环形催化转化器

文档序号:1966799 发布日期:2021-12-14 浏览:14次 >En<

阅读说明:本技术 环形催化转化器 (Annular catalytic converter ) 是由 R·布鲁克 P·希尔特 S·舍佩尔斯 D·奥登塔尔 M·卡里巴耶夫 F·库尔特 于 2020-05-15 设计创作,主要内容包括:本发明涉及一种环形催化转化器,具有第一管形流动路段、转向区域(4)和第二环形流动路段,其中,管形流动路段由内管(1)形成,其中,环形流动路段形成在内管(1)与包围内管的外管(2)之间,用于使排气流管形流动路段朝向环形流动路段转向的转向区域(4)被设计为罐状,其中,内管(1)和/或外管(2)具有沿着排气的流动方向椎体式扩大或缩小的横截面(D1、D2、D3、D4)。(The invention relates to an annular catalytic converter having a first tubular flow section, a deflection region (4) and a second annular flow section, wherein the tubular flow section is formed by an inner tube (1), wherein the annular flow section is formed between the inner tube (1) and an outer tube (2) surrounding the inner tube, wherein the deflection region (4) for deflecting the tubular flow section of the exhaust gas flow towards the annular flow section is designed in the form of a pot, wherein the inner tube (1) and/or the outer tube (2) has a cross section (D1, D2, D3, D4) that tapers or decreases in the flow direction of the exhaust gas.)

环形催化转化器

技术领域

本发明涉及一种环形催化转化器,其具有第一管形流动路段、转向区域和第二环形流动路段,其中,管形流动路段由内管形成,其中,环形流动路段形成在内管与包围内管的外管之间,用于使排气流管形流动路段朝向环形流动路段中转向的转向区域被设计为罐状/钵状。

背景技术

所谓的环形催化转化器特别是在可供使用的结构空间有限并且尽管如此仍应在催化转化器内实现尽可能长的流动路段时被用于排气后处理的目的。

环形催化转化器包括中心管形流动路段。排气从管形流动路段流入转向腔中,该转向腔产生排气在径向方向上向外的转向并且最后这样使排气转向,从而排气以180度与流动方向相反地在管形流动路段中流经环形流动路段。管形流动路段和环形流动路段在此例如可以彼此同心地布置。环形流动路段向内通过管形流动路段的壁界定并且向外通过外管和/或护套界定。

环形催化转化器特别是在涡轮增压的内燃机中直接在涡轮增压器下游使用。对于布置在环形流动路段中的催化活性载体基体的最佳工作方式,尽可能高的浓度和流动均匀分布是有利的。

现有技术的装置的缺点尤其在于:在催化活性载体基体上没有实现最佳的流动均匀分布和浓度均匀分布,由此排气后处理不是最佳的。

发明内容

因此,本发明的目的是提供一种环形催化转化器,其在催化活性基体的入口横截面上产生尽可能最佳的流动均匀分布。

关于环形催化转化器的目的通过具有权利要求1的特征的环形催化转化器实现。

本发明的一个实施例涉及一种环形催化转化器,具有第一管形流动路段、转向区域和第二环形流动路段,其中,管形流动路段由内管形成,其中,环形流动路段形成在内管与包围内管的外管之间,用于使排气流管形流动路段朝向环形流动路段转向的转向区域被设计为罐状,其中,内管和/或外管具有沿着排气的流动方向扩大(或者说变宽)或缩小(或者说变窄)的锥体/圆锥体的横截面。

内管和外管可以彼此同心地布置或者彼此偏移地布置。同心布置对于——特别是沿着管形流动路段——在各种情况下产生沿周向保持不变的横截面是有利的。

通过内管和/或外管的锥度可以产生不同的组合,这些组合例如导致在排气的流动方向上缩小或扩大的管形流动路段。环形流动路段也可以在排气的流动方向上缩小或扩大。在一种特殊的构造中,环形流动路段在内管是锥形/圆锥形且外管也是锥形/圆锥形的情况下也可以具有保持不变的横截面。

特别有利的是,内管具有在排气的流动方向上锥体式扩大的横截面,外管具有在排气的流动方向上缩小的横截面。

通过内管的锥体式地扩大,特别可以改善前置的涡轮增压器的效率,因为通过在流动方向上的横截面变大可以将动态压力转换为静态压力。这有助于改善涡轮增压器的效果,由此最终可以改善驱动涡轮增压器的内燃机的效率。

外管的锥形实施方案是有利的,以便这样调整从环形流动路段的气体入口侧至环形流动路段的气体出口侧的横截面/横截面积之比,使得可以平衡布置在环形流动路段中的基体中的预应力差异。由此可以防止基体中的蜂窝体变形(Zelldeformationen)并且还防止在基体中不期望地出现孔或开口。因此总体上特别可以明显改善环形催化转化器的耐久性。

