一种基于机抖激光陀螺的惯性/天文组合导航系统

文档序号:969100 发布日期:2020-11-03 浏览:1次 >En<

阅读说明:本技术 一种基于机抖激光陀螺的惯性/天文组合导航系统 (Inertia/astronomical combined navigation system based on mechanically dithered laser gyroscope ) 是由 于旭东 罗晖 魏国 谢元平 樊振方 高春峰 王林 张鹏飞 于 2020-08-01 设计创作,主要内容包括:本发明属于惯性/天文组合导航领域,涉及一种基于机抖激光陀螺的惯性/天文组合导航系统,可以应用于惯性导航、惯性组合导航、姿态测量等领域,包括安装框架、天文导航装置、单轴转台、X轴方向机抖激光陀螺、Y轴方向机抖激光陀螺、Z轴方向机抖激光陀螺、X轴方向石英加速度计、Y轴方向石英加速度计、Z轴方向石英加速度计、X轴方向减震装置、Z轴方向减震装置;具有以下优点:本发明通过改变惯性导航装置与天文导航装置的安装方式,消除机抖激光陀螺惯性导航装置中减震器变形引入的姿态误差,显著提高组合导航精度;本发明在结构设计上将天文导航装置安装在机抖激光陀螺捷联惯性导航装置的箱体内,可以有效降低组合导航系统的体积和重量。(The invention belongs to the field of inertia/astronomical combined navigation, and relates to an inertia/astronomical combined navigation system based on a mechanically dithered laser gyroscope, which can be applied to the fields of inertia navigation, inertia combined navigation, attitude measurement and the like, and comprises an installation frame, an astronomical navigation device, a single-axis turntable, an X-axis direction mechanically dithered laser gyroscope, a Y-axis direction mechanically dithered laser gyroscope, a Z-axis direction mechanically dithered laser gyroscope, an X-axis direction quartz accelerometer, a Y-axis direction quartz accelerometer, a Z-axis direction quartz accelerometer, an X-axis direction damping device and a Z-axis direction damping device; has the following advantages: according to the invention, by changing the installation mode of the inertial navigation device and the astronomical navigation device, the attitude error caused by the deformation of the shock absorber in the mechanically dithered laser gyro inertial navigation device is eliminated, and the integrated navigation precision is obviously improved; the astronomical navigation device is arranged in the box body of the mechanically dithered laser gyro strapdown inertial navigation device on the structural design, so that the volume and the weight of the integrated navigation system can be effectively reduced.)

一种基于机抖激光陀螺的惯性/天文组合导航系统

技术领域

本发明属于惯性/天文组合导航领域,涉及一种基于机抖激光陀螺的惯性/天文组合导航系统,可以应用于惯性导航、惯性组合导航、姿态测量等领域。

背景技术

机抖激光陀螺惯性导航系统以机抖激光陀螺和加速度计为核心惯性测量元件,三个激光陀螺和加速度计分别测量载体相对于惯性空间的三维加速度和角速度,利用计算机建立的姿态矩阵实时解算得到“数学解析平台”,然后将载体坐标系下测得的数据变换到导航坐标系再进行导航计算,从而实现运动载体的自主导航。系统对导航参数的解算无需依赖任何外界信息,是一种完全自主式的导航系统,具有体积小、重量轻、造价低、可靠性高、隐蔽性好等特点,因此在许多领域都有广泛的应用。

对于机载平台上长时间使用的高精度导航系统而言,常规的捷联方案很难满足应用的需要,必须采用惯性/天文组合导航的方法来实现。惯性/天文组合导航系统中的天文导航装置通过天体敏感设备观测天体,确定载***置等导航参数,具有误差不随时间增长的特点。惯性/天文组合导航系统工作原理是利用机抖激光陀螺捷联惯性导航装置提供的姿态信息实现高精度的定位,机抖激光陀螺捷联惯性导航装置的姿态精度直接决定了惯性/天文组合导航系统的定位精度。传统的惯性/天文组合导航系统一般采用机抖激光陀螺捷联惯性导航装置与天文导航装置共基面的安装方式,如文献1(“惯性/天文组合导航分立式结构对定位精度的影响”,通讯世界,2018年,李宁,李勇)中图1(参见附图1)所示,机抖激光陀螺捷联惯性导航装置101给出安装基面的姿态提供给天文导航装置102进行组合导航。

