主负继电器检测系统

文档序号:54478 发布日期:2021-09-28 浏览:16次 >En<

阅读说明:本技术 主负继电器检测系统 (Main and negative relay detection system ) 是由 刘鹏飞 罗乐 王俊 吴壬华 于 2020-10-21 设计创作,主要内容包括:一种主负继电器检测系统(10),该主负继电器检测系统(10)包括第一回路(100)和检测电路(110),第一回路(100)包括第一电源(DC1)、主正继电器(K1)、负载(DC2)以及主负继电器(K2),检测电路(110)包括第二电源(VCC)、第一电阻(R1)、第二电阻(R2)、第三电阻(R3)以及微控制单元(MCU),其中,第一电源(DC1)的正极连接主正继电器(K1)的正端,主正继电器(K1)的负端连接负载(DC2)的正极,负载(DC2)的负极连接主负继电器(K2)的正端,主负继电器(K2)的负端连接第一电源(DC1)的负极;第二电源(VCC)的正极连接第一电阻(R1)的第一端,第一电阻(R1)的第二端分别连接第二电阻(R2)的第一端、第三电阻(R3)的第一端及微控制单元(MCU),第二电阻(R2)的第二端分别连接主负继电器(K2)负端和第二电源(VCC)的负极,第三电阻(R3)的第二端连接主负继电器(K2)的正端。该系统有利于提高汽车的安全性。(A main negative relay detection system (10), the main negative relay detection system (10) comprises a first loop (100) and a detection circuit (110), the first loop (100) comprises a first power supply (DC1), a main positive relay (K1), a load (DC2) and a main negative relay (K2), the detection circuit (110) comprises a second power supply (VCC), a first resistor (R1), a second resistor (R2), a third resistor (R3) and a Micro Control Unit (MCU), wherein the positive pole of the first power supply (DC1) is connected with the positive pole of the main positive relay (K1), the negative pole of the main positive relay (K1) is connected with the positive pole of the load (DC2), the negative pole of the load (DC2) is connected with the positive pole of the main negative relay (K2), and the negative pole of the main negative relay (K2) is connected with the negative pole of the first power supply (DC 1); the positive pole of second power (VCC) connects the first end of first resistance (R1), the first end of second resistance (R2), the first end and the little the control unit (MCU) of third resistance (R3) are connected respectively to the second end of first resistance (R1), the negative terminal of main negative relay (K2) and the negative pole of second power (VCC) are connected respectively to the second end of second resistance (R2), the positive terminal of main negative relay (K2) is connected to the second end of third resistance (R3). The system is beneficial to improving the safety of the automobile.)

主负继电器检测系统

技术领域

本申请涉及汽车

技术领域

,尤其涉及一种主负继电器检测系统。

背景技术

随着技术的发展,继电器被广泛应用于汽车的电池等相关设备中,继电器常常因为负载电流过大、电磁感应等,出现继电器粘连的情况,而汽车技术中的继电器的状态直接关系到车辆的安全,因此,对继电器的检测极其重要。

现有技术中,一般是通过测量低压线圈电压来判断继电器的不同状态,但这种方法常常错误判断,存在安全隐患。

发明内容

为解决上述问题,本申请提供了一种主负继电器检测系统,可以准确判断出主负继电器当前的状态,提高汽车的安全性。

本申请实施例提供了一种主负继电器检测系统,所述主负继电器检测系统包括第一回路和检测电路,所述第一回路包括第一电源、主正继电器、负载以及主负继电器,所述检测电路包括第二电源、第一电阻、第二电阻、第三电阻以及微控制单元,其中,

所述第一电源的正极连接所述主正继电器的正端,所述主正继电器的负端连接所述负载的正极,所述负载的负极连接所述主负继电器的正端,所述主负继电器的负端连接所述第一电源的负极;

所述第二电源的正极连接所述第一电阻的第一端,所述第一电阻的第二端分别连接所述第二电阻的第一端、所述第三电阻的第一端以及所述微控制单元,所述第二电阻的第二端分别连接所述主负继电器的负端和所述第二电源的负极,所述第三电阻的第二端连接所述主负继电器的正端;

