一种纳米级Fe9Ni9S16基电催化剂的制备方法

文档序号:1767495 发布日期:2019-12-03 浏览:31次 >En<

阅读说明:本技术 一种纳米级Fe9Ni9S16基电催化剂的制备方法 (A kind of nanoscale Fe9Ni9S16The preparation method of base elctro-catalyst ) 是由 刘岗 张露露 杨勇强 成会明 于 2018-05-25 设计创作,主要内容包括:本发明涉及材料制备与电催化、电池储能领域,具体为一种纳米级Fe_9Ni_9S_(16)基电催化剂的制备方法,目的为发展新型、廉价、稳定、高效的电催化和电池储能用电极材料,并解决现有该材料制备方法工序复杂、高温、高耗能、大粒径等不利于大规模应用的问题。本发明通过将铁盐、镍盐、有机硫源和导电载体混合后,在惰性气体中适当温度下反应的方法,制备出纳米级的纯相硫镍铁矿相Fe-Ni-S固溶体Fe_9Ni_9S_(16)。本发明中所得到的材料制备方法简单、温度温和、能耗小、成本低,适用于大规模制备,在电催化和电池储能等领域具有广阔的应用前景。(The present invention relates to material preparations and electro-catalysis, battery energy storage field, specially a kind of nanoscale Fe 9 Ni 9 S 16 The preparation method of base elctro-catalyst, purpose is Development of Novel, cheap, stable, efficient electro-catalysis and battery energy storage electrode material, and solves the problems, such as the existing material preparation method complex procedures, high temperature, highly energy-consuming, big partial size etc. and be unfavorable for large-scale application.After the present invention is by mixing molysite, nickel salt, organic sulphur source and conductive carrier, the method reacted under proper temperature in inert gas prepares nanoscale pure phase pentlandite phase Fe-Ni-S solid solution Fe 9 Ni 9 S 16 .Obtained material preparation method is simple in the present invention, temperature is mild, energy consumption is small, at low cost, is suitable for large scale preparation, has broad application prospects in the fields such as electro-catalysis and battery energy storage.)

