压花成型用有机硅橡胶辊、使用其的塑料膜的制造方法及制造装置、以及表面保护膜

文档序号:704266 发布日期:2021-04-13 浏览:10次 >En<

阅读说明:本技术 压花成型用有机硅橡胶辊、使用其的塑料膜的制造方法及制造装置、以及表面保护膜 (Silicone rubber roll for embossing, method and apparatus for producing plastic film using same, and surface protective film ) 是由 长荣克和 富田优佳 松本忠 于 2019-09-13 设计创作,主要内容包括:本发明提供在表面没有微小的凹陷缺陷、进而在压花成型而得的塑料膜表面不产生突起的压花成型用有机硅橡胶辊。就本发明的压花成型用有机硅橡胶辊而言,表面的有机硅橡胶层包含球状固体粒子,在球状固体粒子中,粒径为0.8μm以下的球状固体粒子及粒径为30μm以上的球状固体粒子的体积含有率分别为球状固体粒子整体的体积的1%以下。(The invention provides a silicone rubber roller for embossing, which has no tiny dent defects on the surface and no protrusion on the surface of a plastic film obtained by embossing. In the silicone rubber roller for embossing of the present invention, the silicone rubber layer on the surface contains spherical solid particles, and the volume content of spherical solid particles having a particle size of 0.8 μm or less and spherical solid particles having a particle size of 30 μm or more among the spherical solid particles is 1% or less of the volume of the entire spherical solid particles.)

压花成型用有机硅橡胶辊、使用其的塑料膜的制造方法及制 造装置、以及表面保护膜

技术领域

本发明涉及压花成型用有机硅橡胶辊、使用其的塑料膜的制造方法及制造装置、以及表面保护膜。

背景技术

一直以来,作为用于在塑料膜的表面成型梨皮形状的压花辊,例如提出了使用如专利文献1记载那样的在表面被覆有有机硅橡胶的橡胶辊。

通过使用有机硅橡胶辊作为压花辊,可以提高为了压花成型而形成熔融状态的树脂与压花辊表面的脱模性。由此能够防止熔融树脂卷绕至压花辊,因此能够提高成型速度。另外,通过适当选择添加到有机硅橡胶中的固体粒子的粒径,还能控制梨皮花纹的表面粗糙度。

进而,在专利文献1中公开了下述技术:在作为填充材料混合到有机硅橡胶中的固体粒子中,将粒径大于19μm的固体粒子的体积设为固体粒子整体体积的1%以下,由此防止在塑料膜的压花成型的面上产生大小为0.05mm2以上且高度为5μm以上的突起。在使用由该技术制造的塑料膜作为例如用于贴合于光学膜等网状制品的表面以进行保护的表面保护膜时,由于没有上述的突起,因此能够防止因该突起产生压痕。

现有技术文献

专利文献

专利文献1:国际公开第2013/080925号

发明内容

发明要解决的课题

然而,近年来,平板显示器中所使用的各种光学膜越来越薄型化,在将这些光学膜作为表面保护膜的贴合对象(以下称为被粘物)时,对防止上述尺寸的突起而言是不充分的,即使是非常微小的突起也会导致出现压痕。

本发明的目的在于:解决上述课题,提供在表面无凹陷、进而在压花成型的塑料膜表面不产生突起的压花成型用有机硅橡胶辊、使用了该橡胶辊的塑料膜的制造方法及装置、以及在表面无突起且不会使被粘物上产生压痕的表面保护膜。

用于解决课题的手段

解决上述课题的本发明的压花成型用有机硅橡胶辊是表面经以有机硅为主成分的橡胶层被覆而成的橡胶辊,

上述橡胶层包含球状固体粒子,

在上述球状固体粒子中,粒径为0.8μm以下的球状固体粒子及粒径为30μm以上的球状固体粒子的体积含有率分别为球状固体粒子整体的体积的1%以下。

另外,本发明的压花成型用有机硅橡胶辊优选使上述球状固体粒子的材质为有机硅树脂。

解决上述课题的本发明的塑料膜的制造方法为:从模具排出熔融树脂,将所排出的熔融树脂在用压花辊与冷却辊或冷却带夹压的同时进行冷却从而将熔融树脂固化,得到网状的塑料膜,

上述压花辊为本发明的压花成型用有机硅橡胶辊。

另外,解决上述课题的本发明的塑料膜的制造方法的另一方式为:将塑料膜加热并软化后,将软化后的塑料膜在用压花辊与冷却辊或冷却带夹压的同时进行冷却从而进行固化,

上述压花辊为本发明的压花成型用有机硅橡胶辊。

解决上述课题的本发明的塑料膜的制造装置具备模具、压花辊以及冷却辊或冷却带,模具、压花辊以及冷却辊或冷却带以用上述压花辊与上述冷却辊或上述冷却带将从上述模具以网状排出的熔融树脂夹压的方式配置,

上述压花辊为本发明的压花成型用有机硅橡胶辊。

另外,解决上述课题的本发明的塑料膜的制造装置的另一方式具备塑料膜的加热单元、压花辊以及冷却辊或冷却带,加热单元、压花辊以及冷却辊或冷却带以用上述压花辊与上述冷却辊或上述冷却带将被上述塑料膜的加热单元加热后的塑料膜夹压的方式配置,