所述微控制单元用于检测所述第一电阻第二端的电压,并根据所述电压以及预设的电压与所述主负继电器的当前状态之间的映射关系,确定所述电压对应的所述主负继电器的当前状态,所述当前状态包括断开、闭合以及粘连。

在一个实施例中,所述检测电路还包括第一开关器件和第二开关器件,所述第一开关器件与所述第二电阻串联,所述第二开关器件与所述第三电阻串联;

所述第一开关器件用于接通或者断开所述第二电阻与所述主负继电器的负端的连接;

所述第二开关器件用于接通或者断开所述第三电阻与所述主正继电器的正端的连接。

在一个实施例中,所述检测电路还包括第一单向导通部件,其中,

所述第一单向导通器件的正极连接所述第二电源正极,所述第一单向导通器件的负极连接所述第一电阻的第一端;

所述第一单向导通器件用于单向导通所述检测电路中的电流,以避免所述第一电源影响电压检测。

在一个实施例中,所述第一单向导通部件包括二极管。

在一个实施例中,所述主负继电器检测系统还包括:保护电路模块,所述保护电路模块连接所述微控制单元。

在一个实施例中,所述保护电路模块包括保护器件和稳压器件,所述稳压器件的正极连接所述第一电源的负极,所述稳压器件的负极分别连接所述保护器件的第一端和所述微控制单元,所述保护器件的第二端连接所述第一电阻的第二端。

在一个实施例中,所述稳压器件包括稳压二极管。

在一个实施例中,所述保护电路模块包括第二单向导通器件和保护器件,所述第二单向导通器件的负极连接所述第二电源的负极,所述第二单向导通器件的正极分别连接所述保护器件的第一端和所述微控制单元,所述保护器件的第二端连接所述第一电阻的第二端。

在一个实施例中,所述保护电路模块还包括第三单向导通器件,所述第三单向导通器件的正极连接所述第一电源的负极,所述第三单向导通器件的负极连接所述第二单向导通器件的正极。

在一个实施例中,其特征在于,所述保护器件为第四电阻。

在本申请中,主负继电器检测系统包括第一回路和检测电路,第一回路包括依次串联的第一电源、主正继电器、负载以及主负继电器,检测电路包括第二电源、第一电阻、第二电阻、第三电阻以及微控制单元,第二电源的正极连接第一电阻的第一端,第一电阻的第二端分别连接第二电阻的第一端、第三电阻的第一端及微控制单元,第二电阻的第二端分别连接主负继电器负端和第二电源的负极,第三电阻的第二端连接主负继电器正端。可见,主负继电器检测系统通过在检测电路中接入外接电源,能够在第一回路未接通第一电源的情况下,实现利用外接电源供电准确的检测出主负继电器的不同状态,提高了汽车的安全性。

附图说明

为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。

下面将对本申请实施例所涉及到的附图作简单地介绍。

图1为本实施例提供的一种主负继电器检测系统的结构示意图;

图2为本实施例提供的另一种主负继电器检测系统的结构示意图;

图3为本实施例提供的再一种主负继电器检测系统的结构示意图;

图4为本实施例提供的一种保护电路模块的结构示意图;

图5为本实施例提供的另一种保护电路模块的结构示意图;

图6为本实施例提供的再一种保护电路模块的结构示意图。

具体实施方式

为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。

以下分别进行详细说明。

本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”以及它的任何变形,意图在于覆盖不排他的包含。例如包括了一系列模块和器件的系统没有限定于已列出的模块和器件,而是可选地还包括没有列出的模块和器件,或可选地还包括对于这些系统固有的其它模块和器件。

