用于稳定定位估计的基于图像的技术

文档序号:969097 发布日期:2020-11-03 浏览:3次 >En<

阅读说明:本技术 用于稳定定位估计的基于图像的技术 (Image-based techniques for stable location estimation ) 是由 裵晓埈 I·T·米勒 R·W·梅尔 于 2020-04-29 设计创作,主要内容包括:本公开涉及用于稳定定位估计的基于图像的技术。一种实施用于估计设备地点的系统的设备包括被配置为在第一时间接收设备的第一估计位置的至少一个处理器。所述至少一个处理器还被配置为利用设备的图像传感器在由第一时间和第二时间限定的时间段期间捕获图像,以及基于图像确定设备的第二估计位置,第二估计位置相对于第一估计位置。所述至少一个处理器还被配置为在第二时间接收设备的第三估计位置,以及基于第二估计位置和第三估计位置估计设备的地点。(The present disclosure relates to image-based techniques for stable location estimation. An apparatus implementing a system for estimating a device location includes at least one processor configured to receive a first estimated location of a device at a first time. The at least one processor is further configured to capture an image with an image sensor of the device during a time period defined by a first time and a second time, and determine a second estimated location of the device based on the image, the second estimated location relative to the first estimated location. The at least one processor is further configured to receive a third estimated location of the device at a second time, and estimate a location of the device based on the second estimated location and the third estimated location.)

用于稳定定位估计的基于图像的技术

技术领域

本说明书整体涉及估计设备的位置和/或取向,包括在估计和/或校正设备位置和/或取向中使用设备的图像传感器。

背景技术

电子设备诸如膝上型计算机、平板电脑、智能电话或可穿戴设备可包括可彼此结合使用以估计电子设备的位置和/或取向的全球导航卫星系统(GNSS)接收器和一个或多个传感器(例如,加速度计、陀螺仪诸如速率陀螺仪)。

具体实施方式

相关申请的交叉引用

本申请要求于2019年5月3日提交的名称为“Image-Based Techniques forStabilizing Positioning Estimates”的美国临时专利申请序列号62/843,260的权益,该美国临时专利申请据此全文以引用方式并入本文以用于所有目的。

下面示出的具体实施方式旨在作为本主题技术的各种配置的描述并且不旨在表示本主题技术可被实践的唯一配置。附图被并入本文并且构成具体实施方式的一部分。具体实施方式包括具体的细节旨在提供对本主题技术的透彻理解。然而,本主题技术不限于本文阐述的具体细节,而是可以采用一个或多个其他具体实施来实践。在一个或多个具体实施中,以框图形式示出了结构和部件,以便避免使本主题技术的概念模糊。

电子设备可包括可彼此结合使用以估计电子设备的位置和/或取向的GNSS接收器和一个或多个传感器(例如,加速度计、陀螺仪诸如速率陀螺仪)。电子设备还可包括可用于估计设备位置和/或取向的一个或多个图像传感器。设备取向可包括一个或多个参数,包括航向(例如,相对于磁北的角度)、俯仰(例如,围绕横向轴线的运动)和翻滚(例如,围绕纵向轴线的运动)。

此外,电子设备可包括被配置为提供设备位置和/或行进方向的GNSS接收器、以及被配置为指示航向信息的磁力计(例如,作为数字罗盘的一部分)。例如,增强现实应用可使用针对设备位置和/或取向(例如,航向)的估计中的一者或多者,以便将数字内容(例如,视觉、听觉和/或触觉)集成到(例如,由图像传感器捕获并实时显示的)用户真实世界环境的图像中。

主题系统提供使用电子设备的多个传感器以便估计设备位置和/或取向。例如,电子设备可基于来自磁力计的输出来获取针对设备航向的第一估计。电子设备还可利用图像传感器捕获图像数据,并且基于将图像数据与标测数据(例如,具有已知地点的道路)相关来确定航向的第二估计。例如,图像数据可描绘道路,并且电子设备可标识道路上的没影点(例如,平行线看似会聚的点)。电子设备可基于(例如,由GNSS接收器提供的)设备地点将图像中的道路与标测数据中的道路对齐。电子设备可基于第一估计和第二估计来确定与磁力计的输出相关联的偏差(例如,可归因于磁力计的偏差),并且基于所确定的偏差来调节磁力计的输出。因此,可以调整磁力计输出以用于实现对设备航向的经改善的估计。

又如,电子设备的GNSS接收器可在第一时间接收设备的第一估计位置。电子设备的图像传感器可在由第一时间和第二时间限定的时间段期间捕获图像(例如,其中第一时间和第二时间对应于GNSS接收器的采样间隔)。电子设备可基于所述图像确定设备的第二估计位置,第二估计位置相对于第一估计位置(例如,其中第一位置对应于基准点,并且第二位置是所测量的相对于基准点的变化量)。此外,GNSS接收器可在第二时间接收设备的第三估计位置,并且基于第二估计位置和第三估计位置来估计设备的地点。因此,可以用结合图像传感器提供的相对定位估计来补充GNSS位置估计,用于实现经改善的设备地点估计。

图1示出了示例性环境100,其中一个或多个电子设备可实现根据一个或多个具体实施的用于估计设备位置和/或取向的主题系统。然而,并非所有所描绘的部件均可在所有具体实施中使用,并且一个或多个具体实施可包括与图中所示的那些相比附加的或不同的部件。可进行这些部件的布置和类型的变化,而不脱离本文所列出的权利要求的实质或范围。可提供附加的部件、不同的部件或更少的部件。

环境100包括电子设备102和GNSS卫星104a、104b、104c和104d(下文称为“GNSS卫星104a-104d”)。出于解释的目的,环境100在图1中被例示成包括一个电子设备102和四个GNSS卫星104a-104d;然而,环境100可包括任何数量的电子设备和任何数量的GNSS卫星。

电子设备102可以是例如便携式计算设备,诸如膝上型计算机、智能电话、嵌入在车辆中、安装在车辆中和/或耦接到车辆的设备、***设备(例如,数字相机、耳机)、平板设备、可穿戴设备诸如智能手表、带等,或者包括例如一个或多个无线接口的任何其他适当设备,诸如GNSS无线电设备、WLAN无线电设备、蜂窝无线电设备、蓝牙无线电设备、Zigbee无线电设备、近场通信(NFC)无线电设备和/或其他无线的无线电设备。在图1中,通过举例的方式,电子设备102被描绘成智能电话。电子设备102可为和/或可包括下文相对于图2所论述的电子设备和/或下文相对于图8所论述的电子系统的全部或部分。