上述压花辊为本发明的压花成型用有机硅橡胶辊。

解决上述课题的本发明的表面保护膜是由单层或多层构成的表面保护膜,

至少一个最外表面为具有微细凹凸的梨皮面,

上述微细凹凸的凹部为大致半球形状,凸部由单一材料构成,

构成上述凸部的材料与形成有前述凹部的部分的材料为同一材质。

本发明中的各术语定义如下。

所谓“以有机硅为主成分的橡胶”,是与通常称作有机硅橡胶的橡胶相同的物质,是指以主链由硅氧烷键构成并且在侧链具有甲基、苯基、乙烯基等有机取代基的线状聚合物为主成分的合成橡胶。此处所谓主成分是指在橡胶成分中包含51质量%以上。

所谓“球状固体粒子”是以在常温下为固体的物质例如金属、矿物、陶瓷、合成树脂、玻璃等或它们的混合物作为材质的粒子,其是指粒子各自的形状为大致球体的粒子。

所谓“有机硅树脂”,是指在常温下为固体并且不显示橡胶状弹性的有机硅树脂,可列举例如具有由硅氧烷键交联成三维网状而成的结构的聚有机倍半硅氧烷固化物等。

所谓“压花辊”,是指表面为梨皮形状且以使该梨皮形状转印于塑料膜的表面为目的的辊。

所谓“冷却辊”,是指以通过与熔融树脂接触并冷却而使熔融树脂固化为目的的辊。

所谓“冷却带”,是以通过与熔融树脂接触并冷却而使熔融树脂固化为目的的带。

所谓“托辊”,是指与压花辊相对地配置并且用于与压花辊一起夹压塑料膜的辊,其定义为区别于将完全熔融的树脂冷却并使其固化的上述“冷却辊”。

所谓“输送带”,是指与压花辊相对地配置并且用于与压花辊一起夹压塑料膜的带,其定义为区别于将完全熔融的树脂冷却并使其固化的上述“冷却带”。

所谓“塑料膜的加热单元”,是指从在长度方向上输送中的塑料膜的至少一个面对塑料膜进行加热并使温度上升的单元,是指例如红外线加热器、热风产生装置、感应加热辊等。

所谓“表面保护膜”,是指用于下述用途的塑料膜:通过贴合于例如相位差膜、增亮膜等光学用塑料膜、金属箔、玻璃板、树脂板等片状或网状的被粘物,从而保护被粘物的表面免受制造工序中或搬运中的划伤、污垢之类的损害。

发明效果

根据本发明,可提供在表面没有凹陷、进而在压花成型的塑料膜表面不产生突起的有机硅压花成型用橡胶辊和使用了该橡胶辊的塑料膜的制造方法及装置。另外,根据本发明,还可提供在表面没有突起并且不会使被粘物上产生压痕的表面保护膜。

附图说明

图1是表示本发明的压花成型用有机硅橡胶辊的一个实施方式的示意性剖视图。

图2是表示本发明的塑料膜的制造装置的一个实施方式的示意性侧视图。

图3是表示本发明的塑料膜的制造装置的另一个实施方式的示意性侧视图。

图4是表示本发明的塑料膜的制造装置的另一个实施方式的示意性侧视图。

图5是表示本发明的塑料膜的制造装置的另一个实施方式的示意性侧视图。

具体实施方式

以下,参照附图对本发明的最佳实施方式的例子进行说明。

如图1所示,本发明的压花成型用有机硅橡胶辊(以下有时称作有机硅橡胶辊)100在辊芯12上被覆有以有机硅为主成分的橡胶层11。

辊芯12的结构并无特别限定,但优选为如图1所示那样在内部设有用于使水等热介质流通的流路13等能够控制有机硅橡胶辊100的表面温度的结构。通过降低有机硅橡胶辊100的表面温度,从而在作为如图2~5所示那样的塑料膜的制造装置中的压花辊3使用的情况下,易于提高与熔融状态的树脂的脱模性、防止卷绕至压花辊3上,另外,易于提升将熔融状态的树脂固化的速度,因此能够提高压花成型的速度。辊芯12的材质并无特别限定,可以从金属、塑料、或纤维增强树脂等通常的结构材料中适当选择使用,但是,与上述同样,从控制温度的观点考虑,可优选使用导热率低的金属材料。作为金属材料,可优选使用例如碳钢、不锈钢、铝及铝合金等。

对辊芯12的表面进行被覆的橡胶层11只要是以有机硅作为主成分的橡胶(以下有时称作有机硅橡胶),则并无特别限定,通常优选使用RTV(Room TemperatureVulcanization(室温硫化))有机硅橡胶、被称作液态有机硅橡胶的通过交联而成为橡胶状弹性体的状态之前的状态为液态的有机硅橡胶。通过在交联前将液态的橡胶被覆于辊芯12,并且进行交联,从而能够容易得到无接缝的表面,因此在使用有机硅橡胶辊100作为压花辊3时,不会将接缝转印于塑料膜的压花成型面。

作为将橡胶层11被覆于辊芯12的表面的方法,与制造各种橡胶辊的情况同样地,包括:卷绕片状的未交联橡胶并进行交联的方法;涂布或吹喷液态的未交联橡胶或者使其填充于模具内后再进行交联的方法;以及将辊芯12插入并粘接至已交联的橡胶软管的方法等。

