直接蒸发泵至冷板的分子束外延系统

文档序号:1894733 发布日期:2021-11-26 浏览:18次 >En<

阅读说明:本技术 直接蒸发泵至冷板的分子束外延系统 (Molecular beam epitaxy system for directly evaporating pump to cold plate ) 是由 杜鹏 于 2019-04-22 设计创作,主要内容包括:公开了一种分子束外延系统,用于通过将吸气剂材料从渗出蒸发器(5)蒸发到冷板上,来消除分子束外延生长室(1)中在生长之前、生长期间或生长中断期间和/或生长之后的过剩束流量。冷板可以是分子束外延生长室(1)的低温板(2),也可以是附接腔室(9)中的冷板(8)。所述分子束外延系统包括分子束外延生长室中的低温板(2)或附接到分子束外延生长室(1)的腔室中的冷板(8)。通过适当的工艺,如冷却该冷板、为分子束外延工艺加载基板(3)、为分子束外延生长(7)提供必要的束流量、加热渗出蒸发器(5)并打开蒸发器(5)的快门以便吸气剂材料束流量到达所述板上,多余的束流量将被消除。由此,避免生长层的交叉污染。(A molecular beam epitaxy system is disclosed for eliminating excess beam flux in a molecular beam epitaxy growth chamber (1) before, during or during an interruption of growth and/or after growth by evaporating getter material from a effusion evaporator (5) onto a cold plate. The cold plate can be a low-temperature plate (2) of the molecular beam epitaxial growth chamber (1) or a cold plate (8) in an attachment chamber (9). The molecular beam epitaxy system comprises a low temperature plate (2) in the molecular beam epitaxy chamber or a cold plate (8) in a chamber attached to the molecular beam epitaxy chamber (1). By appropriate processes, such as cooling the cold plate, loading the substrate (3) for molecular beam epitaxy, providing the necessary beam flux for molecular beam epitaxy (7), heating the effusion vaporizer (5) and opening the shutter of the vaporizer (5) so that the beam flux of getter material reaches the plate, the excess beam flux will be eliminated. Thereby, cross-contamination of the grown layers is avoided.)

直接蒸发泵至冷板的分子束外延系统

技术领域

本申请涉及用于在生长之前、生长期间或生长中断期间和/或生长之后消除分子束外延(MBE)生长室中的过剩束流量的MBE系统。MBE系统用于III-V、II-V、Si/Ge半导体系统、氧化物材料以及其他化合物半导体的外延生长。

背景技术

分子束外延系统通常具有超高真空(UHV)生长室、用于提供分子束或原子束的渗出单元以及用于维持腔室内的超高压环境的泵。该腔室内的超高真空环境对于确保分子的平均自由路径大于腔室的尺寸至关重要,从而在蒸发的原子/分子到达基板之前不会发生碰撞。

在用于复合材料外延生长的固体源MBE系统的正常生长条件下,一个或两个分子元素的供应量远远高于其他元素,例如GaAs系统中的砷、GaSb系统中的锑、InP系统中的磷、GaN系统中的氮、MCT系统中的汞和氧化物系统中的氧。所提供的多余的束流量不能并入生长层中,从而在生长室中形成残余气体。低温板和泵应该泵送这些残余气体。然而,实践和理论计算均表明,在生长过程中,生长室中仍存在着不能被低温板和泵泵送的残余气体。例如,如果用于生长的砷束流量在1E-5托(torr)的水平,GaAs生长过程中生长室中的背景砷压力可以高达1E-7托的水平。这种残余气体对诸如GaAs等二元化合物的生长没有任何危害。但是,如果生长过程中对三元化合物、四元化合物或五元化合物(如InAsP、InAsPSb、InGaAlAsPSb等)进行生长,则会产生污染,因为As、Sb和P元素的掺入速率对分压相当敏感。或者,在一个系统中,多余的元素需要在诸如InAs/GaSb超晶格、CdTe/HgTe超晶格和硅/氧化物体系等层之间切换。然后,生长的结构的含量不如预期的稳定。

传统泵,如离子泵、涡轮泵、低温泵等,在有气体负荷或供应过量分子束流量时,对于短时间、连续地泵送残余气体,存在不同的困难。如果气体负载过高,离子泵可以很快达到其使用寿命。低温泵将很快饱和,涡轮泵将出现逆流问题。低温板的设计是为了在生长过程中降低背景压力。但是,泵送效率还不够高。例如,在100K时,仍会有至少15%的砷从低温板的As过量表面解吸。由于从单元或操纵器对低温板的热负荷和不锈钢的低导热系数,低温板的表面温度可显著高于77K。低温板的泵送速度进一步受到限制。另一方面,残留砷在持续生长中起着重要作用。例如,砷污染十分明显,破坏了InAs/GaSb体系中GaSb层的结构质量。要生长含InGaAsP的结构,As/P束很难得到控制和转换。

发明内容

本申请的目的是提供一种具有直接蒸发泵的分子束外延系统,该直接蒸发泵能够更有效地泵送过剩束流量或残余气体。

本申请的目的是通过以下原则实现的。无污染吸气剂材料将从渗出蒸发器中蒸发到低温板或另一个冷板,以增加多余束流量的粘附效率。如果表面已经有吸气剂材料,则吸气剂材料是可以提高待消除分子在冷表面上的粘附效率的元素。吸气剂材料不会对生长层提供额外的污染,并且吸气剂材料的束流量不会使层生长源提供的束流量受损。由此,MBE生长室中的过剩束流量或残余气体被消除。

