一种用于检测锌离子的近红外荧光探针及其制备方法和应用

文档序号:1855919 发布日期:2021-11-19 浏览:28次 >En<

阅读说明:本技术 一种用于检测锌离子的近红外荧光探针及其制备方法和应用 (Near-infrared fluorescent probe for detecting zinc ions and preparation method and application thereof ) 是由 许志红 周起航 杨莉 刘高兵 杨涵熙 许泗林 许锐杰 高志颖 段颖颖 潘明霞 于 2021-08-24 设计创作,主要内容包括:本发明公开一种用于检测锌离子的近红外荧光探针及其制备方法和应用,属于有机合成技术领域,所述荧光探针以罗丹明半花菁为荧光团,7-羟基-4-甲基香豆素醛为识别基团,实现了对锌离子的特异性识别响应,具体结构式如下:;探针本身荧光极弱,与锌离子反应后荧光增强,溶液由无色变为绿色,可裸眼识别,且不受干扰离子的影响,可用于锌离子的检测,同时在生物领域也具有广阔的应用场景。(The invention discloses a near-infrared fluorescent probe for detecting zinc ions, a preparation method and application thereof, and belongs to the technical field of organic synthesis, wherein the fluorescent probe takes rhodamine hemicyanine as a fluorophore and 7-hydroxy-4-methylcoumarin aldehyde as an identification group, realizes specific identification response to the zinc ions, and has the following specific structural formula:)

一种用于检测锌离子的近红外荧光探针及其制备方法和应用

技术领域

本发明属于有机合成技术领域,具体涉及一种用于检测锌离子的近红外荧光探针及其制备方法和应用。

背景技术

在我们生活水平日益提高的同时,人们对自身的健康问题也越来越关注。金属离子不仅广泛参与生物体内各项生理活动还维持体内各种平衡。但是金属污染问题越来越严重,因生物链的复杂性,由金属离子含量异常而引起生物体疾病的问题也随之增加。因此,对生物体内离子含量的检测以及对医生掌握疾病的发病机理的了解显得尤为重要,一来是以便提前预防疾病的发生,二来是为后续治疗提供方便。

因近红外荧光探针其在生物组织或生物体优异的检测特性,例如:激发和发射都在近红外区,检测时大部分近红外能够深入到生物组织内部,且能够消除生物组织的自身荧光干扰,能够稳定地在细胞内并对细胞低毒性或无毒,能够对生物体的微量变化进行检测。

Zn2+是在生物体内对各项生理活动起着至关重要作用的离子之一,是人体内第二丰富的金属离子。Zn2+存在于细胞的整个生命周期。 比如在ER(内质网)中Zn2+起着重要作用,Zn2+ 的缺乏会引起ER相应的应激反应(未折叠或错误折叠的蛋白质被合成积累在内质网),从而引起相应的疾病:神经退行性疾病、帕金森病、糖尿病等 。在生物学上,用Zn2+定位的瞬间波动,来调节一些大规模生理过程,例如:系统免疫反应,神经信号传递等。因此,如何简单快速检测Zn2+,是一项在医学,生物学等领域应用很有价值的研究。

目前检测Zn2+ 的荧光传感器相对来说没有其他金属离子多,且大多并不在近红外区域,而在紫外可见光区。众所周知,激发和发射都在近红外区的传感器大多具有一系列优良性能:灵敏度高,稳定性好(化学稳定和光稳定)、生物背景干扰小、对细胞无毒或低毒性。开发设计一种近红外检测Zn2+ 荧光探针,并成功应用于生物体荧光成像是很有必要的一项研究。

本文所有中间体和目标产物都经过表征。研究表明:在缓冲溶液中,化合物可以高选择性的识别锌离子,而其它离子对识别过程几乎不会造成任何干扰。

发明内容

为了克服现有技术中的问题,本发明提供了一种用于检测锌离子的近红外荧光探针,该探针实现了对锌离子的特异性识别响应,不受干扰离子的影响,而且直接肉眼观察就能判断锌离子的存在与否。

本发明同时还提供了上述近红外荧光探针的制备方法和应用。

为实现上述目的,本发明技术方案如下:

一种用于检测锌离子的近红外荧光探针,探针分子式为C48H47O5N4,结构式如下:

上述用于检测锌离子的合成路线如下:

制备方法具体包括以下步骤:

(1)将环己酮溶于浓硫酸中,再加入LF-1,92~98℃搅拌至反应完全,冷却至室温,加入高氯酸,抽滤,用水洗涤,干燥后得到化合物LF-2;