有机硅橡胶层11包含球状固体粒子,在球状固体粒子中,粒径为0.8μm以下的球状固体粒子及粒径为30μm以上的球状固体粒子的体积含有率分别为球状固体粒子整体的体积的1%以下。另外,优选的是:在球状固体粒子中,粒径为8μm以上的球状固体粒子的体积含有率为球状固体粒子整体的体积的1%以下。另外,进一步优选的是:在球状固体粒子中,粒径为0.8μm以下的球状固体粒子及粒径为8μm以上的球状固体粒子的体积含有率分别为球状固体粒子整体的体积的0.1%以下。

本申请的发明人发现:在将表面保护膜贴合于厚度为50μm以下的环烯烃树脂(COP)膜等光学薄膜这样的被粘物时在被粘物表面产生压痕的原因在于:位于表面保护膜的压花成型面上的大小为30μm以上的突起。该突起是因熔融树脂流入位于压花成型用有机硅橡胶辊表面上的大小为30μm以上的微小凹陷而形成的,查明其原因大多是有机硅橡胶中所含的粒子中粒径为0.8μm以下的微小粒子凝集而成的粒子及30μm以上的粗大粒子的脱落。此处,所谓膜表面上的突起及有机硅橡胶辊表面的微小凹陷的大小,是指在各缺点的各个表面方向上长度最长的方向上的长度、所谓的主轴长。另外,还判明:在粒子的形状为破碎形状等无规的形状时,不论粒径为何,均容易因其形状而凝集。

基于这些见解进行了深入研究,结果发现:将橡胶中所含的粒子设为球状固体粒子,其中,将粒径为0.8μm以下的球状固体粒子及粒径为30μm以上的球状固体粒子的体积含有率分别设为球状固体粒子整体的体积的1%以下,从而能够消除大多数在对膜实施压花加工时成为问题的大小为30μm以上的微小凹陷。进而,通过将粒径为8μm以上的球状固体粒子的体积含有率设为球状固体粒子整体的体积的1%以下,从而易于使表面为更致密且均匀的梨皮形状,在将表面保护膜贴合于被粘物并进行卷取时,易于防止经压花形成的面的梨皮形状转印于被粘物表面。另外,在对橡胶层11的表面进行研磨加工时,切粉变得微细,因此易于防止研磨时的刮伤。进而,通过将粒径为0.8μm以下的球状固体粒子及粒径为8μm以上的球状固体粒子的体积含有率分别设为球状固体粒子整体的体积的0.1%以下,从而即使在例如具有面长大于3m那样的更大表面积的大型辊的情况下,也易于更可靠地防止因粒子的凝集所致的微小凹陷和刮伤。

作为上述球状固体粒子,可使用:氧化铝、二氧化硅、玻璃等无机粒子;氟树脂、丙烯酸类树脂等树脂粉末,等等。另外,也可以使用对它们实施过硅烷偶联处理等表面处理的球状固体粒子。它们中,特别优选使用有机硅树脂制的粒子。本申请的发明人发现:当为有机硅树脂制的粒子时,在与有机硅橡胶混合时,相较于其他粒子而言,更能抑制粘度的上升及触变性的恶化。由此,可抑制混合时的气泡产生,脱泡也变得容易,因此易于抑制因气泡而产生的有机硅橡胶辊表面的凹陷。

球状固体粒子的平均粒径可根据想要得到的梨皮面的粗糙度进行适当选择,在想要对作为表面保护膜使用的塑料膜的梨皮面进行压花成型的情况下,优选使用具有2~5μm的平均粒径的粒子。如果在该范围,则易于通过压花成型于膜表面的梨皮面来赋予脱模性和滑动性,并且易于防止梨皮面转印至被粘物上。需要说明的是,在固体粒子的粒径的测定中能够使用利用了激光衍射/散射法的粒度分布测定器(例如(株)SEISHIN企业制LMS-30)

球状固体粒子在有机硅橡胶中的添加量可根据想要得到的压花梨皮面的粗糙度、橡胶硬度来适当选择,以体积比计橡胶和粒子整体的20~70%左右是通常可采取的范围。

包含上述球状固体粒子的有机硅橡胶层11只要被覆压花成型用有机硅橡胶辊100的最外表层即可。例如可以在包含上述球状粒子的有机硅橡胶层11与辊芯12之间设置其他的橡胶层、用于对橡胶层11和辊芯12进行粘接的粘接剂层。作为其他橡胶层,可优选设置例如混合有氧化铝粒子的导热率高的HTV有机硅橡胶的层、比包含上述球状固体粒子的有机硅橡胶层的橡胶更软的橡胶的层等。如果设置导热率高的橡胶层,则使得有机硅橡胶辊100的表面的温度控制变得容易。如果设置软的橡胶层,则与熔融树脂2、膜46的压花成型面的接触宽度变广,因此易于将熔融树脂2、膜46冷却,易于提升压花成型的速度。

有机硅橡胶层11的橡胶硬度并无特别限定,但优选使用40~90Hs JIS A(JIS K6301-1995)的范围的橡胶硬度。另外,在如上述例示那样与其他橡胶层层叠的构成中,优选使所层叠的橡胶整体采用上述范围。如果橡胶硬度为上述范围,则在压花成型时变得易于缓和因有机硅橡胶辊、相对的辊的加工精度、膜的宽度方向的厚度不均所致的接触压力的不均匀,并且变得易于均匀地进行压花加工。