在图1的示例中,电子设备102由用户握持或以其他方式耦接到用户(例如,经由口袋或带)。然而,电子设备102可耦接到车辆和/或容纳在车辆内。在图1的示例中,用户正在徒步行进(例如,步行)。然而,用户可以正在车辆(例如,陆地车辆诸如汽车、摩托车、自行车、或船舶或飞行车辆)内、在自行车上、通过水(例如,游泳)和/或通过其他方式行进。

在环境100中,电子设备102可基于从GNSS卫星104a-104d接收的信号来确定其地点。例如,GNSS卫星104a-104d可与全球定位系统(GPS)、全球导航卫星系统(GLONASS)、伽利略定位系统和/或一般而言任何定位系统中的一者或多者兼容。

例如,电子设备102可利用从GNSS卫星104a-104d接收的信号来确定其相应位置(例如,经度、纬度和海拔/高度)。可独立于或结合GNSS(例如,GNSS卫星104a-104d)使用其他定位技术(未示出)来确定设备地点。例如,可基于从可以具有已知地点(例如,在建筑物或商店内,安装在街道杆柱上等)的无线接入点接收的信号的到达时间、到达角度和/或信号强度来确定电子设备102的地点。另选地或除此之外,定位技术诸如但不限于蜂窝电话信号定位(例如,利用蜂窝网络和移动设备信号进行定位)、室内定位系统、蓝牙信号定位和/或图像识别定位可用于确定设备地点。

此外,电子设备102可实施惯性导航系统(INS)。INS使用一个或多个设备传感器(例如,运动传感器诸如加速度计和/或速率陀螺仪)来计算设备状态(例如,设备位置、速度、姿态)以用于补充由上述定位技术提供的地点数据以便估计设备地点。

图2示出了可实现根据一个或多个具体实施的用于估计设备位置和/或取向的主题系统的示例性电子设备。出于解释的目的,本文主要参考图1的电子设备102来描述图2。然而,并非所有所描绘的部件均可在所有具体实施中使用,并且一个或多个具体实施可包括与图中所示的那些相比附加的或不同的部件。可进行这些部件的布置和类型的变化,而不脱离本文所列出的权利要求的实质或范围。可提供附加的部件、不同的部件或更少的部件。

电子设备102可包括主机处理器202、存储器204、一个或多个传感器206、定位电路208和通信接口210。主机处理器202可包括能够处理数据和/或控制电子设备102的操作的适当逻辑部件、电路和/或代码。就这一点而言,主机处理器202可被启用以向电子设备102的各个其他部件提供控制信号。主机处理器202还可控制电子设备102的各部分之间的数据传输。主机处理器202还可实施操作系统或者能够以其他方式执行代码以管理电子设备102的操作。

存储器204可包括使得能够存储各种类型信息的适当逻辑部件、电路和/或代码,诸如所接收的数据、生成的数据、代码和/或配置信息。存储器204可包括例如随机存取存储器(RAM)、只读存储器(ROM)、闪存和/或磁性存储装置。

在一个或多个具体实施中,存储器204可存储传感器信号测量值、GNSS接收器数据值、设备位置估计值和/或设备取向估计值,例如基于电子设备102的运动。存储器204还可存储被配置为估计设备位置和/或地点的一个或多个部件和/或一个或多个模块,例如,如参考下文所讨论的图3-5的架构所述。此外,存储器204可存储被配置为将数字内容(例如,视觉、听觉和/或触觉)集成到(例如,由图像传感器捕获的)真实世界环境的图像中的应用(例如,增强现实应用)。在一个或多个具体实施中,增强现实应用可以是电子设备102的操作系统的一部分或以其他方式结合在电子设备102的操作系统内。

一个或多个传感器206可包括一个或多个运动传感器,诸如加速度计和/或陀螺仪(例如,速率陀螺仪)。一个或多个运动传感器可用于促进电子设备102的运动和取向相关功能,例如,用于检测电子设备102的运动、方向和取向。

另选地或除此之外,一个或多个传感器206可包括气压计、电子磁力计、图像传感器、或一般而言任何可用于促进定位系统的传感器中的一者或多者。气压计可用于检测大气压,以用于确定电子设备102的海拔变化。电子磁力计(例如,集成电路芯片)可提供用于确定磁北方向的数据,例如用作数字罗盘的一部分。图像传感器(例如,相机)可用于捕获图像(例如照片、视频)以推导位置和/或捕获图像序列以推导设备运动。所捕获的单个图像和/或图像序列也可用于推导图像传感器(例如,和/或电子设备102)的取向。

定位电路208可用于基于定位技术确定电子设备102的地点。例如,定位电路208可提供以下中的一者或多者:GNSS定位(例如,经由被配置为接收来自GNSS卫星104a-104d的信号的GNSS接收器)、无线接入点定位(例如,经由被配置为接收来自无线接入点的信号的无线网络接收器)、蜂窝电话信号定位、蓝牙信号定位(例如,经由蓝牙接收器)、图像识别定位(例如,经由图像传感器)和/或INS(例如,经由运动传感器诸如加速度计和/或陀螺仪)。

通信接口210可包括使得能够诸如在电子设备102之间进行有线或无线通信的合适逻辑、电路和/或代码。通信接口210可包括例如蓝牙通信接口、NFC接口、Zigbee通信接口、WLAN通信接口、USB通信接口中的一种或多种,或一般地,任何通信接口。

在一个或多个具体实施中,主机处理器202、存储器204、一个或多个传感器206、定位电路208、通信接口210中的一者或多者和/或其一个或多个部分可在软件(例如,子例程和代码)中实现,可在硬件(例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、控制器、状态机、门控逻辑部件、分立硬件部件或任何其他合适的设备)和/或两者的组合中实现。

图3示出了示例性架构300,其可由电子设备120实施,用于根据一个或多个具体实施估计设备位置和/或取向。然而,并非所有所描绘的部件均可在所有具体实施中使用,并且一个或多个具体实施可包括与图中所示的那些相比附加的或不同的部件。可进行这些部件的布置和类型的变化,而不脱离本文所列出的权利要求的实质或范围。可提供附加的部件、不同的部件或更少的部件。