一种纳米级Fe9Ni9S16基电催化剂的制备方法

技术领域

本发明涉及材料制备与电催化、电池储能领域,具体为一种纳米级Fe9Ni9S16基电催化剂的制备方法。

背景技术

电化学分解水产氧反应是电解水、太阳能裂解水装置和可充电金属-空气电池等绿色、高效能源转化和储能技术中重要的半反应。多达四电子参与的多步反应过程使得产氧反应面临较高的热力学势垒,需要较高的过电势才能产生清洁燃料生产所需要的电流密度(10mA/cm2)。RuO2、IrO2等贵金属基产氧电催化剂虽然有着较高的活性,但较低的地壳储量和较高的市场价格限制其更大规模的应用。高效、稳定、廉价的电解水产氧催化剂的开发对清洁能源与储能等相关产业以及基础研究领域的发展和研究有着重要意义。第四周期过渡金属(如:Mn、Fe、Co、Ni等)的氢氧化物、磷化物、氧族化合物和其他非金属电催化剂的电催化产氧性能也因此被广泛研究。近年的研究表明,在镍基电催化材料的基础上,Fe与Ni两种原子有序耦合得到更加有力于产氧的电子结构,并发展出(如:FeNi3N,FeNiP等)单相固溶体[文献1:BoZhang,Chunhui Xiao,Sanmu Xie,Jin Liang,Xu Chen,Yuhai Tang,Iron-Nickel Nitride Nanostructures in Situ Grown on Surface-Redox Etching NickelFoam:Efficient and Ultrasustainable Electrocatalysts for Overall WaterSplitting,Chem.Mater.2016,28,6934-6941.文献2:Manman Qian,Shengsheng Cui,Daochuan Jiang,Lei Zhang,Pingwu Du,Highly Effcient and Stable Water-OxidationElectrocatalysis with a Very Low Overpotential using FeNiP SubstitutionalSolid-SolutionNanoplateArrays,Adv.Mater.2017,1704075],表现出优异的电催化产氧性能。对于镍的硫化物(如:Ni3S2),本身具有较好的电催化产氧性能,而且掺杂Fe后的Ni3S2[文献3:NingyanCheng,QianLiu,AbdullahM.Asiri,WeiXing,Xuping Sun,A Fe-dopedNi3S2particle film as a high-efficiency robust oxygen evolution electrode withvery high currentdensity,J.Mater.Chem.A,2015,3,23207–23212]性能显著提高。然而,由于Fe在其中为掺杂原子,存在结构和组分的不确定性,并因此带来的不稳定性成为致命短板[文献4:Cheng-Zong Yuan,Zhong-Ti Sun,Yi-Fan Jiang,Zheng-KunYang,Nan Jiang,Zhi-Wei Zhao,UmairYaqub Qazi,Wen-Hua Zhang,An-Wu Xu,One-Step In Situ Growthof Iron–Nickel Sulfde Nanosheets on FeNi Alloy Foils:High-Performance andSelf-Supported Electrodes for Water Oxidation,small 2017,13,1604161],而目前尚无纯相Fe-Ni-S基电催化产氧催化剂的可控制备方法。另一方面,Konkena等[文献5:Bharathi Konkena1,Kai junge Puring,Ilya Sinev,Stefan Piontek,OleksiyKhavryuchenko,Johannes P.Du¨rholt,Rochus Schmid,Harun Tu¨ysu¨z,Martin Muhler,Wolfgang Schuhmann&Ulf-PeterApfel,Pentlanditerocks as sustainable andstableefficient electrocatalysts forhydrogen generatio,Nat.Commun.7:12269]于2016年发现天然硫镍铁矿中的Fe4.5Ni4.5S8有着非常高的电催化产氢活性,在直接使用天然矿石制备的电极用于产氢反应时过电势可低至280mV;同一课题组的Stefan等[文献6:StefanPiontek,Corina Andronescu,Aleksandr Zaichenko,Bharathi Konkena,KaijungePuring,Bernd Marler,Hendrik Antoni,Ilya Sinev,Martin Muhler,DoreenMollenhauer,Beatriz Roldan Cuenya,Wolfgang Schuhmann,Ulf-Peter Apfel,Influence ofthe Fe:Ni Ratio and Reaction Temperature on the Efficiency of(FexNi1-x)9S8Electrocatalysts Applied in the HydrogenEvolutionReaction,ACSCatal.2018,8,987-996]进一步报道1100℃的高温反应,利用单质Fe,单质Ni和单质S为原料,按相应的原子配比制备出的Fe4.5Ni4.5S8也具有优异的电催化产氢性能。然而,无论是在天然矿石中还是高温反应所制备出的Fe4.5Ni4.5S8,较大的颗粒尺寸限制比表面积等影响电催化反应的重要因素,苛刻的获得方式限制对该材料的进一步研究,该材料的电催化产氧活性也一直未见诸报道。综合以上因素,纳米尺度的Fe-Ni-S单相固溶体的制备方法和其电催化产氧性能的研究是当前亟需的课题。

发明内容

本发明的目的在于提供一种高活性、高稳定性纳米级Fe9Ni9S16基电催化剂的制备方法,为了发展新型、廉价、稳定、高效的电催化和电池储能用电极材料,并解决现有该材料制备方法工序复杂、高温、高耗能、大粒径等不利于大规模应用的问题。

本发明的技术方案是:

一种纳米级Fe9Ni9S16基电催化剂的制备方法,选用含铁、含镍的前驱体与有机硫源作为起始原料,将其与导电载体充分混合后,在非氧化性气氛中进行加热反应,即得到导电载体负载的纳米级纯相硫镍铁矿相Fe-Ni-S固溶体Fe9Ni9S16电催化剂。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,所选用的含铁和含镍的前驱体为:由Fe和Ni的阳离子与无机酸或有机酸的阴离子组成的盐类,原料中铁原子与镍原子的物质的量比为1:1~1:3之间。