有机硅橡胶层11的厚度并无特别限定,但优选被覆有1~15mm左右的橡胶层。另外,在如上述例示那样与其他橡胶层层叠的构成中,优选使所层叠的橡胶整体采取上述范围。如果在该范围,则在压花成型时变得易于缓和因有机硅橡胶辊、相对的辊的加工精度、膜的宽度方向的厚度不均所致的接触压力的不均匀,并且变得易于均匀地进行压花加工。另外,在通过使辊芯12的内部流通热介质等结构来控制有机硅橡胶辊100的表面的温度时,也变得易于进行温度控制。

有机硅橡胶辊100可以制成外径从中央部向端部逐渐减小的所谓冠形状。通过根据有机硅橡胶辊100的长度、刚性(挠度难易度)、压花时的压力来设置适当的冠形状,从而在宽度方向上呈现均匀的压力分布,结果易于得到在宽度方向上具有均匀的压花梨皮面的膜。另外,代替将有机硅橡胶层11制成冠形状,而将辊芯11制成冠形状,并且有机硅橡胶层11设为一定的外径,从而也能得到同样的效果。在该情况下,通过使表面为一定的外径,从而不会因轴向的圆周速度差而引起磨损,故优选。

有无有机硅橡胶层11的表面的除去加工及除去加工方法并无特别限定,作为终加工的除去加工,优选进行基于旋转磨石的表面研磨加工。如果是基于旋转磨石的表面研磨加工,则与基于刀具(bite)、砂纸的切削、研磨相比,不易产生条纹状(日文:ベスジ状)的研磨痕、刮伤,另外,与不对表面进行除去加工的情况相比,更易于抑制因开始使用有机硅橡胶辊100作为压花辊时的初始磨损所致的表面形状的变化。

在图2中示出本发明的塑料膜的制造装置的第一方式的一例。在本发明的塑料膜的制造装置的第一方式中,利用冷却辊4和压花辊3夹压从T型模具1排出的熔融树脂2并对其进行冷却,由此得到塑料膜6。接着,根据需要,通过切分工序21进行裁切、或边缘23的修边,通过卷取工序22卷取成卷状,成为膜卷10。然后,根据需要再次经过切分工序、其他加工工序而成为制品卷。需要说明的是,模具并不限定于T型模具,但可优选列举T型模具。

T型模具1从在相对于附图为进深方向设置的狭缝将利用未图示的挤出机进行熔融混炼、并输送来的熔融树脂2连续地排出,由此将熔融树脂2挤出成片状。若在挤出机与T型模具1之间设置被称作聚合物过滤器的过滤装置,则易于降低被称作鱼眼的异物、劣化树脂的混入,故优选。T型模具1的狭缝的宽度优选的是能够对膜6的宽度方向的每个一定区间进行调整而控制膜6的宽度方向的厚度不均。成膜的膜6的厚度可通过熔融树脂2的排出速度与冷却辊4的旋转速度之比来调整。在成膜的膜6为多层结构的情况下,在T型模具1的上游设置被称作供料块(feed block)的熔融树脂的层叠装置,或者将T型模具1制成被称作多歧管结构的具有多个歧管的结构并进行共挤出,由此能够得到多层膜。另外,也可以制成能够通过限制膜宽度方向的熔融树脂2的流路宽度来变更成膜的膜6的宽度的结构。

优选为T型模具1与冷却辊2及压花辊3的位置关系可调整的结构。通常,为了将压花辊3的表面形状精度良好地转印至熔融树脂2,优选在冷却前的熔融状态下将熔融树脂2进行夹压,因此优选如图2所示那样调整T型模具1或冷却辊4的位置以使熔融树脂2直接侵入夹持点,但出于调整膜6的各个面的冷却辊4及压花辊3的转印状态的目的,可以适当调整T型模具1与冷却辊4及压花辊3的位置关系。

熔融树脂2的温度可根据所使用的树脂的种类、进行压花成型的速度进行适当设定,例如,如果是通常的聚乙烯树脂,则通常可在130℃~300℃左右的范围内进行选择。

冷却辊4可使用例如使内部具有使热介质流通的流路、并且能够控制表面温度的结构的冷却辊。冷却辊4的表面温度可根据熔融树脂2的种类、熔融树脂2与冷却辊4的接触时间以及室温、湿度进行适当设定,但是从成膜速度、膜的表面品质的观点考虑,优选为10~60℃。如果冷却辊4的表面的温度在上述范围内,则易于在实用的成膜速度范围内使熔融树脂2冷却、固化,另外还易于防止因在成膜中的冷却辊4表面上发生结露所致的膜6的表面品质恶化。

冷却辊4的表面材质并无特别限定,可使用金属或陶瓷或树脂及树脂与金属的复合膜、以及类金刚石碳等碳系被膜。另外,也可以使用橡胶作为冷却辊4的表面材质。作为金属,可优选使用铁、钢、不锈钢、铝、钛、铬、镍等。另外,作为陶瓷,可优选使用氧化铝、碳化硅、氮化硅等的烧结体。冷却辊4的表面形状转印于熔融树脂而成为膜6的与压花辊3接触的面的相反面的面形状,因此从防止膜6的外观品质的下降、凸状缺点的发生的观点考虑,也优选使用耐久性及防锈优异的工业用镀铬、陶瓷。为了将冷却辊4的表面制成金属,除使用了金属原材料的通常的机械加工以外,还可以适当使用电镀、非电解镀等公知的表面处理技术。另外,同样地,为了得到陶瓷表面,除使用了陶瓷原材料的通常的机械加工以外,还可以适当使用熔喷、涂布等公知的表面处理技术。