(2)在氮气保护下,将乙酸酐加入到LF-2和费舍尔醛中,在50 ℃下搅拌至反应完全,然后在混合液中加入冰水,用二氯甲烷和水萃取,有机相再用饱和碳酸氢钠溶液萃取,最后有机相用去离子水洗涤,干燥,得到粗品,所得粗产品利用柱色谱分离,得到化合物LF-3纯品;

(3)在氮气保护下,向化合物LF-3中加入二氯甲烷,将卡特缩合剂(BOP)溶于二氯甲烷中加入到LF-3的甲烷溶液中,随后将水合肼加入到反应液中,室温搅拌至反应完全,用二氯甲烷和水萃取,干燥,得到粗品LF-4,所得粗产品利用柱色谱分离,得到化合物LF-4纯品;

(4)向乙醇中加入化合物LF-4和7-羟基-4-甲基-香豆素醛,将其在100±5℃下搅拌回流至反应完全,反应结束后,有固体析出,用无水乙醇洗涤,干燥,得到荧光探针。

优选的,步骤(1)中LF-1、环己酮和高氯酸的摩尔比为1:(2~3) :(10~16)。

优选的,步骤(2)中化合物LF-2和费舍尔醛的摩尔比为1:(1.1~1.2)。

优选的,步骤(3)中其中化合物LF-3和BOP、水合肼的摩尔比为1:(1.1~1.3):(5~12)。

优选的,步骤(4)中其中化合物LF-4和7-羟基-4-甲基-香豆素醛的摩尔比为1:(1.1~1.3)。

上述近红外荧光探针在锌离子的荧光检测中的应用,具体用于锌离子含量的荧光检测、目视定性检测和细胞成像检测。

和现有技术相比,本发明的有益效果是:

1.本发明的探针在加入锌离子后,荧光强度显著增强并伴随明显的眼色变化,选取的干扰离子等对检测效果几乎无影响,且实现了对锌离子的特异性识别响应。

2.本发明的近红外荧光探针的检测限可达到0.066μM。

附图说明

图1为实施例1制备的荧光探针的核磁氢谱;

图2为实施例1制备的荧光探针的核磁碳谱;

图3为实施例1制备的荧光探针与不同离子反应后的荧光光谱;

图4为实施例1制备的荧光探针与不同离子反应后的荧光强度图;

图5为实施例1制备的荧光探针与锌离子反应随时间变化的荧光光谱;

图6为实施例1制备的荧光探针与不同浓度Zn2+离子响应后的荧光光谱;

图7为溶液的荧光强度与Zn2+离子浓度之间的线性关系;

图8为实施例1制备的荧光探针在不同pH体系溶液中与Zn2+离子响应后的荧光光谱。

具体实施方式

下面结合实施例和附图对本发明进行进一步说明,但并不是对本发明的限制。

实施例1

本实施例荧光探针的制备方法包括以下步骤:

(1)化合物LF-2的制备

取8 mL的浓硫酸(市售98%浓硫酸)于50 mL的梨形瓶中,在0 ℃下搅拌20 min。将环己酮(0.2941 g,3.0 mmol),缓慢注射到瓶中,搅拌15-20 min,然后将LF-1(0.4691 g,1.5 mmol),少量多次加入反应液中,控制在30 min内加完,溶液逐渐由无色变为红色,待固体完全溶解完,在92 ℃下加热4 h ,待反应完全后,停止加热,冷却至室温,再将反应液缓慢倒入盛有240 mL冰水烧杯中,并搅拌,然后逐滴加入1.5 mL HClO4(一般是LF-1摩尔量的10-16倍),伴随有红色固体析出,抽滤并用冷水洗涤、干燥。最终得到红色固体0.5462 g(产率:95.6%),无需纯化,直接进行下一步;