3、按照权利要求2所述的纳米级Fe9Ni9S16基电催化剂的制备方法,其特征在于,无机酸为盐酸、硫酸、硝酸、磷酸或氢氟酸,有机酸为乙酸或乳酸,盐类为氯化亚铁、氯化高铁、硝酸镍或乙酸镍。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,所选用的有机硫源为硫脲、硫脲衍生物、硫氰酸或硫氰酸衍生物,原料中硫脲的物质的量为铁、镍原子物质的量和的5倍以上。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,硫脲衍生物为苯硫脲,硫氰酸衍生物为三聚硫氰酸或硫氰酸盐。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,将含铁、含镍的前驱体、有机硫源与导电载体进行混合的方法为:直接固体研磨、溶解后搅拌混合-蒸发或溶解后搅拌混合-冷冻干燥。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,导电载体为商业化炭黑XC-72R、商业化碳管或商业化石墨烯,导电载体与Fe9Ni9S16的质量比例为10:1~1:10之间。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,反应时所需的非氧化性气氛为N2、Ar、He或真空。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,反应温度在200到1200℃之间,反应时间为10min到24h之间。

所述的纳米级Fe9Ni9S16基电催化剂的制备方法,纳米级Fe9Ni9S16基电催化剂的尺寸范围为5~500nm。

本发明的设计思想如下:

基于产业化大规模应用和高的电催化分解水活性对材料的组制备工艺与物性的要求,利用廉价、易得的原料,通过简便的方法得到小尺寸、易分散、兼容不同基体、由廉价元素组成的电催化剂是本发明的设计思想。

本发明的优点及有益效果是:

1、本发明所用前驱体为Fe盐、Ni盐和简单有机硫源(如:硫脲),成本低廉,获取方式多样,有利于大幅度降低产品的原料成本。

2、本发明所采用的方法为在200~900℃的惰性气体中,反应条件较为温和、耗能低、工艺简单、操作简便,相比已有方法能够显著降低产品的制备成本。

3、本发明所得的产品为单相固溶体,并非掺杂态的单相,因此具有更高的结构与性能的稳定性,有可能实现更稳定的电催化产氧性能。

4、本发明所得的产品尺寸为纳米级别,相比已有报道比表面积更高,有利于对微观信息的深度分析,更有利于应用于其他领域,如:作为锂电池电极材料等。

附图说明

图1:以FeCl3·6H2O、NiCl2·6H2O、硫脲为前驱体,以碳纳米管为载体,经过混合、冻干后,在600℃下的50sccmAr气流中反应1h,所制备的Fe9Ni9S16的XRD图谱。(a)为按照上述条件制备的Fe9Ni9S16,(b)为上述原料和载体的混合物在600℃下的20sccm的H2S气流中反应1h所得产物的XRD谱。其中,横坐标为衍射角2θ,单位为角度(degree);纵坐标为衍射峰强度(a.u.)。

图2:以FeCl3·6H2O、NiCl2·6H2O、硫脲为前驱体,以(a,b)碳纳米管和(c,d)商业化导电添加剂XC-72R制备的Fe9Ni9S16在TEM下的形貌和HRTEM图像。

图3:以FeCl3·6H2O、NiCl2·6H2O、硫脲为前驱体,以(a)碳纳米管,(b)XC-72R载体,比较其电催化产氧性能曲线。

图4:以FeCl3·6H2O、NiCl2·6H2O、硫脲为前驱体,以XC-72R为载体,经过混合、冻干后,在600℃下的50sccmAr气流中反应1h,在1M(摩尔浓度)KOH溶液中,利用旋转圆盘电极装置,使用恒电流法测试Fe9Ni9S16@XC-72R电催化剂的稳定性曲线。在测试过程中,OER电流恒定为10mA/cm2。其中,横坐标Time为时间(s);纵坐标Overpotential为过电位(V)。

具体实施方式

在具体实施过程中,本发明通过将铁盐、镍盐、有机硫源和导电载体混合后,在惰性气体中适当温度下反应的方法,制备出纳米级的纯相硫镍铁矿相Fe-Ni-S固溶体Fe9Ni9S16,具体步骤如下:

(1)称取50mg硫脲,溶解于10mL去离子水中,加入13mgFeCl3·6H2O,12mg NiCl2·6H2O,继续搅拌以溶解完全;

(2)在上述溶液中加入1mL乙醇,然后加入25mg导电载体,继续搅拌,实现导电载体的充分分散;

(3)上述混合体系搅拌12h后,利用液氮对溶液进行急冷,并进行冷冻干燥,将冻干的混合原料在玛瑙研钵中充分研磨,研磨时间为30min以上;