冷却辊4的表面形状转印于熔融树脂2,决定膜6的与压花辊3接触的面的相反面的形状。因此,根据使用本发明的塑料膜的制造装置制造的膜6来适当设计冷却辊4的表面形状,在制造表面保护膜的情况下,冷却辊4的算术平均粗糙度Ra(JIS B0601:2013)优选为0.2μm以下,更优选为Ra为0.1μm以下。在制造表面保护膜的情况下,上述相反面成为粘合于被粘物的表面的面(以下称为粘合面),粘合面的算术平均粗糙度Ra越大,该粘合力越小,越难粘合于被粘物,因此优选为上述范围。通过向树脂中混合增粘剂等添加剂,从而也能增强粘合力,但是有时在从被粘物剥离表面保护膜时会在被粘物上残留添加剂或因添加剂而难以进行树脂的再利用,因此将表面粗糙度设为上述范围,并且以树脂单独显现作为表面保护薄膜的充分的粘合力,不论在品质方面还是成本方面上都是优选的。需要说明的是,对于使算术平均粗糙度Ra小于0.001μm而言,在制作上非常困难,还耗费成本,因此算术平均粗糙度Ra优选为0.001μm以上,但是,即使小于0.001μm,也并不会丧失本发明效果。通过例如抛光研磨加工等通常的镜面研磨加工,能够达成使冷却辊4的算术平均粗糙度Ra为0.2μm以下。

压花辊3是本发明的压花成型用有机硅橡胶辊100。如前述所示,本发明的压花成型用有机硅橡胶辊100抑制了大小为30μm以上的表面的凹陷。由于突起缺陷是因熔融树脂流入压花辊表面的凹陷并固化而产生的,因此通过使用本发明的有机硅橡胶辊作为压花辊3,从而能够抑制在膜6的压花辊3侧的面上产生突起缺陷。在所制造的膜6为表面保护膜的情况下,如前述所示,判明有时大小为30μm以上的突起缺陷会使被粘物上产生压痕,根据本发明,能够使该压痕大幅地减少。

作为将压花辊3按压于冷却辊4并夹压熔融树脂2的手段,可以使用通过夹入锥形块等的方法等来控制冷却辊2与压花辊3间的间隙或压花辊3的压入量、即压花辊3与冷却辊4的相对位置的方法,也可以使用通过气缸等来控制按压压花辊3的力的方法。但是,在形成夹持点(nip point)处的熔融树脂2的厚度为100μm以下这样的薄膜的情况、被覆于压花辊3的弹性体的橡胶硬度为90Hs JIS A以上的情况下,在基于压入量的控制中存在压力不均变得过大的情况,因此优选为控制按压力的方法。按压压力可适当设定,但优选为0.1~5kN/m左右的范围。如果按压压力为上述范围,则易于良好地进行压花辊3的表面在熔融树脂2上的转印。

另外,如图3所示,通过代替冷却辊4而在与冷却带34之间夹压熔融树脂2,从而也能同样地得到膜6。

冷却带34通过挤压辊35和冷却输送辊36来输送。挤压辊35可以是在表面被覆有橡胶的橡胶辊,但从相对的压花辊3被覆有橡胶的方面考虑,挤压辊35不必是橡胶辊。在挤压辊35的表面不为橡胶的情况下,其表面能够使用工业用镀铬等通常的表面处理。挤压辊35和冷却输送辊36优选为使内部流通热介质的结构等具有温度控制功能且对冷却带34进行冷却的结构。通过对冷却带34进行冷却,从而与熔融树脂的脱模性提高,容易在高速下成膜。挤压辊35经由冷却带34而在与压花辊3之间夹压熔融树脂2。冷却输送辊36也可以同样地压抵于压花辊3,也可以仅使其接近而不压抵。若将冷却输送辊36制成冠形状,则冷却带34将不易弯曲行进,故优选。需要说明的是,冷却输送辊36可以有多个,在该情况下,优选的是各个冷却输送辊为了控制例如冷却带34的温度而具有温度调节功能或具有防止冷却带34弯曲行进的功能。作为防止冷却带34弯曲行进的功能,除上述冠形状外,还可以使用以光学传感器等监视输送带54的宽度方向位置、同时在有弯曲行进的情况下自动地调整冷却输送辊36相对于带输送方向的角度而修正弯曲行进的所谓边缘位置控制器(EPC)。

若在冷却带34的表面存在接缝,则有时会转印于膜6的面上,因此冷却带34优选为无接缝的环形带,材质并无特别限定,但可以使用例如不锈钢、镍等金属制的冷却带。

冷却带34的厚度并无特别限定,可优选使用30μm~500μm的厚度的冷却带。如果在该范围,则易于得到制作容易且强度和弯曲性也充分的冷却带。

在图4中示出本发明的塑料膜的制造装置的另一方式。在本方式中,用塑料膜的加热单元(以下简称为加热单元)41对膜46进行加热,将至少进行压花成型的一侧的表面软化至能够压花成型的状态后,用压花辊3和托辊42夹压,并进行压花成型。