在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。

请参阅图1,图1是本申请实施例提供了一种主负继电器检测系统的结构示意图,如图1所示,所述主负继电器检测系统10包括第一回路100和检测电路110,所述第一回路100包括第一电源DC1、主正继电器K1、负载DC2以及主负继电器K2,所述检测电路110包括第二电源VCC、第一电阻R1、第二电阻R2、第三电阻R3以及微控制单元MCU,其中,所述第一电源DC1的正极连接所述主正继电器K1的正端,所述主正继电器K1的负端连接所述负载DC2的正极,所述负载DC2的负极连接所述主负继电器K2的正端,所述主负继电器K2的负端连接所述第一电源DC1的负极;所述第二电源VCC的正极连接所述第一电阻R1的第一端,所述第一电阻R1的第二端分别连接所述第二电阻R2的第一端、所述第三电阻R3的第一端以及所述微控制单元MCU,所述第二电阻R2的第二端分别连接所述主负继电器K2的负端和所述第二电源VCC的负极,所述第三电阻R3的第二端连接所述主负继电器K2的正端;所述微控制单元MCU用于检测所述第一电阻R1第二端的电压,并根据所述电压以及预设的电压与所述主负继电器K2的当前状态之间的映射关系,确定所述电压对应的所述主负继电器K2的当前状态,所述当前状态包括断开、闭合以及粘连。

其中,在第一回路100中,由所述第一电源DC1提供电源电压,所述第一电源DC1可以是直流电源,所述第一电源DC1也可以是交流发电机产生的电流经过整流之后形成的直流电源,如,所述第一电源DC1可以是动力电池、所述第一电源DC1也可以是蓄电池,所述负载DC2可以是连接所述第一电源DC1与各种耗电设备之间的控制器件,如整车控制器或者集成式电机控制器,所述负载DC2也可以是连接所述第一电源DC1与各种耗电设备之间的转换器件,如车载充电器输出、直流-直流变换器输出、直流-直流变换器输入或者快充接口等,所述负载DC2还可以是耗电设备,如加热器,此处对负载DC2不作具体限定,需要说明的是,在同一第一回路100中,所述第一电源DC1与所述负载DC2具有对应关系,其中,不同的第一电源DC1对应不同的负载DC2,相同的第一电源DC1可以对应不同的负载DC2,如,所述第一电源DC1为动力电池,所述负载DC2为车载充电器输出;所述第一电源DC1为蓄电池,所述负载DC2为车载充电器输出;所述第一电源DC1为电池,所述负载DC2为整车控制器;所述第一电源DC1为电池,所述负载DC2为快充接口;所述第一电源DC1为恒温控制器,所述负载DC2为加热器;所述第一电源DC1为集成式电机控制器,所述DC2为直流-直流变换器输入。当然,所述第一电源DC1与所述负载DC2还可以是其他相对应的器件,不作具体限定。

由上可知,在第一回路100中,继电器(包括主正继电器K1和主负继电器K2)可以是动力电池和车载充电器输出之间的继电器、蓄电池和车载充电器输出之间的继电器、电池和整车控制器之间的继电器电池与快充接口之间的继电器、恒温控制器和加热器之间的继电器、集成式电机控制和直流-直流变换器输入之间的继电器以及其他可能具有对应关系的第一电源DC1和负载DC2之间的继电器,其中,继电器可以是电磁式继电器,继电器也可以是干簧式继电器,所述主正继电器K1与所述主负继电器K2可以是同种继电器,也可以是不同种继电器,不作具体限定,如,所述主正继电器K1为电磁式继电器,所述主负继电器K2为干簧式继电器,再如,所述主正继电器K1与所述主负继电器K2均为干簧式继电器。

其中,在所述检测电路110中,所述第二电源VCC可以是直流电压源,在所述第一电源DC1未对第一回路100提供电源,即所述DC1未开启的情况下,为所述检测电路110提供外加电源,以实现对第一回路100中所述主负继电器K2当前状态的检测,其中,所述电阻(包括第一电阻R1、第二电阻R2和第三电阻R3)可以是固定电阻,也可以是可变电阻。