附图说明

图1是MBE系统当前应用的一种设置的示意图,其中渗出蒸发器安装在腔室的顶部,并与MBE生长室的低温板一起工作。蒸发器提供的束流量与渗出单元提供的束流量没有重叠。

图2是MBE系统当前应用的另一种设置的示意图,其中渗出蒸发器安装在腔室的底部,并与MBE生长室的低温板一起工作。蒸发器提供的束流量与渗出单元提供的束流量具有重叠。

图3是MBE系统当前应用的第三种设置的示意图,其中渗出蒸发器安装连接到MBE生长室的附加腔室上,并与附加腔室中的冷板一起工作。

具体实施方式

典型的MBE生长室包括不锈钢腔室壁、一组低温板板、泵端口、观察窗、其他设备(如RHED系统)的端口等。几个必要的源连接到该腔室,以提供用于生长的分子束流量。安装的样本操纵器,用来固定待生长的基板。

为了执行MBE外延生长,基板被加载到基板操纵器上,并在生长前加热以进行某些表面处理,例如去除氧化物。由于清洁表面具有不饱和键,外延生长可以在这个表面开始。然后打开快门以释放蒸发的分子束流量。分子束流量到达基板,并在基板上形成化合物。根据不同的生长机制,采用不同的生长条件,可以获得优质的层。虽然,III-V半导体材料通常生长在大量含有V族元素的条件下,意味着V族元素(如砷、磷、锑和氮)持续供应的水平远远高于III族元素,如镓、铟和铝。V族元素与III族元素的束流量比在5-30之间变化。过量的V族元素在腔室中形成过量束流量或残余压力。这些残余分子束流量可以被低温板反射,但不能在几分钟内完全凝结在上面。要将腔室泵送至基础压力,通常需要10至30分钟。同样的情况也发生在氧作为过量元素来供应的氧化物系统中和汞作为过量元素来供应的含汞系统中。

本申请还包括一种与系统的低温板一起工作以消除这些残余气体的渗出蒸发器。带有冷板的独立腔室也可以连接到生长室以提供冷表面。

残余气体粘附系数的增大依赖于是否存在Ⅲ族元素的事实,V族元素不会从表面解吸。如果表面有硫、钛或铬,汞、氮和氧不会相应地解吸。Ⅲ族元素、硫、钛、铬的粘附性始终良好,因此不会产生额外的污染。例如,为了消除砷,可以使用镓、铟或铝作为吸气剂材料。如果镓、铟或铝蒸发到冷表面,其将停留在冷板的表面上,并且与表面碰撞的砷分子束流量也会保持不变。这种化学吸附在冷表面上极为稳定。然后,砷从腔室内的自由空间中被清除。来自渗出蒸发器的束流量不包括生长至1E-5范围的束流量。在MBE区域,高达1E-5的BEP压力具有数百米的平均自由路径,因此一般情况下,额外的吸气剂束流量不会影响生长束流量。由于精心的几何设计,来自渗出蒸发器的束流量无法到达基板。否则,它提供额外的生长分子束流量。此外,还需要考虑另一个影响,例如增加缺陷密度。

这种泵送效果是通过在MBE系统中提供至少一个渗出蒸发器和冷表面来实现的。冷表面可以是MBE系统的低温板或额外表面。渗出蒸发器可与低温板或额外面板一起工作。这里描述了两种可能的配置。

1、渗出蒸发器与低温板一起工作。

渗出蒸发器安装在MBE生长室的顶部、底部或侧面。通过精心设计的几何结构,蒸发器提供的束流量可以到达MBE生长室的大部分低温板,但不能到达生长的基板。来自蒸发器的分子束流量可能穿过生长元素的束流量路径。由于1e-5托下的平均自由路径仍为数百米,与MBE生长室的尺寸相比,这是巨大的,来自不同源或蒸发器的束流量不会相互影响。

在图1中,生长期间,源(4)和其他源向基板(3)提供分子束流量。剩余气体留在腔室(1)中。然后,渗出蒸发器(5)将吸气剂分子供应到低温板(2)上。由于在吸气剂材料覆盖的表面上残余气体的粘附系数为1,碰撞的残余气体分子不能从低温板的表面解吸。因此,多余的束流量或残余气体从腔室中被清除。蒸发器的束流量覆盖率标记为(6)。与吸气剂束流量(6)和生长束流量(7)没有重叠。

在图2中,渗出蒸发器(5)从腔室底部向低温板板(2)提供吸气剂分子,然后将过量分子束流量收集到低温板上。生长束流量(7)与吸气剂束流量(6)具有重叠。如上所述,这种重叠不会影响生长。

2、渗出蒸发器与额外的腔室中的冷板一起工作,该冷板连接到MBE的生长室。

在图3中,配置有额外的腔室(9)和连接到MBE生长室的冷板(8)。渗出蒸发器(5)连接到额外的腔室。与配置1的工作原理一样,蒸发器将吸气剂材料供应到冷板,以收集来自生长室的残余气体或过剩束流量。

与传统的MBE相比,本申请在生长过程中具有显著的低过剩束流量水平。此外,还减少了过量元素的切换时间。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:多晶硅原料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!