一种绝缘包覆FeSiAl复合磁粉芯及其制备方法

文档序号:812736 发布日期:2021-03-26 浏览:14次 >En<

阅读说明:本技术 一种绝缘包覆FeSiAl复合磁粉芯及其制备方法 (Insulating coated FeSiAl composite magnetic powder core and preparation method thereof ) 是由 张雪峰 李红霞 刘先国 李忠 于 2020-11-25 设计创作,主要内容包括:本发明涉及磁性元器件技术领域,尤其涉及一种绝缘包覆FeSiAl复合磁粉芯及其制备方法,包括以下步骤:(1)将FeSiAl金属软磁粉加入到含金属空位的TiO-2前驱体溶胶中,加热搅拌均匀;(2)加TiO-2纳米粉体,得绝缘粉;(3)与粘结剂和润滑剂混合均匀,压制成型,得坯体;(4)热处理,冷却,喷涂。本发明利用TiO-2前驱体溶液与FeSiAl有较好的黏着性,可以均匀致密的包覆在磁粉芯外面,从而提高磁粉芯的电阻率,有利于提高其高频特性,降低功率损耗;通过控制TiO-2前驱体溶液的加入量,有效调控最终包覆在磁粉芯外面的TiO-2薄膜的厚度,实现对粉芯内部气隙率的调控,从而在在降低损耗的同时提高磁粉芯的磁导率。(The invention relates to the technical field of magnetic components, in particular to an insulating coated FeSiAl composite magnetic powder core and a preparation method thereof, wherein the insulating coated FeSiAl composite magnetic powder core comprises the following steps: (1) adding FeSiAl metal soft magnetic powder into TiO containing metal vacancy 2 Heating and stirring the precursor sol uniformly; (2) adding TiO 2 Obtaining insulating powder by using nano powder; (3) mixing with binder and lubricant, and press molding to obtain blank; (4) heat treatment, cooling and spraying. The invention makes use of TiO 2 The precursor solution and FeSiAl have good adhesion, and can be uniformly and compactly coated outside the magnetic powder core, so that the resistivity of the magnetic powder core is improved, the high-frequency characteristic of the magnetic powder core is improved, and the power loss is reduced; by controlling TiO 2 The adding amount of the precursor solution can effectively regulate and control the TiO finally coated outside the magnetic powder core 2 The thickness of the film realizes the regulation and control of the air gap rate in the powder core, thereby improving the magnetic conductivity of the magnetic powder core while reducing the loss.)

一种绝缘包覆FeSiAl复合磁粉芯及其制备方法

技术领域

本发明涉及磁性元器件技术领域,尤其涉及一种绝缘包覆FeSiAl复合磁粉芯及其制备方法。

背景技术

电子元器件的微型化、移动化和多功能化要求制备高性能储能器件的磁芯必须具有高饱和磁通密度、低的高频损耗及良好的性能稳定性等,因此金属磁粉芯成为制作这些电子元器件尤其是高频、大电流和大功率元件如光伏逆变器等的关键材料。

目前,磁粉芯主要有铁粉芯、钼坡莫合金粉芯、高磁通粉芯、铁硅磁粉芯和铁硅铝磁粉芯。FeSiAl磁粉芯作为一种高频性能好、成本低的软磁材料,在输出电感线路滤波器和功率因素校正器等器件中得到了广泛应用,其市场需求日益增加。

绝缘包覆工序是FeSiAl磁粉芯生产制造过程中最为核心的工序。其目的是在金属粉末表面形成一层绝缘层,用来提高金属粉末间的电阻率,以满足金属磁粉芯的高频使用要求。FeSiAl磁粉芯的磁导率和功率损耗与绝缘剂的种类、添加量、成型压力和退火温度有着重要的关系。通过对磁粉芯的绝缘包覆,可以提高磁粉芯的电阻率,有利于提高其高频特性,降低功率损耗。但是,随着绝缘包覆材料的增加,粉芯内部气隙率变大,从而会降低磁粉芯的磁导率。因此,如何选择合适的包覆材料在获得高磁导率的同时降低其损耗成为现今研究的一大挑战。

利用有机绝缘包覆剂具有绝缘性能好的特点来包覆金属粉末从而制备得到金属磁粉芯,使得金属磁粉芯在交流场中具有低功率损耗的优点。然而有机包覆的磁粉的抗压性能和耐热性能均较差,而磁粉芯胚体致密度的降低和退火温度热处理的下降都会对磁粉芯磁性能产生不利影响,因此人们对无机绝缘包覆剂开展了研究。