压花成型前的膜46的表面温度可根据所使用的树脂的种类、进行压花成型的速度来适当设定,例如,如果是通常的聚乙烯树脂,则通常可以在130℃~300℃左右的范围内进行选择。

压花成型前的膜46的制造工序无特别限定,可以直接使用通过将用挤出机熔融混炼后的树脂从T型模具以网状排出并使其在冷却辊上冷却、固化而制成膜的工序、即所谓的T型模具法成膜得到的膜,也可以如图4所示那样将用其他膜制造装置制造的膜暂时卷取而制成膜卷40、再将膜卷40从解绕装置解绕来使用。此外,可以使用用吹胀法等通常的塑料膜的制造方法制造的膜,另外,也可以使用对膜46的进行压花成型的面的相反面实施过等离子体处理、涂布、蒸镀等各种表面处理而得的膜、切分加工成任意宽度的膜。

加热单元41可以使用在膜制造工序中通常使用的加热单元、例如红外线加热器、热风产生机、感应加热辊等。另外,可以一次性地将膜6加热至能够压花的温度,也可以用多个加热单元分阶段地进行加热等。若将膜6加热至能够压花的温度,则有时会贴附于金属表面等,因此优选使用下述方法:用例如感应加热辊等接触式加热单元加热至不会贴附的程度的温度后,再用红外线加热器等非接触式的加热单元加热至能够压花的温度。通过这样地分阶段地加热,从而易于防止加热时的膜6的褶皱、变形。

压花辊3是本发明的压花成型用有机硅橡胶辊100。通过使用本发明的有机硅橡胶辊作为压花辊3,与上述的其他方式同样,能够抑制在膜46的压花辊3侧的面上产生突起缺陷。

托辊42可以使用与通常的膜制造装置及加工装置中所使用的膜输送用辊同样的材质及结构的托辊,优选使内部流通热介质或具备加热器等而具有温度调节功能。通过具有温度调节功能,从而容易将膜46的温度保持恒定,并且易于防止压花加工的不均。

托辊42的表面材质及形状可以与冷却辊4同样地根据所制造的膜进行适当选择。例如在制造表面保护膜的情况下,对于膜46的与压花辊3接触的面的相反侧的面而言,为了得到粘合性,而优选使其平滑,因此与冷却辊4同样,托辊42的表面的Ra优选为0.2μm以下,更优选为0.1μm以下。另一方面,在制造双面为梨皮面的膜的情况下,可以将托辊42的表面制成梨皮形状并与同压花辊3接触的面同时进行压花加工。

将压花辊3按压于托辊42并夹压膜46的手段与按压于冷却辊4时同样地可使用各种手段,但优选通过气缸进行挤压。

在本发明的塑料膜的制造装置的另一方式中,如图5所示,也可以代替托辊42而使用输送带54。

输送带54与冷却带34同样优选为在表面无接缝的环形带,材质并无特别限定,可以使用例如不锈钢、镍等金属制的输送带。

输送带54的厚度并无特别限定,可优选使用30μm~500μm的厚度的输送带。如果在该范围,则易于得到制作容易且强度和弯曲性也充分的输送带。

如图5所示,在使用输送带54的情况下,可以在输送带上使用加热单元41对膜46进行加热。若为了进行压花加工而对膜46进行加热,则膜46的刚性下降,因此在对例如厚度为100μm以下的膜、仅由刚性低的树脂例如低密度聚乙烯等构成的膜进行压花加工时,有时在辊间、所谓的自由跨度中膜被拉伸或破裂。若在输送带54上进行加热,则输送带54支承膜46,因此即使是如上所述的膜,也不易发生这些问题。

输送带54通过带输送辊55和挤压辊52来输送。挤压辊52与挤压辊35同样地可以是橡胶辊,也可以是实施过通常的表面处理后的金属辊。带输送辊52可以有多个,优选的是各个带输送辊为了控制例如输送带54的温度而具有温度调节功能或具有防止输送带54弯曲行进的功能。作为温度调节功能,可以使辊的内部流通热介质,也可以设置各种加热器。作为防止输送带54弯曲行进的功能,可以使用使带输送辊55的外径从宽度方向中央部向端部逐渐减少的方法作为最简便的方法,还可以使用以光学传感器等监视输送带54的宽度方向位置、同时在有弯曲行进的情况下自动地调整带输送辊55相对于带输送方向的角度而修正弯曲行进的所谓边缘位置控制器(EPC)。

本发明的表面保护膜可以通过本发明的压花成型用有机硅橡胶辊、使用了该有机硅橡胶辊的塑料膜的制造方法及制造装置来制造,如前所述,通过本发明的压花成型用有机硅橡胶辊,可抑制压花成型面的突起,因此即使被粘物为30μm以下的COP膜等薄型的光学膜,也能抑制压痕。

本发明的表面保护膜可以是单层结构,也可以是包含2层以上的多层结构。例如在制成单层结构的情况下,为了使装置构成变得简单,可以抑制设备费及保养费,在制成3层结构并且在中间层使用再利用原料的情况下,可以抑制原料成本。另外,即使在制成单层结构或多层结构的情况下,只要各层的树脂为同种材质,则可以易于对原料进行再利用。