在一个或多个具体实施中,架构300可提供设备位置和/或取向的经改善的估计,例如供增强现实应用使用。经改善的估计可用于在(例如,图像传感器304所捕获的)真实世界环境的图像中呈现数字内容(例如,视觉,听觉和/或触觉反馈)。例如,通知(例如,提示、叠加、听觉提示、触觉反馈等)的定时和/或定位可基于架构300所提供的估计。

架构300可包括图像传感器304、包括加速度计308和陀螺仪310的惯性测量单元306、以及包括光束调节模块312的视觉惯性测程模块302。光束调节模块312可被配置为输出电子设备102的估计位置和/或取向314。在一个或多个具体实施中,传感器304、308和310中的一者或多者可对应于图2中的一个或多个传感器206。

视觉惯性测程模块302可接收数据,包括来自图像传感器304的图像数据、来自加速度计308的加速度计数据、和/或来自陀螺仪310的取向或角速度数据。出于解释的目的,图3示出了单个图像传感器304、加速度计308和陀螺仪310;然而,可使用任意数量的图像传感器、加速度计和/或陀螺仪。

在一个或多个具体实施中,加速度计308和陀螺仪310可以是惯性测量单元(IMU)306的一部分,所述惯性测量单元被配置为测量电子设备102的线性运动和角运动,和/或IMU 306可从加速度计308和/或陀螺仪310接收测量值。IMU可以是INS的一部分。如上所述,INS可使用测量数据(例如,由加速度计308和/或陀螺仪310提供)来计算设备状态(例如,位置、速度、姿态)以用于补充定位技术(例如,GNSS和/或无线接入点定位)所提供的地点数据以便估计设备地点。

在一个或多个具体实施中,视觉惯性测程模块302被配置为提供电子设备102相对于起始位置的估计位置和/或取向314。视觉惯性测程模块302可基于从图像传感器304、加速度计308和陀螺仪310接收的输入来确定此类估计。所估计的位置可对应于相对于起始位置的纬度、经度和高度中的一者或多者。此外,所估计的取向可对应于相对于起始位置的航向(例如,相对于磁北的角度)、俯仰(例如,围绕横向轴线的运动)和翻滚(例如,围绕纵向轴线的运动)中的一者或多者。

对于由图像传感器304捕获的图像数据,视觉惯性测程模块302可跨顺序图像(例如,在图像流诸如视频中)跟踪多个特征(例如,对应于拐角、边缘、形状和/或其他图像特征),并且可使用所述跟踪来确定估计位置和/或取向314。在一个或多个具体实施中,视觉惯性测程模块302可使用以下中的一者或多者:图像数据内的关键帧、关于景物的假设(例如,地平面假设、已知相机高度)和/或关于特定场景/图像的先前认知(例如,存储具有已知地点的对象的图像的数据库)。

视觉惯性测程模块302可被配置为跨多个图像匹配特征(例如,点),并且确定图像对之间的相对位置和/或取向。此外,视觉惯性测程模块302的光束调节模块312可使用来自图像传感器304、加速度计308和陀螺仪310中一者或多者的测量来执行光束调节以用于实现经改善的估计。例如,光束调节可使用(例如,由加速度计308和/或陀螺仪310提供的)相对运动的参数和图像传感器304的光学特性来确定和/或优化描述图像几何形状的3D坐标。

应当指出的是,光束调节是可(例如,单独地或组合地)用于估计取向和/或位置的若干技术中的一种。尽管视觉惯性测程模块302被例示成经由光束调节模块312使用光束调节来估计设备位置和/或取向,但视觉惯性测程模块302可以其他方式执行优化(例如,滤波)。就这一点而言,光束调节模块312是用于将本文所述的信息、测量和假设混合在一起的一个示例性部件。可使用其他滤波器(例如,Bayesian、非Bayesian)和/或估计器来替代或补充光束调节模块312。例如,此类一个或多个滤波器可对应于Kalman滤波器、粒子滤波器、sigma点滤波器和/或被配置为如本文所述估计设备位置和/或取向的任何其他类型的滤波器。

在一个或多个具体实施中,图像传感器304、惯性测量单元306(包括加速度计308和陀螺仪310)和/或视觉惯性测程模块302(包括光束调节模块312)的部件中的一者或多者被实现为存储在存储器204中的软件指令,所述软件指令在被主机处理器202执行时使得主机处理器202执行一个或多个特定功能。

在一个或多个具体实施中,图像传感器304、惯性测量单元306(包括加速度计308和陀螺仪310)和/或视觉惯性测程模块302(包括光束调节模块312)的部件中的一者或多者可在软件(例如,子例程和代码)和/或硬件(例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、控制器、状态机、门控逻辑部件、分立硬件部件或任何其他合适的设备)和/或两者的组合中实现。在一个或多个具体实施中,所描绘的部件中的一些或全部可共享硬件和/或电路,和/或所描绘的部件中的一者或多者可利用专用硬件和/或电路。本公开中进一步描述了根据主题技术的各方面的这些模块的附加特征和功能。

图4示出了可由电子设备102实施以用于根据一个或多个具体实施调节磁力计输出的示例性架构400。然而,并非所有所描绘的部件均可在所有具体实施中使用,并且一个或多个具体实施可包括与图中所示的那些相比附加的或不同的部件。可进行这些部件的布置和类型的变化,而不脱离本文所列出的权利要求的实质或范围。可提供附加的部件、不同的部件或更少的部件。

在一个或多个具体实施中,架构400可提供设备航向的经改善的估计,例如供增强现实应用使用。经改善的估计可用于在(例如,图像传感器304所捕获的)真实世界环境的图像中呈现数字内容(例如,视觉,听觉和/或触觉反馈)。例如,通知(例如,提示、叠加、听觉提示、触觉反馈等)的定时和/或定位可基于架构400所提供的估计。

架构400可包括基于图像的定位模块402、视觉惯性测程模块302、GNSS接收器404、定位滤波器408、输出调节模块410和罗盘406。定位滤波器408(例如,被实现成粒子滤波器)可从基于图像的定位模块402、视觉惯性测程模块302、GNSS接收器404和罗盘406中的一者或多者接收与设备航向相关联的数据。定位滤波器408可提供与磁力计的输出相关联的偏差(例如,可归因于磁力计的偏差)的指示给输出调节模块410,该输出调节模块被配置为(例如,基于所述偏差)针对所估计航向412调节磁力计的输出。例如,输出调节模块410可提供所述偏差的指示给罗盘406,该罗盘被配置为基于所确定的偏差来调节其输出(例如,设备航向的输出)。