陶瓷(金属氧化物)绝缘包覆层(氧化硅、氧化镁、氧化铝等)具有较高的耐热度,因而能够满足退火热处理对绝缘包覆层热稳定性的要求,但陶瓷绝缘包覆层具有磁稀释作用,氧化硅、氧化镁等物质会大大降低磁粉芯的磁导率,恶化磁粉芯的磁性能。同时,由于陶瓷具有硬脆性,采用该方法包覆的金属粉末其表面的绝缘包覆层,在压制成型过程中容易发生破裂,使得绝缘包覆不均匀,增加磁芯的涡流损耗。

中国专利文献上公开了“一种FeSiAl磁粉芯的制备方法”,其申请公布号为CN1812009A,该发明以云母粉、高岭土或者两者混合物为绝缘剂,以环氧树脂、酚醛树脂、硅铜树脂中的一种为粘结剂,以硬脂酸锌或硬脂酸锂为润滑剂,上述磁粉芯在500~90℃退火处理后得到磁粉芯。该方法制备的磁导率较好,可达125,但是铁损较高,在50KHz、0.1T时达330mW/cm3

中国专利文献上公开了“一种金属软磁粉芯的制备方法”,其申请公布号为CN103247403A,该发明直接选用纳米氧化物分散液对金属磁粉进行绝缘包覆,其中MgO纳米颗粒占分散液总重的5~35%。但是,由于这种分散液稳定性差,且MgO纳米颗粒对磁粉的黏着性差,难以实现均匀包覆且容易脱落,导致绝缘性能差,涡流损耗偏大。

中国专利文献上公开了“一种金属软磁粉芯用无机绝缘粘结剂及其制备方法”,其申请公布号为CN101089108A,该发明无机绝缘粘结剂由SiO2、Al2O3、ZrO2、云母粉及水混合而成,水合物溶液中悬浮粒子接近纳米尺度,具有绝缘、粘接的双重效果。在热处理过程中可以强化粘结效果,提高粉芯的稳定性。但由于无机绝缘粘结剂是由SiO2、Al2O3、ZrO2、云母粉的水合物组成,虽然性能稳定,但包覆效果不想理,很难在FeSiAl表面实现均匀致密的包覆,从而使得粉芯的磁导率降低。

发明内容

本发明为了克服上述现有技术中存在的问题,提供了一种同时实现FeSiAl金属磁粉芯的高磁导率和低损耗的绝缘包覆FeSiAl复合磁粉芯。

本发明还提供了一种绝缘包覆FeSiAl复合磁粉芯的制备方法,该方法成本低,操作简单,易于大规模生产。

为了实现上述目的,本发明采用以下技术方案:

一种绝缘包覆FeSiAl复合磁粉芯的制备方法,包括以下步骤:

(1)将FeSiAl金属软磁粉加入到含金属空位的TiO2前驱体溶胶中,加热搅拌均匀后,烘干得FeSiAl金属软磁粉@TiO2前驱体;该步骤通过在磁粉芯表面包覆含金属空位的TiO2前驱体溶胶,可以对磁粉芯实现均匀致密包覆,从而提高磁粉芯的电阻率,降低功率损耗;

(2)在步骤(1)得到的FeSiAl金属软磁粉@TiO2前驱体中加入TiO2纳米粉体,得绝缘粉;以FeSiAl金属软磁粉总质量为基准,所述TiO2纳米粉体的加入量为0~0.5wt%;该步骤中加入TiO2纳米粉体的作用是避免TiO2前驱体的包覆不均匀;

(3)将步骤(2)得到的绝缘粉与粘结剂和润滑剂混合均匀,压制成型,得坯体;

(4)将步骤(3)得到的坯体在真空或氮气或氢气中进行热处理,冷却,喷涂,即得绝缘包覆FeSiAl复合磁粉芯。该步骤中,含金属空位的TiO2前驱体在热处理过程中转变为含有金属空位的TiO2薄膜,而这类半导体薄膜具有铁磁性,能够有效减小磁稀释作用,在降低铁损的同时可以保持FeSiAl粉芯的磁导率,增强其高频稳定性,进一步提升复合材料的磁性能。