本发明的表面保护膜的至少一个面的最外表面是具有微细凹凸的梨皮面。表面保护膜由于一个面具有粘合力,因此为了防止在卷取成卷状时膜的表面和背面贴附而变得不能剥离、或者成为皱褶,而将另一个面设为梨皮面。但是,若梨皮面的凹凸形状粗糙,则有时产生下述问题:在将膜卷取成卷状时凹凸的形状转印于粘合面而使粘合力下降;或者在贴附于被粘物后卷取成卷状时凹凸的形状转印至被粘物的表面;等。如果梨皮面的RzJIS(JISB 0601:2013)为1~5μm、且粗糙度曲线要素的平均长度RSm(JIS B 0601:2013)为5~40μm,则不易产生这些问题,故优选。另外,如果RzJIS为1~3μm、且RSm为5~15μm,则在被粘物为例如厚度20μm以下的环烯烃膜这样的非常容易转印凹凸的物质的情况下,也不易产生这些问题,故更优选。需要说明的是,RzJIS和RSm的测定通常使用触针式的表面粗糙度计,但是在为上述范围的致密且微细的形状且为如聚乙烯树脂那样的柔软材质的情况下,在触针式的情况下,由于针尖的直径大,因此不仅不能准确地进行测定,而且有时会因针的前端形状、接触压力这样的机械误差而成为不同的值。因此,RzJIS和RSm的测定优选使用例如激光显微镜、白色干涉计这样的高精度且非接触的测定手段。

本发明的表面保护膜的梨皮面是将本发明的压花用有机硅橡胶辊的表面形状进行压花加工而得到的,因此梨皮面的凹凸的凹部为大致半球形状。另外,由于是通过压花加工得到的凹凸,因此凸部由单一材料构成,并且与形成有凹部的部分也为同一材料。

与此相对,作为不利用压花成型而得到梨皮面的方法,包括例如在构成梨皮面的层的树脂中混合固体粒子等异种原料的方法。在该情况下,如果混合球状的粒子等作为异种原料,则梨皮面的凹凸的凸部可以成为大致半球形状,但凹部不能成为大致半球形状,凸部的材料由2种以上的材料构成,包含与形成有凹部的部分不同的材料。

作为构成本发明的表面保护膜的树脂,并无特别限定,可以根据所要求的特性从以聚对苯二甲酸乙二醇酯、聚-2,6-萘二甲酸乙二醇酯等为代表的聚酯、以聚乙烯、聚丙烯等为代表的聚烯烃、以聚氯乙烯、聚偏氯乙烯等为代表的聚乙烯、聚酰胺、芳香族聚酰胺、聚苯硫醚等中进行适当选择,可优选使用聚烯烃。其中,特别优选在形成梨皮面的层和形成粘合面的层中使用低密度聚乙烯(LDPE)、直链状低密度聚乙烯(LLDPE)。若由硬的树脂形成梨皮面的凹凸,则有时产生下述问题:在将膜卷取成卷状时,凹凸的形状转印于粘合面而使粘合力下降,或者在贴附于被粘物后卷取成卷状时凹凸的形状转印于被粘物的表面。由于LDPE、LLDPE较为柔软,因此不易产生这些问题。另外,就这些树脂而言,通过将表面的算术平均粗糙度Ra(JIS B 6010:2013)设为0.1μm以下,从而在不添加粘合剂等添加剂的情况下也能对平滑的被粘物显现粘合力。由此,可以防止在因粘合剂渗出而剥离表面保护膜时粘合剂残留于被粘物的表面的情况,故优选。另一方面,在形成梨皮面的层和形成粘合面的层以外的层中可以使用其他树脂。例如,在若仅由LDPE、LLDPE构成膜则刚性不足等情况下,通过使用高密度聚乙烯、聚丙烯,从而能够提高刚性。在表面保护膜中,有时刚性高至某种程度的表面保护膜不易产生褶皱、卷曲这样的工序问题而更容易使用。

实施例

以下,基于实施例对本发明进行更具体地说明,但本发明并不受这些实施例限定。另外,各种评价、测定方法如以下所示。

[辊表面的凹陷数]

将所制作的辊的表面按照边长为3cm的正方形(以下称作3cm见方)的大小取样3处,用激光显微镜进行了观察。对各个样品计数长边的大小为30μm以上的凹陷数,并且将3个样品的凹陷数进行合计,计数共计27cm2中的凹陷数。

[压痕数]

使用表面平滑的厚度40μm的由环烯烃树脂形成的相位差膜作为被粘物。使用辊压机((株)安田精机制作所制特殊压接辊),将在温度23℃、湿度50%RH的条件下保存24小时后的实施例3~5及比较例2的表面保护膜以贴入压力9,100N/m、贴入速度300cm/分钟贴附于被粘物。然后,用平滑的聚碳酸酯板(板厚度2mm)夹持两侧,施加1.3kg/cm2的载荷,在60℃热风烘箱中保存3天。然后,恢复到室温,从被粘物剥离表面保护膜。将被粘物按照3cm见方的大小取样3处,以目视检查在被粘物上是否产生压痕,并计数3处的压痕数的合计。

[固体粒子的体积含有率(粒度分布)]

使用激光衍射/散射式粒度分布测定器(SEISHIN企业制LMS-30),按照体积基准测定粒度分布,通过积分分布测定任意的粒径以下及以上的固体粒子的体积含有率。

[实施例1]