在一个或多个具体实施中,罗盘406可以是包括磁力计的数字(例如,电子)罗盘。如上所述,电子设备102的一个或多个传感器206可包括用于确定设备航向的估计的磁力计(例如,集成电路芯片)。如图4所示,罗盘可提供所估计的设备航向给定位滤波器408。

定位滤波器408(例如,被实现成粒子滤波器)可被配置为例如从基于图像的定位模块402、视觉惯性测程模块302和GNSS接收器404中的一者或多者接收与设备航向相关的附加估计。如上文参照图3所讨论的,视觉惯性测程模块302可被配置为确定设备位置和/或取向,其中取向可包括设备航向。航向可对应于电子设备102相对于磁北的角度。在一个或多个具体实施中,角度可相对于电子设备102的顶部。

在一个或多个具体实施中,基于图像的定位模块402可被配置为提供设备航向的一个或多个估计。在一个或多个具体实施中,基于图像的定位模块402被配置为接收(例如,由图像传感器304捕获的)图像,并且确定所捕获图像内的一个或多个没影点。没影点可对应于图像平面上平行线看似会聚的点。

例如,在用户在观看屏幕时正将电子设备102握持在竖直位置的情况下,电子设备102的后向相机可捕获图像数据(例如,图像流,诸如视频)。在一个或多个具体实施中,基于图像的定位模块402可通过确定平行线在所捕获的图像中看似会聚的地方来检测没影点。例如,一个或多个没影点可对应于出现在图像中的路径(例如,道路、人行道、街道等)的远端。

基于图像的定位模块402还被配置为将所检测到的一个或多个没影点与已知的地图数据相关。在一个或多个具体实施中,地图数据可对应于本地存储在电子设备102上的地图图块,例如,由被配置为基于大致设备地点(例如,来自GNSS定位估计)提供地图图块的web标测服务提供。地图数据可包括已知路径(例如,道路、人行道、街道路径等)的信息。基于该信息,基于图像的定位模块402可将图像中一个或多个没影点的平行线与已知路径对准,并且基于此类对准来估计电子设备102的航向。

在一个或多个具体实施中,基于图像的定位模块402可提供设备航向的两个(或更多个)估计。例如,虽然可将图像传感器304的方向与路径对准(例如,基于单个没影点),但电子设备102相对于地图数据的前向或后向方向可能是未知的。此外,在一些情况下,基于图像的定位模块402可能检测到多个没影点(例如,如果对于与地图特征相关的一个或多个路径有多个候选项的话),其中这些没影点中的每一者具有用于设备航向的两个候选项。

此外,基于图像的定位模块402可被配置为针对设备航向的每个候选项提供权重值(例如,置信度分数)。例如,相应的权重值可至少部分地基于地图数据(例如,用户在一个路径上而不是在另一路径上的可能性,用户在路径上沿一个方向而不是沿另一方向行走的可能性等)。

在一个或多个具体实施中,GNSS接收器404被配置为接收从GNSS卫星104a-104d接收的信号,以便确定对电子设备102的位置和/或运动方向的估计。运动方向可涉及设备航向。例如,可以假设用户通常在查看屏幕时将电子设备102握持在竖直位置。因此,可以假设用户未将电子设备102握持在某些位置中。例如,用户通常可能不会将电子设备102握持为面向侧面(例如,尽管可以基于一个或多个传感器206来检测用户正在如何握持电子设备102)。基于这些假设和所估计的运动方向,可以估计与(例如,由罗盘406提供的)设备航向相关联的偏差。

定位滤波器408(例如,被实现为粒子滤波器)被配置为估计由罗盘406提供的设备航向的偏差。定位滤波器408可接收来自基于图像的定位模块402、视觉惯性测程模块302和GNSS接收器404中每一者的输出作为输入。如上所述,基于图像的定位模块402可提供设备航向的多个估计(例如,具有相应的权重值),视觉惯性测程模块302可提供设备航向的单独估计(例如,其可具有相应的权重值),并且GNSS接收器404可提供运动方向(例如,其可具有相应的权重值)。

定位滤波器408可接收航向和/或运动方向的这些估计,以及来自罗盘406的设备航向的估计,以便确定与罗盘406的输出相关联的偏差量。例如,偏差可以基于由基于图像的定位模块402、视觉惯性测程模块302和/或GNSS接收器404提供的估计的相应权重值。

定位滤波器408可将所估计的偏差提供给输出调节模块410,该输出调节模块被配置为调节罗盘406的输出(例如,对应于由磁力计提供的设备航向)以补偿所估计的偏差。因此,罗盘所输出的估计航向412可对应于磁力计输出,其已基于从基于图像的定位模块402、视觉惯性测程模块302或GNSS接收器404中的一者或多者接收的(例如,与偏差相关联的)信号进行调节。

如上所述,定位滤波器408可被实现成用于(例如,基于与设备航向相关联的多个估计)估计偏差的粒子滤波器。然而,架构400可以其他方式执行此类滤波。就这一点而言,粒子滤波器是用于将本文所述的信息、测量和假设混合在一起的部件的一个示例。可以使用其他滤波器(例如,Bayesian、非Bayesian)和/或估计器来替代或补充粒子滤波器。例如,定位滤波器408可对应于Kalman滤波器、sigma点滤波器和/或被配置为如本文所述估计偏差的任何其他类型的滤波器。

此外,虽然图4的示例例示了磁力计输出的调节,但主题系统不一定限于此。主题系统可以一般性地提供将来自多个源的可能偏差的和可能多假设的航向测量组合成单个(例如,无偏差或减小偏差的)航向估计。例如,航向估计的源可以是磁力计、基于图像的点云匹配、基于图像的道路检测、星体***、陀螺仪、经校准的INS、姿态和航向参考系统(AHRS)等中的一者或多者。

在一个或多个具体实施中,基于图像的定位模块402、视觉惯性测程模块302、GNSS接收器404、定位滤波器408、输出调节模块410和/或罗盘406的一个或多个部件被实现为存储在存储器204中的软件指令,该软件指令在由主机处理器202执行时使得主机处理器202执行一个或多个特定功能。

在一个或多个具体实施中,基于图像的定位模块402、视觉惯性测程模块302、GNSS接收器404、定位滤波器408、输出调节模块410和/或罗盘406的一个或多个部件可在软件(例如,子例程和代码)、硬件(例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、控制器、状态机、门控逻辑部件、分立硬件部件或任何其他合适的设备)和/或两者的组合中实现。在一个或多个具体实施中,所描绘的部件中的一些或全部可共享硬件和/或电路,和/或所描绘的部件中的一者或多者可利用专用硬件和/或电路。本公开中进一步描述了根据主题技术的各方面的这些模块的附加特征和功能。