(4)取上述研磨后的原料-载体混合物,放入烧舟,置于通有50sccmAr的管式炉中,设置升温程序为10度每分钟升至600℃,保温1h,保温完毕后,随炉冷却至室温,关闭氩气,取出样品即可得到负载在导电载体上的Fe9Ni9S16

下面,通过实施例和附图对本发明进一步详细阐述。

实施例1

称取13mgFeCl3·6H2O、12mgNiCl2·6H2O、50mg硫脲为前驱体,溶解于10mL去离子水中,加入1mL乙醇后,再加入25mg碳纳米管,继续搅拌12h后,利用液氮冷冻,并进行冷冻干燥,取冻干后的样品充分研磨,然后放入烧舟中,置于600℃下的50sccm Ar气流中反应1h,利用X射线衍射(XRD)研究所得最终样品的相组成。

X-射线测试设备及条件:RigakuD/max2500,CuKα射线。如图1所示样品的XRD图谱,从图可以看出,衍射图谱与PDF卡片75-2024吻合,表明该样品的相结构为Fe9Ni9S16

实施例2

称取13mgFeCl3·6H2O、12mgNiCl2·6H2O、50mg硫脲为前驱体,溶解于10mL去离子水中,加入1mL乙醇后,再加入25mg碳纳米管或25mg商业化炭黑(XC-72R),继续搅拌12h后,利用液氮冷冻,并进行冷冻干燥,取冻干后的样品充分研磨,然后放入烧舟中,置于600℃下的50sccmAr气流中反应1h,然后使用TEM表征其形貌和微观结构。

TEM表征设备:Tencai-F20,所用电压为200kV。如图2(a,b)和(c,d)分别为使用碳纳米管和使用XC-72R为载体时所得样品的形貌。从两个样品的形貌可知,除了碳管和碳球两种载体的区别,活性物质Fe9Ni9S16在两种载体上的形貌基本一致,暴露的晶面主要为(111),证明该合成方法的稳定性。同时,样品尺寸为40nm。

实施例3

称取13mgFeCl3·6H2O、12mgNiCl2·6H2O、50mg硫脲为前驱体,溶解于10mL去离子水中,加入1mL乙醇后,再加入25mgXC-72R,继续搅拌12h后,利用液氮冷冻,并进行冷冻干燥,取冻干后的样品充分研磨,然后放入烧舟中,置于600℃下的50sccmAr气流中反应1h,然后测试其电催化产氧活性。

电催化产氧测试条件:5mg样品首先分散在1mL的浓度25vol%乙醇水溶液中,并滴入30μL全氟化离子聚合物(Nafion),然后分多次滴20μL到直径为5mm的旋转圆盘电极上,自然干燥后,置于pine公司生产的旋转圆盘电极装置上,电极转速为1600rpm,使用EC-LabVSP300电化学工作站进行测试,电压扫描速度为5mV/s,测试结果见图3,从图中可以看出,Fe9Ni9S16@XC-72R在10mAcm2时的产氧过电势为258mV。

实施例4

称取13mgFeCl3·6H2O、12mgNiCl2·6H2O、50mg硫脲为前驱体,溶解于10mL去离子水中,加入1mL乙醇后,再加入25mgXC-72R,继续搅拌12h后,利用液氮冷冻,并进行冷冻干燥,取冻干后的样品充分研磨,然后放入烧舟中,置于600℃下的50sccmAr气流中反应1h,然后测试其电催化产氧活性。

稳定性测试条件:如图4所示,在1MKOH溶液中,利用旋转圆盘电极装置,使用恒电流法测试Fe9Ni9S16@XC-72R电催化剂的稳定性。在测试过程中,OER电流恒定为10mA/cm2;从图中可以看出,当恒定电流密度为10mA/cm2时,经过长达12h的恒电流稳定性测试,所需过电势的仅从最开始的270mV增加到280mV(未考虑溶液电阻修正)左右,增加量在10mV之内,表明Fe9Ni9S16@XC-72R具有非常稳定的电催化性能。

实施例结果表明,本发明中所得到的材料制备方法简单、温度温和、能耗小、成本低,适用于大规模制备,在电催化和电池储能等领域具有广阔的应用前景。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!