在进行检测时,断开所述第一电源DC1,使用所述第二电源VCC供电,通过所述微控制单元MCU检测所述第一电阻R1第二端的电压,若所述主负继电器K2断开,则所述第一电阻R1第二端的电压为[X2/(X1+X2)]U;若所述主负继电器K2闭合,则所述第一电阻R1第二端的电压为[X3/(X1+X3)]U,X3=[X2(X4+X5)]/(X2+X4+X5);若所述主负继电器K2粘连,则所述第一电阻R1第二端的电压为[X6/(X1+X6)]U,X6=[X2(X7+X5)]/(X2+X7+X5);X1为所述第一电阻R1的阻值,X2为所述第二电阻R2的阻值,U为所述第二电源VCC提供的电压值,X3为所述主负继电器K2闭合时所述第二电阻R2、所述第三电阻R3和所述主负继电器K2闭合时的电阻作为整体对应的阻值,X4为所述主负继电器K2闭合时的电阻对应的阻值,X5为第三电阻R3的阻值,X6为所述主负继电器K2粘连时所述第二电阻R2、所述第三电阻R3和所述主负继电器K2粘连时的电阻作为整体对应的阻值,X7为所述主负继电器K2粘连时的电阻对应的阻值。需要说明的是,继电器闭合意味着继电器导通,在表现上可认为通过导线直接连通;继电器粘连说明触点间已经接合(意味着可以有电流流过),只是可能电阻较大,但同样意味着继电器导通。因此,在所述主负继电器K2断开时,所述第一电阻R1第二端的电压相当于所述第二电阻R2分得的电压,在所述主负继电器K2闭合时,相当于在所述主负继电器K2断开的基础上在所述第二电阻R2两端并入一个由所述第三电阻R3和所述主负继电器K2闭合时的电阻串联而成的电阻,所述第一电阻R1第二端的电压相当于所述第二电阻R2与所述第三电阻R3和所述主负继电器K2闭合时的电阻串联而成的电阻并联后分得的电压,在所述主负继电器K2粘连时,相当于在所述主负继电器K2断开的基础上在所述第二电阻R2两端并入一个由所述第三电阻R3和所述主负继电器K2粘连时的电阻串联而成的电阻,所述第一电阻R1第二端的电压相当于所述第二电阻R2与所述第三电阻R3和所述主负继电器K2粘连时的电阻串联而成的电阻并联后分得的电压,进一步的,可知,所述主负继电器K2断开时的所述第一电阻R1第二端的电压大于所述主负继电器K2闭合时的所述第一电阻R1第二端的电压,所述主负继电器K2闭合时的所述第一电阻R1第二端的电压大于所述主负继电器K2粘连时的所述第一电阻R1第二端的电压,其中,[X2/(X1+X2)]U、[X3/(X1+X3)]U、[X6/(X1+X6)]U只是一种理论上的计算,实际应用中,所述第一电阻R1第二端的电压在所述主负继电器K2的不同状态下对应的电压处于一个电压范围,而这个范围可以通过大量的实验得到,作为参考数据,存储在所述微控制单元MCU中,以实现通过所述微控制单元MCU确定出测得的所述第一电阻R1第二端的电压所处的电压范围,进而确定所述主负继电器K2的当前状态。

可见,本申请实施例所提供的主负继电器检测系统10能够通过在检测电路110中接入外接电源(即第二电源VCC),在第一电源DC1未对第一回路100供电的情况下,实现利用外接电源供电准确的检测出主负继电器K2的不同状态,提高了汽车的安全性。

请参阅图2,图2是本申请实施例提供的另一种主负继电器检测系统的结构示意图,如图2所示,主负继电器检测系统20中的检测电路210在图1所提供的主负继电器检测系统10的检测电路110上增加了第一开关器件K3、第二开关器件K4,所述第一开关器件K3与所述第二电阻R2串联,所述第二开关器件K4与所述第三电阻R3串联;所述第一开关器件K3用于接通或者断开所述第二电阻R2与所述主负继电器K2的负端的连接;所述第二开关器件K4用于接通或者断开所述第三电阻R3与所述主正继电器K1的正端的连接。其余部分的电路结构同图1,请参考上述针对图1的说明,此处不再赘述。

其中,在上述检测电路210中,开关器件(包括第一开关器件K3和第二开关器件K4)可以是实体开关器件,开关器件也可以是虚拟功能按键,若开关器件为实体开关器件时,可以设置在所述微控制单元MCU的装置上,若开关器件为虚拟功能按键时,可以设置在所述微控制单元MCU具有显示功能的显示界面。