图5示出了可由电子设备102实施以用于根据一个或多个具体实施执行视觉惯性测程的稳定化的示例性架构500。然而,并非所有所描绘的部件均可在所有具体实施中使用,并且一个或多个具体实施可包括与图中所示的那些相比附加的或不同的部件。可进行这些部件的布置和类型的变化,而不脱离本文所列出的权利要求的实质或范围。可提供附加的部件、不同的部件或更少的部件。

在一个或多个具体实施中,架构500可提供设备位置的经改善的估计,例如供增强现实应用使用。经改善的估计可用于在(例如,图像传感器304所捕获的)真实世界环境的图像中呈现数字内容(例如,视觉,听觉和/或触觉反馈)。例如,通知(例如,提示、叠加、听觉提示、触觉反馈等)的定时和/或定位可基于架构500所提供的估计。

架构500可包括图3至图4的GNSS接收器404和视觉惯性测程模块302。此外,架构500可包括扩展的Kalman滤波器504。如图5所示,扩展的Kalman滤波器可接收来自GNSS接收器404和视觉惯性测程模块302的信号作为输入,并且可提供所估计的设备位置506作为输出。

架构500可提供将视觉惯性测程模块302的输出与GNSS接收器404所接收的定位数据融合(例如,对齐)。GNSS接收器404可限定测量间隔(或“时期”),GNSS接收器404通过该测量间隔来接收来自GNSS卫星104a-104d的信号。因此,GNSS接收器404可被配置为估计第一时间的第一设备位置(例如,在绝对纬度-经度坐标中),以及第二时间的第二设备位置,第一时间和第二时间由测量间隔限定。

此外,视觉惯性测程模块302可被配置为估计相对于基准点(例如,第一位置)的相对行进距离和/或行进方向。继而,可使用所估计的行进距离和/或行进方向来预测下一GNSS位置(例如,第二位置)。

扩展的Kalman滤波器504可接收来自视觉惯性测程模块302的输出(例如,对应于其针对第一位置和第二位置的估计)和来自GNSS接收器404的输出(例如,对应于其对第二位置的估计)。在一个或多个具体实施中,扩展的Kalman滤波器504可对应于算法,该算法使用随时间推移所观察到的一系列测量/信号(例如,其可包含噪声和其他不准确),并且产生未知变量(例如,设备状态/位置)的估计,所述估计往往比仅基于单个测量(例如,单个GNSS测量)的那些估计更准确。因此,扩展的Kalman滤波器504可被配置为使用(例如,由视觉惯性测程模块302和GNSS接收器404提供的)对第二位置的相应估计来确定估计位置506。

在一个或多个具体实施中,视觉惯性测程模块302可能经历漂移。例如,漂移可能归因于电子设备102的偏航旋转(例如,围绕垂直轴线的运动)。由于视觉惯性测程模块302的估计是相对的(例如,相对于基准点),因此漂移可能随着行进的距离而增大。例如,如果漂移误差为1%,则从基准点行进1公里的距离可导致10米的漂移误差。

架构500提供将由视觉惯性测程模块302提供的一个或多个估计位置与GNSS接收器404所提供的一个或多个估计位置融合(例如,以每个时期为基础,满足下文所述的距离要求)。因此,架构500(例如,经由扩展的Kalman滤波器504)可以减小与视觉惯性测程模块302相关联的漂移误差。

在一个或多个具体实施中,视觉惯性测程模块302的采样频率可不与GNSS接收器404的采样频率匹配。例如,视觉惯性测程模块302可具有10Hz的采样频率(例如,每秒捕获10帧),而GNSS接收器404可具有1Hz的采样频率(例如,每秒接收1个信号)。在这种情况下,(例如,GNSS接收器404的)较低采样频率测量可被内插以对应于(例如,视觉惯性测程模块302的)较高采样频率测量。

在一个或多个具体实施中,扩展的Kalman滤波器504可实现对位置估计之间行进的最小距离的要求。例如,最小距离可设置为3米。可能的是,视觉惯性测程模块302指示行进的距离为50cm(例如,表示从基准点行进的距离的精确量),而GNSS接收器404可能指示行进的距离为5米(例如,表示从基准点行进的距离的不精确量)。例如,GNSS接收器404所指示的5米可能由于(例如,来自图1所示的建筑物的)多路径反射而为错误的。因此,在补偿与视觉惯性测程模块302相关联的漂移误差之前,扩展的Kalman滤波器504可实现如下要求:视觉惯性测程模块302和GNSS接收器404中的一者或两者提供满足最小距离(例如,3米)的行进距离的估计。

如上所述,扩展的Kalman滤波器504提供以每个时期为基础将由视觉惯性测程模块302提供的一个或多个估计位置与GNSS接收器404所提供的一个或多个估计位置融合(例如,满足以上距离要求)。另选地,可以将视觉惯性测程模块302的坐标系(例如,对应于相对坐标)变换成GNSS接收器404的坐标系(例如,对应于经度-纬度的绝对坐标)。例如,基于由视觉惯性测程模块302提供的相对行进距离和/或旋转量,可能生成用于将视觉惯性测程模块302的相对坐标转换成绝对坐标的变换。该转换可被应用于视觉惯性测程模块302以便获取绝对坐标。

在一个或多个具体实施中,以下公式1可用于生成用于将视觉惯性测程模块302的相对坐标转换成绝对坐标的变换:

在公式1中,在一个或多个具体实施中,R可表示从相对坐标到绝对坐标的旋转矩阵,X可表示位置估计,其中元素(X,Y,Z)在相对坐标中,并且T可表示从相对坐标系的原点到绝对(例如,地球固定)坐标系的原点的转换。

在一个或多个具体实施中,GNSS接收器404、视觉惯性测程模块和/或扩展的Kalman滤波器504的部件中的一者或多者被实现成存储在存储器204中的软件指令,该软件指令在由主机处理器202执行时使得主机处理器202执行一个或多个特定功能。

在一个或多个具体实施中,GNSS接收器404、视觉惯性测程模块和/或扩展的Kalman滤波器504的部件中的一者或多者可在软件(例如,子例程和代码)中,在硬件(例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑部件(PLD)、控制器、状态机、门控逻辑部件、分立硬件部件或任何其他合适的设备)中和/或两者的组合中实现。在一个或多个具体实施中,所描绘的部件中的一些或全部可共享硬件和/或电路,和/或所描绘的部件中的一者或多者可利用专用硬件和/或电路。本公开中进一步描述了根据主题技术的各方面的这些模块的附加特征和功能。