本发明的创新点在于设计出一种含有金属空位的纳米TiO2薄膜包覆FeSiAl金属软磁复合材料。一方面,TiO2前驱体的溶液与FeSiAl有较好的黏着性,可以均匀致密的包覆在磁粉芯外面,从而提高磁粉芯的电阻率,有利于提高其高频特性,降低功率损耗。另一方面通过控制TiO2前驱体溶液的加入量,可以有效调控最终包覆在磁粉芯外面的TiO2薄膜的厚度,实现对粉芯内部气隙率的调控,从而在在降低损耗的同时提高磁粉芯的磁导率。

作为优选,步骤(1)中,所述含金属空位的TiO2前驱体溶胶中包括以下质量百分含量的组分:6~12%无水乙醇,0.55~1.1%钛酸异丙酯,3~7%的丙三醇和0.012~0.48%的盐酸。具体步骤为:将钛酸异丙酯缓慢滴加到无水乙醇和丙三醇的混合溶液中,之后再将盐酸加入到上述混合液中。将上述溶液磁力搅拌30min后获得无色透明的溶液,即为含金属空位的TiO2前驱体溶胶。

本发明通过调控绝缘包覆材料Ti源和丙三醇的加入量,可以获得含有金属空位的TiO2薄膜,而这类半导体薄膜具有铁磁性,能够有效减小磁稀释作用,在降低铁损的同时可以保持FeSiAl粉芯的磁导率,增强其高频稳定性,进一步提升复合材料的磁性能。

作为优选,步骤(1)中,加热温度为80~100℃,搅拌时间为20~40min;烘干温度为90~120℃,时间为20~40min。

作为优选,步骤(2)中,所述TiO2纳米粉体的平均粒径为20~25nm;所述TiO2纳米粉体为金红石型。

作为优选,步骤(3)中,压制成型的压强为1500~2000MPa。

作为优选,步骤(3)中,以FeSiAl金属软磁粉总质量为基准,所述粘结剂的加入量为0.5~2wt%。

作为优选,步骤(3)中,以FeSiAl金属软磁粉总质量为基准,所述润滑剂的加入量为0.3~1.0wt%。

作为优选,步骤(3)中,所述粘结剂选自环氧树脂、硅酮树脂、二氧化硅、玻璃粉、水玻璃中的一种或几种。

作为优选,步骤(3)中,所述润滑剂选自硬脂酸锌和硬脂酸钡中的一种或两种。

作为优选,步骤(4)中,热处理的温度为600~780℃,时间为0.5~2h。

一种采用上述任一所述的制备方法制得的绝缘包覆FeSiAl复合磁粉芯,上述方法制备的FeSiAl金属磁粉芯具有损耗低、磁导率高和结合强度好的特点。

因此,本发明具有如下有益效果:

(1)本发明利用TiO2前驱体溶液与FeSiAl有较好的黏着性,可以均匀致密的包覆在磁粉芯外面,从而提高磁粉芯的电阻率,有利于提高其高频特性,降低功率损耗;通过控制TiO2前驱体溶液的加入量,有效调控最终包覆在磁粉芯外面的TiO2薄膜的厚度,实现对粉芯内部气隙率的调控,从而在在降低损耗的同时提高磁粉芯的磁导率;

(2)采用本发明的制备方法制得的FeSiAl金属磁粉芯具有损耗低、磁导率高和结合强度好的特点。

具体实施方式

下面通过具体实施例,对本发明的技术方案作进一步具体的说明。

在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。

实施例1

(1)将FeSiAl金属软磁粉加入到含金属空位的TiO2前驱体溶胶中,加热搅拌均匀后,烘干得FeSiAl金属软磁粉@TiO2前驱体;加热温度为80℃,搅拌时间为30min;烘干温度为100℃,时间为30min;含金属空位的TiO2前驱体溶胶包括7.5%无水乙醇,0.65%钛酸异丙酯,3%丙三醇,0.48%的盐酸,将钛酸异丙酯缓慢滴加到无水乙醇和丙三醇混合溶液中,之后再将盐酸加入到上述混合液中,磁力搅拌30分钟后获得无色透明的溶液;

(2)以FeSiAl金属软磁粉总质量为基准,将步骤(1)得到的绝缘粉与1%环氧树脂和0.5%硬脂酸锌混合均匀,1500MPa压制成型,得外径为33.00mm,内径为19.90mm,高度为10.7mm的坯体;