实际应用中,在第一回路100中的所述第一电源DC1未供电的情况下,通过所述微控制单元MCU控制所述第一开关器件K3与所述第二开关器件K4,以测量需要的所述第一电阻R1第二端的电压值,进而实现确定所述主负继电器K2的状态。

当闭合所述第一开关器件K3,断开所述第二开关器件K4时,所述微控制单元MCU所测得的电压是所述第一电阻R1与所述第二电阻R2串联后所述第二电阻R2分得的电压;

当断开所述第一开关器件K3,闭合所述第二开关器件K4时,若所述主负继电器K2断开,则所述微控制单元MCU所测得的电压为所述第二电源VCC的输出电压,若所述主负继电器K2闭合,则所述微控制单元MCU所测得的电压为所述第一电阻R1、所述第三电阻R3、所述主负继电器K2闭合时的电阻串联时所述第三电阻R3和所述主负继电器K2闭合时的电阻共同分得的电压;若所述主负继电器K2粘连,则所述微控制单元MCU所测得的电压为所述第一电阻R1、所述第三电阻R3、所述主负继电器K2粘连时的电阻串联时所述第三电阻R3和所述主负继电器K2粘连时的电阻共同分得的电压;

当闭合所述第一开关器件K3和所述第二开关器件K4时,若所述主负继电器K2断开,则所述微控制单元MCU是所述第一电阻R1与所述第二电阻R2串联后所述第二电阻R2分得的电压;若所述主负继电器K2闭合,则所述微控制单元MCU所测得的电压为所述第二电阻R2与串联的所述第三电阻R3和所述主负继电器K2闭合时的电阻并联分得的电压;若所述主负继电器K2粘连,则所述微控制单元MCU所测得的电压为所述第二电阻R2与串联的所述第三电阻R3和所述主负继电器K2粘连时的电阻并联分得的电压。

实践应用中,可以通过在所述微控制单元MCU设置不同的关系列表,所述关系列表能够反映所述第一开关器件K3、所述第二开关器件K4、所述主负继电器K2的状态和所述第一电阻R1第二端的电压的对应关系,在进行电压检测的过程中,可以先根据所述第一开关器件K3和所述第二开关器件K4的状态以及测得的所述第一电阻R1第二端的电压确定所述主负继电器K2的状态,在无法根据所述第一开关器件K3和所述第二开关器件K4的状态以及测得的所述第一电阻R1第二端的电压确定所述主负继电器K2的状态的情况下,通过所述微控制单元MCU改变所述第一开关器件K3和所述第二开关器件K4的状态,进一步分析所述第一开关器件K3、所述第二开关器件K4的改变后的状态和对应的检测结果确定所述主负继电器K2的状态,或者,进一步结合所述第一开关器件K3和所述第二开关器件K4的状态不完全相同时的情况以确定所述主负继电器K2的状态。

可见,本示例中,主负继电器检测系统20通过设置开关器件控制所述检测电路210接入所述主负继电器K2的方式来获取电压检测结果,并根据电压检测结果对主负继电器K2的当前状态进行判断,提高了检测主负继电器K2状态的便捷性。

请参阅图3,图3是本申请实施例提供的再一种主负继电器检测系统的结构示意图,如图3所示,主负继电器检测系统30中的检测电路310在图1所提供的主负继电器检测系统10的检测电路110上增加了第一单向导通部件D1,所述第二电源VCC正极连接所述第一单向导通部件D1的正极,所述第一单向导通部件D1的负极连接所述第一电阻R1的第一端;所述第一单向导通部件D1用于单向导通所述检测电路310中的电流,以避免第一电源DC1供电的情况下,影响所述微控制单元MCU的电压检测结果。

其中,所述第一单向导通部件D1可以是二极管。当所述第一电源DC1为第一回路100提供电压产生电流且所述第二电源VCC为检测电路310提供电压产生电流时,若没有所述第一单向导通部件D1,如图1所示,则所述第一电源DC1为第一回路100提供电压时产生的电流会流向所述第二电源VCC并对其产生影响,进而影响待检测的所述第一电阻R1第二端的电压,但加上所述第一单向导通部件D1,如图3所示,因为所述第一单向导通部件D1正向导通,反向不导通,而使得检测电路310中的电流不会受到所述第一电源DC1的影响。