图6示出了根据一个或多个具体实施的用于调节磁力计输出的示例性过程的流程图。出于解释的目的,本文主要参考图1的电子设备102来描述过程600。然而,过程600不限于电子设备102,并且过程600的一个或多个框(或操作)可由电子设备102的一个或多个其他部件和/或由其它合适设备来执行。进一步出于解释的目的,过程600的框在本文中被描述为顺序地或线性地发生。然而,过程600的多个框可并行发生。此外,过程600的框不必按所示顺序执行,并且/或者过程600的一个或多个框不必执行和/或可由其他操作替代。

电子设备102获取对设备的航向的第一估计,第一估计基于来自设备的磁力计的输出(602)。电子设备102利用设备的图像传感器捕获图像数据(604)。

电子设备102基于将图像数据与标测数据相关来确定对航向的至少一个第二估计(606)。所述至少一个第二估计可对应于图像数据中的与由标测数据指示的道路相关的没影点。

电子设备102基于第一估计和所述至少一个第二估计确定磁力计的输出中的偏差(608)。确定偏差可基于被配置为接收针对设备的航向的多个候选估计的粒子滤波器,所述多个候选估计源自没影点。

电子设备102可基于图像数据来确定相对于与设备相关联的基准点的设备取向或设备位置中至少一者的附加估计。另选地或除此之外,电子设备102可利用设备的全球导航卫星系统(GNSS)传感器来确定对设备运动方向的附加估计。确定偏差可进一步基于这些附加估计中的一者或多者。

电子设备102提供基于所确定的偏差来调节磁力计的输出(610)。例如,偏差可被提供给与磁力计相关联的罗盘,并且罗盘可被配置为基于所确定的偏差来调节设备航向的输出。捕获图像数据可以例如与在设备上运行的增强现实应用相关联地执行。增强现实应用可被配置为基于磁力计的经调节的输出来提供实时反馈。

图7示出了根据一个或多个具体实施的用于估计设备位置和/或取向的示例性过程的流程图。出于解释的目的,本文主要参考图1的电子设备102来描述过程700。然而,过程700不限于电子设备102,并且过程700的一个或多个框(或操作)可由电子设备102的一个或多个其他部件和/或由其它合适设备来执行。进一步出于解释的目的,过程700的框在本文中被描述为顺序地或线性地发生。然而,过程700的多个框可并行发生。此外,过程700的框不必按所示顺序执行,并且/或者过程700的一个或多个框不必执行和/或可由其他操作替代。

电子设备102在第一时间接收设备的第一估计位置(702)。电子设备102利用设备的图像传感器在由第一时间和第二时间限定的时间段期间捕获图像(704)。

电子设备102基于图像确定设备的第二估计位置,第二估计位置相对于第一估计位置(706)。例如,第一估计位置可对应于基准点,并且第二位置是所测量的相对于基准点的变化的量。电子设备102可在第一时间接收设备的第一估计取向,并且基于图像确定设备的第二估计取向,第二估计取向相对于第一估计取向。设备的第二估计位置和第二估计取向可分别对应于自第一时间以来行进的距离量和旋转量。

电子设备102在第二时间接收设备的第三估计位置(708)。第一估计位置和第三估计位置可基于全球导航卫星系统(GNSS)测量。第三估计位置可用于补偿与第二估计位置相关联的漂移。

电子设备102基于第二估计位置和第三估计位置来估计设备的地点(710)。估计设备的地点可进一步基于第二估计取向。估计地点可基于来自Kalman滤波器(例如,扩展的Kalman滤波器)的输出,所述Kalman滤波器被配置为接收第一估计位置、第二估计位置和第三估计位置、以及第一估计取向和第二估计取向作为输入。

捕获图像数据可以与在设备上运行的增强现实应用相关联地执行。增强现实应用可被配置为基于磁力计的经调节的输出来提供实时反馈。

如上所述,本技术的一个方面是收集和使用特定和合法来源的数据,以用于估计设备地点和/或取向。本公开设想,在一些实例中,该所采集的数据可包括唯一地识别或可用于识别具体人员的个人信息数据。此类个人信息数据可包括人口统计数据、基于地点的数据、在线标识符、电话号码、电子邮件地址、家庭地址、与用户的健康或健身级别相关的数据或记录(例如,生命特征测量、药物信息、锻炼信息)、出生日期或任何其他个人信息。

本公开认识到在本公开技术中使用此类个人信息数据可用于使用户受益。例如,个人信息数据可用于估计设备地点和/或取向。因此,使用此类个人信息数据可便于事务处理(例如,在线事务处理)。此外,本公开还预期个人信息数据有益于用户的其他用途。例如,健康和健身数据可根据用户的偏好来使用以提供对其总体健康状况的见解,或者可用作对使用技术来追求健康目标的个体的积极反馈。

本公开设想负责收集、分析、公开、传输、存储或其他使用此类个人信息数据的实体将遵守既定的隐私政策和/或隐私实践。具体地,将期望此类实体实现和一贯地应用一般公认为满足或超过维护用户隐私的行业或政府所要求的隐私实践。关于使用个人数据的此类信息应当被突出地并能够被用户方便地访问,并应当随数据的采集和/或使用变化而被更新。用户的个人信息应被收集仅用于合法使用。另外,此类收集/共享应仅发生在接收到用户同意或在适用法律中所规定的其他合法根据之后。此外,此类实体应考虑采取任何必要步骤,保卫和保障对此类个人信息数据的访问,并确保有权访问个人信息数据的其他人遵守其隐私政策和流程。另外,这种实体可使其本身经受第三方评估以证明其遵守广泛接受的隐私政策和实践。此外,应针对便采集和/或访问的特定类型的个人信息数据调整政策和实践,并使其适用于适用法律和标准,包括可用于施加较高标准的辖区专有的具体考虑因素。例如,在美国,对某些健康数据的收集或获取可能受联邦和/或州法律的管辖,诸如健康保险流通和责任法案(HIPAA);而其他国家的健康数据可能受到其他法规和政策的约束并应相应处理。

