一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法

文档序号:1767496 发布日期:2019-12-03 浏览:38次 >En<

阅读说明:本技术 一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法 (A kind of preparation method of nitrogen-doped carbon nano-array-nickel-ferric spinel analysis oxygen electrode ) 是由 李�瑞 徐劲松 巫泉文 把静文 闫霞艳 唐涛 于 2019-08-13 设计创作,主要内容包括:本发明公开了一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法,解决现有技术中存在的氮掺杂碳基底不容易制备纳米阵列结构,水滑石结构易聚集,制备方法涉及有毒有害物质的问题。本发明包括:(1)采用离子注入方法制备氮掺杂碳纳米阵列;(2)以氮掺杂碳纳米阵列、铂片、银/氯化银电极分别作为工作电极、对电极、参比电极,恒电位沉积制备氮掺杂碳纳米阵列-镍铁水滑石复合电极。本发明以绿色环保的方式获得了氮掺杂碳纳米阵列-镍铁水滑石析氧电极,并实现了基底表面结构的调控,为电解水获取氢能的研究提供了良好的前置基础,因此,其适于推广应用。(The invention discloses a kind of nitrogen-doped carbon nano-array-nickel-ferric spinel analysis oxygen electrode preparation methods, nitrogen-doped carbon substrate existing in the prior art is solved to be not easy to prepare nano array structure, hydrotalcite structure is easily assembled, and preparation method is involved in the problems, such as poisonous and harmful substance.The present invention includes: that (1) uses ion injection method to prepare nitrogen-doped carbon nano-array;(2) using nitrogen-doped carbon nano-array, platinized platinum, silver/silver chloride electrode as working electrode, to electrode, reference electrode, potentiostatic electrodeposition prepares nitrogen-doped carbon nano-array-nickel-ferric spinel combination electrode.The present invention obtains nitrogen-doped carbon nano-array-nickel-ferric spinel analysis oxygen electrode in environmentally protective mode, and realizes the regulation of substrate surface structure, and the research for obtaining Hydrogen Energy for electrolysis water provides good antecedent basis, therefore, is suitable for popularization and application.)

一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法

技术领域

本发明属于纳米复合材料技术领域,具体涉及一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法。

背景技术

电解水方法是获取氢气和氧气的有效途径。然而,析氧反应作为电解水的一个半反应,其动力学过程涉及四电子过程,通常反应缓慢,需要较高的过电位,严重阻碍电解水的大规模实际应用。尽管贵金属催化剂(如氧化铱、氧化钌)展示出良好的析氧反应催化活性,但是其较低的储量、昂贵的价格和较差的稳定性制约了其实际应用。近年来,过渡金属基催化剂特别是镍铁水滑石结构由于低廉的价格和较高的活性及稳定性而被用于析氧反应催化中。

由于过渡金属基催化剂通常具有较高的电阻,因而实际应用中通常将其负载在碳材料上使用。而将镍铁水滑石结构负载在氮掺杂碳基底上可有效促进其分散,从而获得更高的电化学活性面积,并增强其稳定性。构造氮掺杂碳-镍铁水滑石自支撑结构则可进一步排除化学粘结剂的影响,促进电荷和物质传输过程。然而,目前的氮掺杂碳材料的制备方法通常涉及氨水、硝酸等有毒有害物质;另外,制备的氮掺杂碳自支撑材料表面通常较为平整,比表面积较小,不利于水滑石结构的分散,且缺乏适合气体输运的纳米阵列结构,影响了催化体系的活性。

发明内容

本发明的目的在于提供一种氮掺杂碳纳米阵列-镍铁水滑石复合析氧电极的制备方法,主要解决现有技术中存在的氮掺杂碳基底不容易制备纳米阵列结构,水滑石结构易聚集,制备方法涉及有毒有害物质的问题。

为实现上述目的,本发明采用的技术方案如下:

一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法,包括以下步骤:

(S1)将石墨箔置于束线离子注入设备中,在氮气气氛中,使用考夫曼气体离子源,在30-60kV条件下进行照射,即得到氮掺杂碳纳米阵列基底;

(S2)将得到的氮掺杂炭米阵列基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在可溶二价镍盐及三价铁盐组成的混合溶液中进行恒电位沉积60s,沉积电位为-1.4V--0.8V,洗涤除去残留盐类,即得到氮掺杂碳纳米阵列-镍铁水滑石析氧电极。.

进一步地,所述步骤(S1)中照射时间为15-120min。

进一步地,所述步骤(S2)中可溶性二价镍盐为硫酸镍、硝酸镍或氯化镍的一种或多种,二价镍离子浓度为10-200mmol/L。

进一步地,所述步骤(S2)中可溶性三价铁盐为硫酸铁、硝酸铁或氯化铁的一种或多种,三价铁离子浓度为2-100mmol/L。

与现有技术相比,本发明具有以下有益效果:

本发明制备了一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极。相比于其他制备氮掺杂碳材料的方法而言,本方法一步实现了石墨箔的氮掺杂和获得表面纳米阵列结构的目的,实现了表面形貌的控制,并增强了其亲水性;且本方法的氮源为氮气,不涉及氨水、硝酸等有毒有害物质。

由于电沉积制备的镍铁水滑石尺寸很小,贴附在氮掺杂碳基底表面,复合电极的表面结构保留了纳米阵列结构。该结构可有效促进电解质和气体产物的输运,提高催化活性。本方法制备的氮掺杂碳材料中氮含量高,其与镍铁水滑石结构的相互作用可促进水滑石结构的分散,并提高镍元素的价态,增强催化活性。