(2)化合物LF-3的制备

取LF-2(0.3262 g,0.8 mmol),费舍尔氏醛(0.1812 g, 0.9 mmol)于50 mL两口梨形瓶中,氮气保护,加入乙酸酐(5 mL),在50 ℃下搅拌2小时,然后在混合液中加入冰水(一般是乙酸酐体积的2-3倍),用二氯甲烷和水萃取,有机相再用饱和碳酸氢钠溶液萃取三次,再用去离子水洗涤三次,用Na2SO4干燥得到粗品,用色谱柱分离提纯,洗脱剂为二氯甲烷:甲醇= 20:1,旋干溶剂,干燥,得到绿色固体0.2564 g (产率 55.3%)。 1H NMR (400 MHz,CDCl3 ) δ 8.24- 8.15 (m, 1H), 8.10 (d, J = 13.2 Hz, 1H), 7.55-7.44 (m, 2H),7.28 (s, 1H), 7.03 (q, J = 6.3, 4.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 6.55(d, J = 9.2 Hz, 1H), 6.45 (s, 1H), 5.63 (d, J = 13.2 Hz, 1H), 5.29 (s, 1H),3.45 (t, J = 7.3 Hz, 4H), 3.36 (s, 3H), 2.58 (tq, J = 16.3, 9.7, 7.5 Hz, 2H),2.42 (dt, J = 14.1, 5.4 Hz, 1H), 2.10 (dd, J = 16.3, 6.3 Hz, 1H), 1.98 (s,1H), 1.84 (dd, J = 13.4, 6.4 Hz, 1H), 1.23 (t, J = 7.1 Hz, 6H).

(3)化合物LF-4制备

将LF-3(0.2018 g, 0.36 mmol)于两口瓶中,氮气保护,将4 mL二氯甲烷注入瓶中,将卡特缩合剂(BOP,0.43 mmol)溶于二氯甲烷中,缓慢注入瓶中,并搅拌20-30分钟,然后将3mL水合肼通过注射器注入到瓶中,室温下大力(1800-2500转/分)搅拌。溶液随着水合肼的加入由绿色变为黄色或红色,室温搅拌3小时后,用二氯甲烷和水萃取三次,再用Na2SO4干燥得到粗品,用色谱柱分离提纯,洗脱剂只用二氯甲烷即可。收集产物,进行干燥,得到黄色固体0.1624 g (产率76.18%)。1H NMR (400 MHz, CDCl3) δ 7.93-7.85 (m, 1H),7.56-7.38 (m, 3H), 7.23-7.11 (m, 3H), 6.65-6.58 (m, 1H), 6.40-6.23 (m, 3H),5.37 (d, J = 12.6 Hz, 1H), 3.65 (s, 2H), 3.35 (q, J = 7.1 Hz, 4H), 3.15 (s,3H), 2.65-2.41 (m, 2H), 2.04 (s, 1H), 1.71 (d, J = 6.4 Hz, 6H), 1.37 (d, J =1.1 Hz, 1H), 1.26 (t, J = 7.1 Hz, 2H), 1.18 (t, J = 7.0 Hz, 6H)。

(4)探针LFX制备

称量化合物LF-4(0.0501 g,0.0844 mmol)加入到50 mL梨形瓶中,然后将7-羟基-4-甲基-香豆素醛(0.0189 g,0.0928 mmol)加入到瓶中,并加入5 mL 无水乙醇,将其在100℃下回流5小时。有黄色固体析出,将固体进行抽滤,用乙醇洗涤。收集固体并干燥。产物黄色固体0.0657 g(产率80.71%)其氢谱和碳谱如图1和图2所示,1H NMR (400 MHz, CDCl3)δ 12.23 (s, 1H), 9.45 (s, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.62-7.54 (m, 2H),7.50 (td, J = 7.4, 1.1 Hz, 1H), 7.40 (d, J = 8.9 Hz, 1H), 7.17 (dd, J = 8.4,7.2 Hz, 2H), 6.88 – 6.77 (m, 2H), 6.60 (d, J = 7.7 Hz, 1H), 6.52 (d, J = 2.6Hz, 1H), 6.43 (d, J = 8.8 Hz, 1H), 6.28 (dd, J = 8.9, 2.6 Hz, 1H), 6.04 (d, J= 1.4 Hz, 1H), 5.36 (d, J = 12.6 Hz, 1H), 3.34 (q, J = 7.1 Hz, 4H), 3.13 (s,3H), 2.32 (d, J = 1.2 Hz, 3H), 1.75 (d, J = 7.0 Hz, 6H), 1.62 (s, 6H), 1.17(t, J = 7.1 Hz, 6H),13C NMR (100 MHz, CDCl3) δ 164.26, 162.14, 158.06, 152.71,149.77, 149.03, 148.76,146.43, 145.33, 133.50, 129.82, 128.64, 127.85,127.60, 126.83, 123.75, 123.55, 121.57, 120.22, 119.96, 119.28, 113.77,111.82, 111.44, 108.52, 106.75, 105.63, 102.36, 98.35, 92.04, 77.23, 68.44,45.56, 44.34, 29.10, 28.50, 28.12, 25.27, 23.02, 22.16, 18.78, 12.57.