不管前述情况如何,本公开还预期用户选择性地阻止使用或访问个人信息数据的实施方案。即本公开预期可提供硬件元件和/或软件元件,以防止或阻止对此类个人信息数据的访问。例如,就估计设备地点和/或取向而言,本技术可被配置为在注册服务期间或之后任何时候允许用户选择“选择加入”或“选择退出”参与对个人信息数据的收集。除了提供“选择加入”和“选择退出”选项外,本公开设想提供与访问或使用个人信息相关的通知。例如,可在下载应用时向用户通知其个人信息数据将被访问,然后就在个人信息数据被应用访问之前再次提醒用户。

此外,本公开的目的是应管理和处理个人信息数据以最小化无意或未经授权访问或使用的风险。一旦不再需要数据,通过限制数据收集和删除数据可最小化风险。此外,并且当适用时,包括在某些健康相关应用程序中,数据去标识可用于保护用户的隐私。可在适当时通过移除标识符、控制所存储数据的量或特异性(例如,在城市级别而不是在地址级别收集地点数据)、控制数据如何被存储(例如,在用户间汇集数据)和/或其他方法诸如差异化隐私来促进去标识。

因此,虽然本公开广泛地覆盖了使用个人信息数据来实现一个或多个各种所公开的实施方案,但本公开还预期各种实施方案也可在无需访问此类个人信息数据的情况下被实现。即,本公开技术的各种实施方案不会由于缺少此类个人信息数据的全部或一部分而无法正常进行。

图8示出了根据一个或多个具体实施的可用以实现主题技术的各个方面的示例性电子系统。电子系统800可以是用于生成参考图1至图5所述的特征和过程的任何电子设备和/或可以是其一部分,包括但不限于膝上型计算机、平板电脑、智能电话和可穿戴设备(例如,智能手表、健身带)。电子系统800可包括各种类型的计算机可读介质以及用于各种其他类型的计算机可读介质的接口。电子系统800包括一个或多个处理单元814-、永久性存储设备802、系统存储器804(和/或缓冲器)、输入设备接口806、输出设备接口808、总线810、ROM812、一个或多个处理单元814-、一个或多个网络接口816、定位电路818、一个或多个传感器820、和/或其子集和变型。

总线810总体表示通信地连接电子系统800的许多内部设备的所有系统总线、***设备总线和芯片组总线。在一个或多个具体实施中,总线810将所述一个或多个处理单元814与ROM 812、系统存储器804和永久性存储设备802通信地连接。所述一个或多个处理单元814从这些各种存储器单元检索要执行的指令和要处理的数据,以便执行本主题公开的过程。在不同的具体实施中,所述一个或多个处理单元814可为单个处理器或者多核处理器。

ROM 812存储所述一个或多个处理单元814以及电子系统800的其他模块所需的静态数据和指令。另一方面,永久性存储设备802可为读写存储器设备。永久性存储设备802可为即使在电子系统800关闭时也存储指令和数据的非易失性存储器单元。在一个或多个具体实施中,海量存储设备(诸如,磁盘或光盘及其相应盘驱动器)可被用作永久性存储设备802。

在一个或多个具体实施中,可移除存储设备(诸如软盘、闪存驱动器及其对应的磁盘驱动器)可以用作永久性存储设备802。与永久性存储设备802一样,系统存储器804可为读写存储器设备。然而,与永久性存储设备802不同,系统存储器804可为易失性读写存储器,诸如随机存取存储器。系统存储器804可存储一个或多个处理单元814在运行时可能需要的指令和数据中的任何指令和数据。在一个或多个具体实施中,本主题公开的过程被存储在系统存储器804、永久性存储设备802和/或ROM 812中。所述一个或多个处理单元814从这些各种存储器单元检索要执行的指令和要处理的数据,以便执行一个或多个具体实施的过程。

总线810还连接至输入设备接口806和输出设备接口808。输入设备接口806使得用户能够向电子系统800传送信息以及选择命令。可与输入设备接口806一起使用的输入设备可包括例如字母数字混合键盘和指向设备(也称为“光标控制设备”)。输出设备接口808可例如使得能够显示电子系统800所生成的图像。可与输出设备接口808一起使用的输出设备可包括例如打印机和显示设备,诸如液晶显示器(LCD)、发光二极管(LED)显示器、有机发光二极管(OLED)显示器、柔性显示器、平板显示器、固态显示器、投影仪或用于输出信息的任何其他设备。

一个或多个具体实施可包括既充当输入设备又充当输出设备的设备,诸如触摸屏。在这些具体实施中,提供给用户的反馈可以是任何形式的感官反馈,诸如视觉反馈、听觉反馈或触觉反馈;并且可以任何形式接收来自用户的输入,包括声学、语音或触觉输入。

总线810还连接到定位电路818和一个或多个传感器820。定位电路818可用于基于定位技术来确定设备地点。例如,定位电路818可提供GNSS定位、无线接入点定位、蜂窝电话信号定位、蓝牙信号定位、图像识别定位和/或INS(例如,经由运动传感器诸如加速度计和/或陀螺仪)中的一者或多者。

在一个或多个具体实施中,一个或多个传感器820可用于检测电子系统800的运动、行进和取向。例如,一个或多个传感器可包括加速度计、速率陀螺仪和/或一个或多个其他基于运动的传感器。另选地或除此之外,一个或多个传感器820可包括用于确定设备位置和/或取向的一个或多个音频传感器和/或一个或多个基于图像的传感器。又如,一个或多个传感器820可包括可用于检测大气压(例如,对应于设备高度)的气压计。

最后,如图8所示,总线810还通过所述一个或多个网络接口816将电子系统800耦接到一个或多个网络和/或耦接到一个或多个网络节点。以此方式,电子系统800可以是计算机网络(诸如LAN、广域网(“WAN”)或内联网)的一部分,或者可以是网络的网络(诸如互联网)的一部分。电子系统800的任何或所有部件可与本主题公开一起使用。

可以利用编写有一个或多个指令的有形计算机可读存储介质(或一种或多种类型的多个有形计算机可读存储介质)部分地或全部地实现本公开范围之内的具体实施。有形计算机可读存储介质实质上也可以是非暂态的。

计算机可读存储介质可以是任何可以由通用或专用计算设备读、写或以其他方式访问的存储介质,包括任何能够执行指令的处理电子器件和/或处理电路。例如,非限制地,计算机可读介质可包括任何易失性半导体存储器,诸如RAM、DRAM、SRAM、T-RAM、Z-RAM和TTRAM。计算机可读介质也可包括任何非易失性半导体存储器,诸如ROM、PROM、EPROM、EEPROM、NVRAM、闪存、nvSRAM、FeRAM、FeTRAM、MRAM、PRAM、CBRAM、SONOS、RRAM、NRAM、赛道存储器、FJG和Millipede存储器。