本发明以绿色环保的方式获得了氮掺杂碳纳米阵列-镍铁水滑石析氧电极,并实现了基底表面结构的调控,为电解水获取氢能的研究提供了良好的前置基础,因此,其适于推广应用。

附图说明

图1为本发明的流程示意图。

图2为本发明-实施例1中氮掺杂碳纳米阵列-镍铁水滑石析氧电极的(a,b)扫描电镜及(c,d)透射电镜照片。

图3为本发明-实施例1中氮掺杂碳纳米阵列-镍铁水滑石析氧电极的(a)拉曼光谱和(b)C1s,(c)Ni 2p,(d)Fe 2p的X光电子能谱结果示意图。

图4为本发明-实施例1中氮掺杂碳纳米阵列-镍铁水滑石析氧电极的析氧反应催化性能及稳定性测试结果。

具体实施方式

下面结合附图说明和实施例对本发明作进一步说明,本发明的方式包括但不仅限于以下实施例。

本发明提供了一种氮掺杂碳纳米阵列-镍铁水滑石析氧电极的制备方法,具有制备方式简单、操作便捷、无污染的优点。本发明的主要设计思想是一步实现石墨箔的氮掺杂和表面纳米阵列结构制备,再选择电沉积法获得镍铁水滑石且不影响纳米阵列的形貌。其主要流程如图1所示,包括:一、制备氮掺杂碳纳米阵列;二、制备氮掺杂碳纳米阵列-镍铁水滑石析氧电极。

下面依次对这二个主要过程进行介绍。

一、制备氮掺杂碳纳米阵列

本发明中,对氮掺杂碳纳米阵列结构的制备,主要是通过离子注入的方式实现,具体为:将石墨箔置于束线离子注入设备中,在氮气气氛中,使用考夫曼气体离子源,在30-60kV条件下进行照射,即得到氮掺杂碳纳米阵列基底。采用离子注入方法制备氮掺杂碳材料,无需有毒有害氮源,制备速度较快,且可调控获得纳米阵列结构。

二、制备氮掺杂碳纳米阵列-镍铁水滑石析氧电极

本发明中,将镍铁水滑石负载在氮掺杂碳纳米阵列上所采用的方式具体为:将得到的氮掺杂碳纳米阵列基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在镍盐及铁盐混合溶液中进行恒电位沉积,洗涤除去残留盐类,即得到氮掺杂碳纳米阵列-镍铁水滑石析氧电极。

本发明反应操作简单,无污染,并且可实现大批量生产,下面针对本发明的技术方案列举几个实际案例进行说明。

实施例1

将石墨箔置于束线离子注入设备中,在氮气气氛中,使用考夫曼气体离子源在50kV条件下进行照射50min,即得到氮掺杂碳纳米阵列。将得到的氮掺杂碳纳米阵列基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在40mM硫酸镍及5mM硫酸铁组成的混合溶液中进行恒电位沉积,沉积电位为-1.2V,沉积时间为60s,洗涤除去残留盐类,即得到氮掺杂碳纳米阵列-镍铁水滑石析氧电极。.

由图2中(a,b)可见,本发明所制备的氮掺杂碳纳米阵列-镍铁水滑石析氧电极表面为分布均匀的纳米阵列。由图2中(c)可见,镍铁水滑石结构尺寸为10nm左右,且贴附在碳平面上。由图2中(d)可见,镍铁水滑石均匀的分散在碳平面上。进一步拉曼测试表明,改复合电极中碳缺陷多,且观察到明显的Ni2+-O-Fe2+峰(460cm-1)及Fe3+-O-Fe2+峰(545cm-1)(图3a)。X光电子能谱也观察到了镍、铁元素的存在(图3b-d)。由图4可知,该复合电极在电流密度为10mA cm-2时过电位为0.223V,且电流流密度在100h测试后保持98%的电流密度。

实施例2

将石墨箔置于束线离子注入设备中,在氮气气氛中,使用考夫曼气体离子源在30kV条件下进行照射60min,即得到氮掺杂碳纳米阵列。将得到的氮掺杂碳纳米阵列基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在90mM硫酸镍及5mM硫酸铁组成的混合溶液中进行恒电位沉积,沉积电位为-1.1V,沉积时间为60s,洗涤除去残留盐类,即得到氮掺杂碳纳米阵列-镍铁水滑石析氧电极。.

实施例3

将石墨箔置于束线离子注入设备中,在氮气气氛中,使用考夫曼气体离子源在60kV条件下进行照射30min,即得到氮掺杂碳纳米阵列。将得到的氮掺杂碳纳米阵列基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在80mM硫酸镍及10mM硫酸铁组成的混合溶液中进行恒电位沉积,沉积电位为-1.2V,沉积时间为60s,洗涤除去残留盐类,即得到氮掺杂碳纳米阵列-镍铁水滑石析氧电极。.

实施例4

将石墨箔置于束线离子注入设备中,在氮气气氛中,使用考夫曼气体离子源在50kV条件下进行照射90min,即得到氮掺杂碳纳米阵列。将得到的氮掺杂碳纳米阵列基底作为工作电极,铂电极为对电极,银/氯化银电极为工作电极,在30mM氯化镍及20mM氯化铁组成的混合溶液中进行恒电位沉积,沉积电位为-1.1V,沉积时间为60s,洗涤除去残留盐类,即得到氮掺杂碳纳米阵列-镍铁水滑石析氧电极。

上述实施例仅为本发明的优选实施方案之一,不应当用于限制本发明的保护范围,但凡在本发明的主题设计思想和精神上做出毫无意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种Cp*Co(CO)I_2负载钴掺杂氧化锌光阳极纳米阵列的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!