需要说明的是,所述第一单向导通部件D1可应用于图2中的检测电路210,设置位置参考图3,其原理同对图3的描述,在此不作赘述。

可见,本示例中,主负继电器检测系统30通过在主负继电器检测系统10检测电路110中加入第一单向导通器件D1,避免第一回路100中的第一电源DC1对检测电路310的影响,因此,即使在第一回路100中的第一电源DC1工作时,检测电路310也能正常工作,提高主负继电器检测K2的便捷性。

在一个可能的实施例中,所述第一单向导通部件D1包括二极管。

其中,所述二极管可以是硅二极管或者锗二极管,二极管只允许电流由单一方向通过(称为顺向偏压),阻断(称为逆向偏压)反向电流通过,即二极管只允许从第二电源VCC(外接电流)流出的电流通过。

在一个可能的实施例中,图1、图2以及图3所示出的任一主负继电器检测系统,还包括:保护电路模块,所述保护电路模块连接所述微控制单元MCU。

其中,所述保护电路模块用于保护所述微控制单元MCU。

具体的,所述保护电路模块能够限制所述第二电阻R2第二端的电压大小。

参见图4,图4为本实施例提供的一种保护电路模块的结构示意图,如图4所示,所述保护电路模块包括保护器件400和稳压器件401,所述稳压器件401的正极连接所述第一电源DC1的负极,所述稳压器件401的负极分别连接所述保护器件400的第一端和所述微控制单元MCU,所述保护器件400的第二端连接所述第一电阻R1的第二端。

其中,所述保护器件400可以是电阻,所述稳压器件401可以是稳压二极管,此处,通过稳压二极管与电阻共同稳定电压,当反向电压达到一定程度,普通二极管会被反向击穿,而稳压二极管则可以通过让大电流反向流过,防止电压继续升高。

举例来说,当所述第一电阻R1的第二端的电压过高时,直接连接所述微控制单元MCU可能导致所述微控制单元MCU中芯片被烧损,此时,所述保护器件400和所述稳压器件401的存在,所述保护器件400能够降低所述微控制单元MCU的输入电压,且所述稳压器件401能够反向导通大电流,使得所述微控制单元MCU的输入电压不会继续升高,从而保护所述微控制单元MCU。

参见图5,图5为本实施例提供的另一种保护电路模块的结构示意图,如图5所示,所述保护电路模块包括第二单向导通器件D2和保护器件500,所述第二单向导通器件D2的负极连接所述第二电源VCC的负极,所述第二单向导通D1的正极分别连接所述保护器件500的第一端和所述微控制单元MCU,所述保护器件500的第二端连接所述第一电阻R1的第二端。

其中,所述第二单向导通器件D2可以是二极管,所述保护器件500可以是电阻,其中,若正向电压小于某一数值时,该二极管电阻较大,不会影响电流的流动,但若正向电压超过或者等于该数值时,二极管导通,电流通过二极管流向第二电源VCC的负极,保护过大的微控制单元MCU输入电压损伤所述微控制单元MCU。

参见图6,图6为本实施例提供的再一种保护电路模块的结构示意图,图6示出的保护电路模块是在图5示出的保护电路模块的基础上增加了一个第三单向导通器件D3,如图6所示,所述第三单向导通器件D3的正极连接所述第一电源DC1的负极,所述第三单向导通器件D3的负极连接所述第二单向导通器件D2的正极。

其中,所述第三单向导通器件D3可以是二极管。

其中,当保护器件600的第二端的电压值高于所述第二单向导通器件D2的导通电压值U1、低于所述第三单向导通器件D3的击穿电压U2时,U1小于U2,电流可通过所述第二单向导通器件D2所在的电路流通,当保护器件600的第二端的电压高于或者等于所述第三单向导通器件D3的击穿电压U2时,电流可通过所述第二单向导通器件D2和所述第三单向导通器件D3所在的电路流通,因此,图6示出的保护电路模块能够防止过高的微控制单元MCU输入电压损坏所述微控制单元MCU。

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。

以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实现方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:主负继电器工作状态检测系统和检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类