还有利的是,内管和/或外管具有卵形或椭圆形的横截面。特别是在狭窄的结构空间比例的情况下,卵形或椭圆形的横截面可能是有利的。因此,在可用的结构空间小的情况下,可以实现催化转化器的和特别是催化活性基体的尽可能大的容积。

一个优选的实施例的特征在于,内管和外管具有长度(L),管形流动路段具有在其气体入口侧的横截面(D1),环形流动路段具有在其气体出口侧的横截面(D2),其中,管形流动路段从其气体入口侧向其气体出口侧以角度(α1)锥体式地扩大,而环形流动路段从其气体入口侧向其气体出口侧以角度(α2)锥体式地缩小。

假设角度α1和α2相同,这产生了内管和外管的彼此平行延伸的壁。通过角度α1和α2的不同的设计方案,由此也产生了锥体式地收拢或扩大的环形流动路段。

还优选的是,环形催化转化器的特别优选的尺寸比例通过下述公式

来定义。

根据上述公式的环形催化转化器设计方案产生了关于环形催化转化器中的预应力比例最佳的结果,因为可以实现非常均匀的应力状态。这特别是基于所使用的基体的横截面、长度和蜂窝载体大小彼此间的尺寸比例。

特别有利的是,角度α1的值在3度至10度的范围内,特别优选在6度至8度的范围内。这得出对于环形催化转化器而言特别有利的几何形状,由此能实现特别高效的运行。

此外有利的是,在环形流动路段中布置有至少一个由金属蜂窝体形成的基体,其中,基体的横截面变化跟随环形流动路段的横截面变化。根据应用情况,也可以设置多个具有不同涂层的基体,以便转化排气的不同成分。

此外有利的是,金属蜂窝体由多个彼此堆叠的金属箔形成,所述多个金属箔被卷绕成所述蜂窝体,其中,至少一些箔是波纹状的,其中,通过改变在基体的气体入口侧与气体出口侧之间的波纹高度和波纹密度,能对金属蜂窝体的锥度以及由此基体的锥度沿其通流方向产生影响。金属蜂窝体可以被专门调整用于使其适配于空间条件。特别是为了避免围绕蜂窝体的不希望的环流,有利的是,蜂窝体适配于流动路段的几何形状并且与流动路段的壁齐平地封闭。锥形蜂窝体的产生是已知的并且特别可以通过上述措施实现。

也适宜的是,转向区域具有冷却装置。例如,冷却装置可以由转向区域的能被冷却剂通流的双壁式部段形成。该双壁式部段可以局部地形成或者在整个转向区域中形成。例如也可以通过在转向区域的壁中形成的通道来形成双壁式部段,所述双壁式部段能被冷却剂通流。通流例如可以通过放气阀或双金属材料来调节。

另选地,冷却装置可以由布置在转向区域上或转向区域中的冷却盘管形成。冷却盘管由能被冷却剂通流的封闭容纳空间、例如软管或管道形成,并且该冷却盘管可以布置在要被冷却的位置处。冷却装置可以附加地具有肋,这些肋伸入转向区域中或者从转向区域向外伸出。

通过冷却该转向区域可以更长时间地以λ=1的燃烧空气比例运行并且因此降低排气排放。因为通过冷却,排气质量流在催化活性基体的上游被冷却,从而在内燃机的高负荷点的情况下可以更长时间地以λ=1运行,而不会使排气和相关构件的温度过高并且不会损害环形催化转化器的结构完整性。

此外,通过冷却转向区域,可以降低在壁附近的区域中的排气流的粘度。通过降低粘度和由此降低产生的摩擦,可以减少在通流时产生的压力损失。

特别有利的是,内管在管形流动路段的气体出口侧或在环形流动路段的气体入口侧具有引导元件,流经所述环形催化转化器的排气流借助于所述引导元件而转向。借助于引导元件,在转向区域中在管形流动路段的气体出口侧的通流之后且在环形流动路段的气体入口侧的通流之前被转向的流动可以被转向到特定的方向,或者可以影响气体流动的充分混合。引导元件可以被设计为布置在内壁之一上的附加的构件,或者也可以是壁之一的整体组成部分。

也有利的是,引导元件由内管的自由端部的在径向上朝外并伸入环形流动路段中的凸起/泡状弯曲部形成。这是特别有利的,因为不需要附加的构件并且因此制造是特别简单的。通过凸起状弯曲部特别是避免了弯曲部的半径特别小,由此可能产生分流棱边,该分流棱边可能不利地影响排气的流动。