将体积平均粒径为3.5μm的氧化铝球状粒子按照不包含粒径为0.8μm以下的粒子及粒径为30μm以上的粒子的方式进行分级处理后,添加到不包含固体粒子的RTV有机硅橡胶原料中。对分级处理后的氧化铝球状粒子的粒度分布进行了测定,结果以体积含有率计包含2.5%的粒径大于8μm、小于30μm的粒子。将RTV有机硅橡胶原料和氧化铝球状粒子的混合物进行搅拌、脱泡,对如图1所示结构的辊芯进行加衬(lining)。然后,用旋转的磨石对有机硅橡胶的表面进行研磨,得到被覆有厚度10mm的有机硅橡胶的压花成型用有机硅橡胶辊。所得的有机硅橡胶层的橡胶硬度为80Hs JIS A(JIS K6301-1995)。

[实施例2]

在不包含固体粒子的RTV有机硅橡胶原料中添加不包含粒径为0.8μm以下的固体粒子及粒径为8μm以上的粒子的、体积平均粒径为3.5μm的有机硅树脂球状粒子。将RTV有机硅橡胶原料和有机硅树脂球状粒子的混合物进行搅拌、脱泡,对图1所示结构的辊芯进行加衬。然后,用旋转的磨石对有机硅橡胶的表面进行研磨,得到被覆有厚度10mm的有机硅橡胶的压花成型用有机硅橡胶辊。所得的有机硅橡胶层的橡胶硬度为81Hs JIS A(JIS K 6301-1995)。

[比较例1]

将体积平均粒径为3μm且截止点(cut point)为11μm的氧化铝球状粒子不进行分级处理而直接添加到不包含固体粒子的RTV有机硅橡胶原料中。将RTV有机硅橡胶原料和氧化铝球状粒子的混合物进行搅拌、脱泡,对图1所示结构的辊芯进行加衬。然后,用旋转的磨石对有机硅橡胶的表面进行研磨,得到被覆有厚度10mm的有机硅橡胶的压花成型用有机硅橡胶辊。所得的有机硅橡胶层的橡胶硬度为Hs80JIS A。在添加前的氧化铝球状粒子中包含以体积含有率计为整体的2%~3%的0.8μm以下的粒径的粒子。

实施例1、2及比较例1的制作结果如表1所示。在比较例1中,大小为300μm以上的凹陷为0个,但是100μm以上且小于300μm的凹陷为1个,30μm以上且小于100μm的凹陷为200个以上。另一方面,在实施例1中,30μm以上且小于100μm的凹陷只有2个,在实施例2中为0个。另外,当在表面产生刮伤时,直至无刮伤为止再施行表面研磨。对于直到得到没有刮痕产生的表面为止所历经的研磨次数而言,在比较例1中为15次。另一方面,在实施例1中以5次便完成。进而,在实施例2中为1次,即无需再研磨便能完成。

[表1]

[实施例3]

使用图2所示的塑料膜的制造装置。在220℃下,从将狭缝宽度调整为0.9mm的T型模具中以1种单层构成排出密度为0.93g/cm3的低密度聚乙烯(LDPE),用冷却辊和压花辊进行夹压、冷却,得到厚度为30μm的表面保护膜。压花辊使用实施例1中制作的有机硅橡胶辊。

[实施例4]

除了使用实施例2中制作的有机硅橡胶辊作为压花辊以外,利用与实施例3同样的制造装置及制造方法得到表面保护膜。

[实施例5]

准备预先利用T型模具法来制造并经卷取的由密度为0.93g/cm3的低密度聚乙烯(LDPE)形成的1种单层膜。使用图5所示的塑料膜的制造装置,将膜解绕,用作为加热单元的红外线加热器按照使膜的表面成为180°的方式进行加热,用输送带和压花辊进行夹压、冷却,得到厚度为30μm的表面保护膜。压花辊使用实施例1中制作的有机硅橡胶辊。

[比较例2]

除了使用比较例1中制作的有机硅橡胶辊作为压花辊以外,利用与实施例3同样的制造装置及制造方法得到表面保护膜。

使用实施例3~5、比较例2中得到的表面保护膜,如上述[压痕数]中记载那样进行处理,并且对被粘物的压痕数进行了测量。在比较例2中观察到200个以上的压痕。另一方面,在实施例3、5中仅观察到1个压痕,在实施例4中未观察到压痕。

产业上的可利用性

本发明并不限于表面保护膜的制造装置及制造方法,也可以应用于至少一个面为经压花成型的梨皮面的塑料膜的制造装置及制造方法,但其应用范围不限于此。

附图标记说明

1 T型模具

2 熔融树脂

3 压花辊

4 冷却辊

5 剥离辊

6 膜

7 切割机

8 边缘抽吸管

9 近辊

10 膜卷

11 有机硅橡胶层

12 辊芯

13 热介质流路

14 轴承

21 切分工序

22 卷取工序

23 膜边缘

34 冷却带

35 挤压辊

36 冷却输送辊

40 压花成型前的膜卷

41 塑料膜的加热单元

42 托辊

46 压花成型前的膜

52 挤压辊

54 输送带

55 带输送辊

100 压花成型用有机硅橡胶辊

A 膜行进方向

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:配备有树脂胶囊的立体光刻设备以及操作所述设备的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!