此外,计算机可读存储介质可包括任何非半导体存储器,诸如光盘存储装置、磁盘存储装置、磁带、其他磁性存储设备或者能够存储一个或多个指令的任何其他介质。在一个或多个具体实施中,有形计算机可读存储介质可直接耦接到计算设备,而在其他具体实施中,有形计算机可读存储介质可例如经由一个或多个有线连接、一个或多个无线连接、或它们的任意组合而间接地耦接到计算设备。

指令可以是直接能执行的,或者可用于开发可执行指令。例如,指令可被实现为可执行的或不可执行的机器代码,或者可被实现为可被编译以产生可执行的或不可执行的机器代码的高级语言指令。此外,指令也可被实现为数据,或者可包括数据。计算机可执行指令也可以任何格式组织,包括例程、子例程、程序、数据结构、对象、模块、应用、小程序、函数等。如本领域技术人员认识到的那样,包括但不限于指令的数量、结构、序列和组织的细节可明显不同,而不改变底层的逻辑、功能、处理和输出。

虽然以上论述主要涉及执行软件的微处理器或多核处理器,但一个或多个具体实施由一个或多个集成电路诸如ASIC或FPGA执行。在一个或多个具体实施中,此类集成电路执行存储在电路自身上的指令。

本领域的技术人员将会认识到,本文所述的各种例示性的框、模块、元件、部件、方法和算法可被实现为电子硬件、计算机软件或两者的组合。为了说明硬件和软件的这种可互换性,上文已经一般性地按照功能性对各种例示性的框、模块、元件、部件、方法和算法进行了描述。此类功能性是被实现为硬件还是软件取决于具体应用以及对整个系统施加的设计约束。技术人员对于每个具体应用可通过不同方式实现所描述的功能性。各种部件和框可被不同地布置(例如,以不同的顺序排列,或以不同的方式划分),而不脱离本主题技术的范围。

应当理解,本文所公开的过程中的框的特定顺序或分级结构为示例性方法的例示。基于设计优选要求,应当理解,过程中的框的特定顺序或者分级结构可被重新布置或者所有示出的框都被执行。这些框中的任何框可被同时执行。在一个或多个具体实施中,多任务和并行处理可能是有利的。此外,上述具体实施中各个系统部件的划分不应被理解为在所有具体实施中都要求此类划分,并且应当理解,程序部件和系统可一般性地被一起整合在单个软件产品中或者封装到多个软件产品中。

如本说明书以及本专利申请的任何权利要求中所用,术语“基站”、“接收器”、“计算机”、“服务器”、“处理器”及“存储器”均是指电子设备或其他技术设备。这些术语排除人或者人的群组。出于本说明书的目的,术语“显示”或“正在显示”意指在电子设备上显示。

如本文所用,在用术语“和”或“或”分开项目中任何项目的一系列项目之后的短语“中的至少一者”是将列表作为整体进行修饰,而不是修饰列表中的每个成员(即每个项目)。短语“中的至少一者”不要求选择所列出的每个项目中的至少一个;相反,该短语允许包括任何一个项目中的至少一个和/或项目的任何组合中的至少一个和/或每个项目中的至少一个的含义。举例来说,短语“A、B和C中的至少一者”或“A、B或C中的至少一者”各自是指仅A、仅B或仅C;A、B和C的任意组合;和/或A、B和C中的每一个中的至少一个。

谓词字词“被配置为”、“可操作以”以及“被编程以”并不意味着对某一主题进行任何特定的有形或无形的修改而是旨在可互换使用。在一个或多个具体实施中,被配置为监视和控制操作或部件的处理器也可以是意指处理器被编程以监视和控制操作或者处理器可操作以监视和控制操作。同样,被配置为执行代码的处理器可解释为被编程以执行代码或可操作以执行代码的处理器。

短语诸如方面、该方面、另一方面、一些方面、一个或多个方面、具体实施、该具体实施、另一具体实施、一些具体实施、一个或多个具体实施、实施方案、该实施方案、另一实施方案、一些实施方案、一个或多个实施方案、配置、该配置、其他配置、一些配置、一种或多种配置、主题技术、公开、本公开、它们的其他变型等等都是为了方便,并不意味着涉及这样的一个或多个短语的公开对于主题技术是必不可少的,也不意味着这种公开适用于主题技术的所有配置。涉及此类一个或多个短语的公开可适用于所有配置或一个或多个配置。涉及此类一个或多个短语的公开可提供一个或多个示例。短语诸如方面或一些方面可指代一个或多个方面,反之亦然,并且这与其他前述短语类似地应用。

字词“示例性”在本文中被用于意指“用作示例、实例或者例示”。在本文中被描述为“示例性的”或作为“示例”的任何实施方案不必被理解为优选于或优于其他具体实施。此外,在术语“包括”、“具有”等在说明书或权利要求中使用的限度内,这样的术语旨在是包含性的,与术语“包括”当在权利要求中被用作过渡字词时“包括”被解释的方式类似。

本领域的普通技术人员已知或稍后悉知的贯穿本公开描述的各个方面的元素的所有结构和功能等同物通过引用明确地并入本文,并且旨在被权利要求书所涵盖。此外,本文所公开的任何内容并非旨在提供给公众,而与该公开是否明确地被陈述在权利要求中无关。根据35U.S.C.§112第六段的规定,不需要解释任何权利要求元素,除非使用短语“用于……的装置”明确陈述了该元素,或者就方法权利要求而言,使用短语“用于……的步骤”陈述了该元素。

先前的描述被提供以使得本领域的技术人员能够实践本文所述的各个方面。这些方面的各种修改对本领域的技术人员而言是显而易见的,并且本文所限定的通用原则可应用于其他方面。因此,本权利要求书并非旨在受限于本文所示的方面,而是旨在使得全部范围与语言权利要求书一致,其中对奇异值中的元素的引用并非旨在意味着“仅仅一个”,而是指“一个或多个”,除非被具体指出。除非另外特别说明,否则术语“一些”是指一个或多个。男性的代名词(例如,他的)包括女性和中性(例如,她的和它的),并且反之亦然。标题和子标题(如果有的话)仅为了方便起见而使用并且不限制本主题公开。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于地面无人平台的室内测试方法、系统及计算机设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!