位于内管的出口处的横截面的喷嘴状的收缩部也可以是有利的,以便实现优化的通流。喷嘴状的收缩部也可以用于为从内管中向外的流动提供方向矢量,并且因此有针对性地改善朝向环形催化转化器的环形区域的转向。

还优选的是,通过转向区域的内壁在与内管上的引导元件相配合的情况下实现对布置在环形流动路段中的基体的优化的入流。这特别是有利的,以便实现在催化活性基体的横截面上的尽可能均匀的流动分布和尽可能均匀的浓度分布。

本发明的有利的改进方案在从属权利要求和下面的

附图说明

中进行描述。

附图说明

下面根据实施例参考附图对本发明进行详细说明。图中示出:

图1示出环形催化转化器的内管和外管的示意图,用于说明不同的横截面和角度,

图2示出环形催化转化器的示意性横截面图,其中,转向区域构造成双壁式结构并且可以被冷却剂通流,和

图3示出转向区域和构造在内管上的引导元件的细节图。

具体实施方式

图1示出被外管2包围的内管1的示意图。两个管1和2围绕中心轴线3同心地取向。横截面D1在内管1的气体入口侧示出,而横截面D3在内管1的气体出口侧示出。在形成于内管1和外管2之间的环形流动路段的气体入口侧示出横截面D3和D4之间的差异面A2。在环形流动路段的气体出口侧示出横截面D1和D2之间的差异面A1。

内管1从气体入口侧朝向气体出口侧相对于中心轴线3以角度α1扩大。外管从其气体出口侧朝向其气体入口侧相对于该中心轴线以角度α2扩大。

通流顺序是从内管1的气体入口侧朝向内管1的气体出口侧,在图1未示出的转向区域中排气转向到外管2的或环形流动路段的气体入口侧中。排气从那里流向环形流动路段的或外管2的气体出口侧。

管1、2具有长度L,在图1的实施例中,该长度对于两个管1、2是相同的。

角度α1和α2的变化导致管形流动路段和环形流动路段的不同几何形状。特别地,环形流动路段可以具有沿着流动方向保持不变的横截面或者变化的横截面。

图2示出管形流动路段的气体出口侧和与该气体出口侧邻接的转向区域4的视图。转向区域4由罐状壁5形成,该罐状壁用作用于流入的排气的折流板,并最终确保使排气在径向方向上向外转向并最终进入环形流动路段中。

如在图2中的箭头处可看到的那样,管形流动路段中的主流动方向与环形流动路段中的主流动方向相反。

此外示出第二壁6,该第二壁跟随内壁5的变化并且因此形成可通流的区域7、例如通道或其它封闭的可通流的容纳空间。所述容纳空间可以被冷却剂通流,并且因此可以经由内壁5从排气中排出热。

内管1的自由端部还具有径向向外并进入环形流动路段中的凸起状的弯曲部。由此产生引导元件10,该引导元件应改善由转向区域4围绕的容纳空间9中的排气流动。引导元件10在径向方向上完全环绕地构造。

图3示出转向区域4的细节图,并且特别示出内壁5和引导元件10与管形流动路段在其气体出口上的直径D相比的尺寸比例的细节图。具有在下面的表格中给出的数量级之内的尺寸的转向区域4和引导元件10是特别有利的,以便在环形流动路段或催化活性的基体8的气体入口上产生尽可能均匀的流动。

0.0153≤R1/D≥3.450
0.0153≤R2/D≥3.461
0.0076≤R3/D≥3.461
0.0076≤R4/D≥3.461
0.0153≤R5/D≥3.461
0.0153≤R6/D≥3.461
1.100≤D7/D≥3.461
0.0153≤L1/D≥3.384
0.0076≤L2/D≥3.384
0.0153≤L3/D≥3.384
0.0153≤L4/D≥3.438
0.0153≤L5/D≥3.438
0.0000≤L6/D≥3.469
0.0153≤L7/D≥3.4446
0.0153≤L8/D≥3.450
0.0153≤L9/D≥4.230
0.0460≤L10/D≥3.461
0.0460≤L11/D≥3.461
0.0460≤L12/D≥3.461
0.0153≤L13/D≥3.461
0.0153≤L14/D≥3.461
0.0153≤L15/D≥3.461

内管的自由端部在此向外弯曲并且不再贴靠于内管的外侧面。附图标记LI至L15在此分别指明各个部段的长度。附图标记R1至R6表示这些构件的不同半径。附图标记D表示内管在其气体出口侧上的直径,而附图标记D7表示外管在其气体入口侧上的直径。

各实施例的不同特征也可以相互组合。图1至图3的实施例尤其是不具有限制性特征而用于说明本发明的构思。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:控制阀

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!