(3)将步骤(2)得到的坯体在氢气中进行热处理,热处理的温度为730℃,时间为45min,冷却,喷涂,即得绝缘包覆FeSiAl复合磁粉芯。

实施例2

(1)将FeSiAl金属软磁粉加入到含金属空位的TiO2前驱体溶胶中,加热搅拌均匀后,烘干得FeSiAl金属软磁粉@TiO2前驱体;加热温度为100℃,搅拌时间为20min;烘干温度为90℃,时间为40min;含金属空位的TiO2前驱体溶胶包括6%无水乙醇、0.55%钛酸异丙酯、7%丙三醇及0.024%的盐酸,将钛酸异丙酯缓慢滴加到无水乙醇和丙三醇混合溶液中,之后再将盐酸加入到上述混合液中,磁力搅拌30分钟后获得无色透明的溶液;

(2)以FeSiAl金属软磁粉总质量为基准,将步骤(1)得到的绝缘粉与0.1wt%硅酮树脂、0.4wt%、0.8硬脂酸锌和0.1wt%硬脂酸钡混合均匀,2000MPa压制成型,得外径为33.00mm,内径为19.90mm,高度为10.7mm的坯体;

(3)将步骤(2)得到的坯体在氮气中进行热处理,热处理的温度为600℃,时间为2h,冷却,喷涂,即得绝缘包覆FeSiAl复合磁粉芯。

实施例3

(1)将FeSiAl金属软磁粉加入到含金属空位的TiO2前驱体溶胶中,加热搅拌均匀后,烘干得FeSiAl金属软磁粉@TiO2前驱体;加热温度为90℃,搅拌时间为40min;烘干温度为120℃,时间为20min;含金属空位的TiO2前驱体溶胶包括7.5%无水乙醇、0.65%钛酸异丙酯、5%丙三醇及0.024%的盐酸,将钛酸异丙酯缓慢滴加到无水乙醇和丙三醇混合溶液中,之后再将盐酸加入到上述混合液中,磁力搅拌30分钟后获得无色透明的溶液;

(2)在步骤(1)得到的FeSiAl金属软磁粉@TiO2前驱体中加入平均粒径为20nm的金红石型TiO2纳米粉体,得绝缘粉;以FeSiAl金属软磁粉总质量为基准,所述TiO2纳米粉体的加入量为0.5wt%;

(3)以FeSiAl金属软磁粉总质量为基准,将步骤(2)得到的绝缘粉与0.5wt%水玻璃、0.3wt%硬脂酸锌混合均匀,1800MPa压制成型,得外径为33.00mm,内径为19.90mm,高度为10.7mm的坯体;

(4)将步骤(3)得到的坯体在真空(真空度1Pa)中进行热处理,热处理的温度为780℃,时间为0.5h,冷却,喷涂,即得绝缘包覆FeSiAl复合磁粉芯。

实施例4

(1)将FeSiAl金属软磁粉加入到含金属空位的TiO2前驱体溶胶中,加热搅拌均匀后,烘干得FeSiAl金属软磁粉@TiO2前驱体;加热温度为90℃,搅拌时间为40min;烘干温度为120℃,时间为20min;含金属空位的TiO2前驱体溶胶包括12%无水乙醇,1.1%钛酸异丙酯,6%的丙三醇和0.012%的盐酸,将钛酸异丙酯缓慢滴加到无水乙醇和丙三醇混合溶液中,之后再将盐酸加入到上述混合液中,磁力搅拌30分钟后获得无色透明的溶液;

(2)在步骤(1)得到的FeSiAl金属软磁粉@TiO2前驱体中加入平均粒径为20nm的金红石型TiO2纳米粉体,得绝缘粉;以FeSiAl金属软磁粉总质量为基准,所述TiO2纳米粉体的加入量为0.3wt%;

(3)以FeSiAl金属软磁粉总质量为基准,将步骤(2)得到的绝缘粉与0.5wt%水玻璃、0.3wt%硬脂酸锌混合均匀,1800MPa压制成型,得外径为33.00mm,内径为19.90mm,高度为10.7mm的坯体;

(4)将步骤(3)得到的坯体在真空(真空度1Pa)中进行热处理,热处理的温度为780℃,时间为0.5h,冷却,喷涂,即得绝缘包覆FeSiAl复合磁粉芯。

对实施例1-4制得的绝缘包覆FeSiAl复合磁粉芯的性能做检测,结果如表1所示:

表1.测试结果

以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种低温烧结锰锌软磁铁氧体材料的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!