本实验制备的近红外荧光探针应用试验如下:

(1)检测用储备液的配置

a.浓度为1.00×10-3 mol/L的探针LFX储备液配置:用万分之一的电子天平称量探针LFX 7.6 mg,然后将称量好的探针LFX溶于10 mL乙腈中,把溶液加热摇匀并在500W功率超声5分钟。

b.各种阳离子(Zn2+、Mg2+、Fe2+、Al3+、Co2+、Cd2+、Cr3+、Cu2+、Ca2+、Ni2+、Ag+、Li+、Ba2+、Mn2+、K+、Hg2+)均用去离子水配置成1.00×10-2 mol/L的溶液,并稀释至1.00×10-3 mol/L。

c.HEPES溶液(10nM,pH=7.4)的配制:用天平称量HEPES(4-羟乙基哌嗪乙磺酸)2.38 g固体倒入250 mL锥形瓶中,加入经过二次蒸馏的纯净水搅拌使固体溶解,然后将溶液转移到洗好的1000 mL的容量瓶中,将锥形瓶用二次蒸馏的去离子水洗涤锥形瓶3-4次,将洗涤液通过玻璃棒引流到容量瓶中,然后定容至1000 mL。此时HEPES溶液浓度为1.00×10-2 mol/L。

下述检测中使用的缓冲液均为HEPES溶液(10nM,pH=7.4)和无水乙醇按照体积比为4:6组成的混合溶液。

(2)检测分析

取3mL的缓冲液,加入15uL浓度为1.0×10-3mol/L的探针储备液,加入10当量的上述各种离子储备液,检测其荧光光谱,结果如图3所示,荧光参数设置:激发狭缝宽度5nm,发射狭缝宽度2.5nm,激发波长Ex = 690nm。由图3可以看出,在加入Zn2+,荧光光谱显示探针的荧光强度明显增强,而加入其他离子后荧光强度无明显变化,因此探针对Zn2+离子存在良好的选择性,而对其他离子无特异选择性。上述荧光探针与不同离子反应后的荧光强度如图4所示,由图4可以看出,荧光探针与Zn2+反应后荧光强度明显高于空白样和其余干扰离子,由此认定该探针可以作为一种高选择性检测Zn2+的荧光增强型近红外探针。

取3mL的缓冲液,加入15uL浓度为1.0×10-3mol/L的探针储备液,加入15uL的1.0×10-2mol/L的Zn2+溶液,检测荧光光谱的时间变化,激发狭缝宽度5nm,发射狭缝宽度2.5nm,激发波长Ex = 690nm,如图5所示,探针LFX与Zn2+ 响应迅速,由无色变为绿色,荧光强度几乎瞬间达到最强,1分钟基本上反应结束。随后时间荧光强度基本不再随着时间的变化而变化,证明探针LFX与Zn2+ 反应迅速且稳定。

取3mL的缓冲液,加入15uL浓度为1.0×10-3mol/L的探针储备液,加入不同当量(以探针摩尔量计,分别加入0.1eq、0.2eq、0.3 eq、0.4 eq、0.5 eq、0.6 eq、……3.5 eq、3.6eq、3.7 eq、3.8 eq、3.9 eq、4.0 eq)的Zn2+溶液,摇匀,检测荧光强度变化。如图6所示,随着Zn2+浓度的增加荧光强度逐渐增强。当Zn2+浓度在0-2×10-2mol/L,溶液的荧光强度与Zn2+离子浓度之间具有良好的线性关系,结果如图7所示,经线性拟合,可得其相对应的一元一次线性方程为y=72.045+482.3276x,通过计算可得相关系数平方(R2)为0.99139,说明拟合程度好。LOD检出限则由公式LOD=3σ/k (σ是连续测试22次纯探针LFX的标准偏差)经过最后的计算,其检出限为6.594×10-8 mol/L。

将HEPES溶液用0.01mol/L NaOH溶液或0.01mol/L HCl溶液调节pH,使其为pH为1~12,将pH为1~12的HEPES溶液与无水乙醇按照体积比4:6混合配制成缓冲液;取3mL不同pH的前述缓冲液,加入15uL浓度为1.0×10-3mol/L的探针储备液、15uL的1.0×10-2mol/L的Zn2+溶液,检测荧光光谱变化。结果如图8所示。由图8可以看出,荧光光谱在pH=7-9之间探针对Zn2+离子的响应具有良好的稳定性,因此探针可以在生理环境下检测Zn2+离子。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:四氢异喹啉衍生物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!