr4Al14O25:Dy和3%的有机粘合剂。所得到的悬浮液通过喷雾干燥进行干燥和制粒。将颗粒压制,在空气中脱脂,并在特定的气氛下在1450℃下烧结2小时。该常规方法能够获得具有由CIE L*a*b*参数(94.0;-4.7;6.7)定义的颜色的陶瓷。

作为本发明的实施方式的变型,上面使用的复合陶瓷粉末的颗粒(REF4)是脱脂的。将1g来自第一实施例的脱脂粉末加入99g的该粉末中。随后,将1.2g的PVA、1.8g的PEG20000和200ml的去离子水加入到100g的所获得的粉末中。将所得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨70分钟。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后,将其在1450℃的特定气氛下烧结2小时。来自该第十一实施例的样品含有0.02重量%的铂。在烧结后,将丸粒的表面研磨,然后抛光。因此,通过本发明与常规方法的组合,这产生了着色和发光的陶瓷组件,其精确性能总结在图12的表中。作为变型,可以通过添加其他添加的元素或化合物来将其他颜色赋予这种磷光或发光的陶瓷组件。

前述实施例基于使用添加的化合物以获得有色陶瓷组件,因为这样的实施例具有以因视觉化而非常有意义的方式地说明本发明的优点。

下面的实施例能够通过经由ALD方法的特定使用来在不具有粘合剂的粉末上制造具有常规技术无法制造的色调的灰色陶瓷组件。所有获得的结果,特别是就颜色而言的结果,均总结在图15的表格中。

第一实施例基于使用除去粘合剂的陶瓷粉末,该陶瓷粉末由3mol%的氧化钇稳定的氧化锆(TZ3YS)组成。将10g的这种粉末放入ALD室的振动碗中,将其排空,以开始通过ALD方法进行铂的沉积。进行50次沉积循环。

然后将如此涂覆的陶瓷粉末进行研磨(混合、湿磨)和粘结处理。在这种处理中,将0.6g的PVA、0.9g的PEG 20000和116ml的去离子水添加到50.4g的所述铂涂覆的陶瓷粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨/碾磨2小时。然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将如此获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后将其在1450℃的空气中烧结2小时。在烧结后,将陶瓷丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。图13是通过扫描电子显微镜(SEM)获得的烧结陶瓷丸粒的图像,其示出了铂颗粒(亮点)的分布。该图能够证明铂颗粒的均匀分布。具体而言,在组件的尺寸上,这些颗粒的分布被认为是均匀的。所产生的颜色在肉眼看来是均匀的。颜色和组成在图15的表格中以编号1ALD50给出。

第二实施例基于使用除去粘合剂的陶瓷粉末,该陶瓷粉末由3mol%的氧化钇稳定的氧化锆(TZ3YS)组成。将10g的这种粉末放入ALD室的振动碗中,将其排空,以开始通过ALD方法进行铂的沉积。进行200次沉积循环。然后将如此涂覆的陶瓷粉末进行研磨(混合、湿磨)和粘结处理。在这种处理中,将0.6g的PVA、0.9g的PEG 20000和120ml的去离子水添加到50.4g的所述铂涂覆的陶瓷粉末中。将如此获得的悬浮液置于具有1kg氧化锆珠的研磨机的氧化锆碗中,以400rpm的速度研磨/碾磨2小时。

然后将悬浮液回收,以便通过使用“喷雾干燥器”的喷雾干燥进行干燥和制粒。然后,在单轴压机上将如此获得的颗粒压制到圆柱形模具中。将得到的丸粒在空气中于600℃下脱脂18小时。最后将其在1450℃的空气中烧结2小时。在烧结后,将陶瓷丸粒的表面研磨,然后抛光。所获得的陶瓷组件为灰色。图14是通过扫描电子显微镜(SEM)获得的烧结陶瓷丸粒的图像,其示出了铂颗粒(亮点)的分布。该图能够证明铂颗粒的均匀分布。具体而言,在组件的尺寸上,这些颗粒的分布被认为是均匀的。所产生的颜色在肉眼看来是均匀的。颜色和组成在图15的表格中以编号2ALD 200给出。

图15中的表示出了前面两个实施例的结果。引人注意的是,所有这些实施例能够获得灰色陶瓷。因此,通常,本发明的一个实施方式有利地能够制造灰色陶瓷,其特征在于两个参数a*和b*为-1至1(包括端值)。

作为变型,本发明的一个实施方式能够制造灰色陶瓷组件,其特征在于,两个参数a*和b*为-3至3(包括端值),或甚至-2至2(包括端值),或甚至-0.5至0.5(包括端值)。

此外,陶瓷组件的颜色对于钟表或珠宝部件特别重要,因为它可以实现所需的美学效果。因此,本发明对于制造钟表或珠宝部件特别有利。该钟表部件尤其可以是表圈、表盘、指示部、上弦表冠、按钮或任何其他钟表外壳元件或钟表机芯元件。本发明还涉及包括这种钟表组件的钟表,特别是手表。

自然地,本发明不限于特定的颜色,也不限于陶瓷组件的给定性能。实际上,本发明的概念是增加和简化陶瓷组件的可能富集,并且本发明最终使得能够制造多种新颖的陶瓷组件。

特别地,通过本发明的实施方式获得的陶瓷组件包括至少一个特定性能,该性能是由分布在陶瓷组件中的非常少量的添加的化合物获得的。该非常小的量相对于最终的陶瓷化合物的总重量小于或等于5重量%,或小于或等于3重量%,或小于或等于1重量%,或小于或等于0.05重量%,或小于或等于0.01重量%。此外,该含量将有利地大于或等于1ppm,或大于或等于10ppm。

此外,本发明还涉及一种用于制造陶瓷组件的装置,其中,该装置使用陶瓷组件的制造方法。为此,该制造装置包括用于执行物理气相沉积(PVD)或化学气相沉积(CVD)或原子层沉积(ALD)的腔室。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于土工聚合物的无机泡沫

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!