在机抖激光陀螺捷联惯性导航装置101中,为了使机抖陀螺工作性能稳定,惯性传感器件特别是机抖激光陀螺与安装基面103间一般加装减振器以保障机抖激光陀螺稳定可靠地工作和隔离外界扰动。,减震器安装在机抖激光陀螺捷联惯性导航装置101内部,减震器一般采用橡胶减震器,减振器的存在将使得惯性传感器件与天文导航装置之间不再是刚性连接,减震器的温度形变和弹性形变将引入姿态误差,文献2(“船用高精度激光陀螺姿态测量系统关键技术研究”,国防科技大学博士学位论文,2011年,吴赛成)指出惯性测量组件在翻转和运动过程中姿态误差可达20到30角秒,如图2所示,该减震器的变形将直接作为误差传递给天文导航装置,直接影响组合导航的精度。

发明内容

本发明的目的是针对现有技术存在的问题,提供一种基于机抖激光陀螺的惯性/天文组合导航系统,利用单轴转台周期性的旋转提高惯性导航系统的长期姿态精度,同时改变现有机抖激光陀螺捷联惯性导航装置和天文导航装置的连接方式,将天文导航装置与惯性器件直接相连,克服传统惯性/天文组合导航系统中机抖激光陀螺捷联惯性导航装置由减震器变形引入的姿态误差大的问题,特别适合高精度惯性/天文组合导航系统。

本发明采用的技术方案为:一种基于机抖激光陀螺的惯性/天文组合导航系统,包括安装框架1、天文导航装置2、单轴转台3、X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403、X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406、X轴方向减震装置5、Z轴方向减震装置6;所述安装框架1用于提供一个安装天文导航装置2、单轴转台3、X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403、X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406、X轴方向减震装置5、Z轴方向减震装置6的框架;所述天文导航装置2包括小视场星敏感器201和旋转支撑轴202,其中小视场星敏感器201用于观测太空中某一位置的几颗恒星,并利用自身的星图库进行匹配,计算出光轴的赤经和赤纬,再利用天文三角形的算法来计算出载体的经度和纬度;旋转支撑轴202采用双轴旋转机构,用于实现小视场星敏感器201的方位运动和俯仰转动,搜索、跟踪和观测恒星的位置;旋转支撑轴202也可以采用单轴旋转机构,用于实现小视场星敏感器201的俯仰转动,再配合单轴转台3的方位转动,搜索、跟踪和观测恒星的位置。旋转支撑轴202采用单轴旋转机构时,单轴旋转机构绕俯仰轴进行转动,利用单轴转台3的周期性转动进行方位转动。所述的单轴转台3直接与安装框架1刚性固联(例如通过螺栓固定),带动机抖激光陀螺捷联惯性导航装置和天文导航装置2同步旋转,利用单轴转台3周期性的旋转调制机抖激光陀螺捷联惯性导航装置中惯性器件的误差(主要是陀螺和加速度计的常值误差),进而提高组合导航系统的姿态精度;所述X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403、X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406统称为机抖激光陀螺捷联惯性导航装置,其中X轴方向机抖激光陀螺401用于敏感X轴方向的角速度增量信息,Y轴方向机抖激光陀螺402用于敏感Y轴方向的角速度增量信息,Z轴方向机抖激光陀螺403用于敏感Z轴方向的角速度增量信息,X轴方向石英加速度计404用于敏感X轴方向的线加速度信息,Y轴方向石英加速度计405用于敏感Y轴方向的线加速度信息,Z轴方向石英加速度计406用于敏感Z轴方向的线加速度信息;所述X轴方向减震装置5为八个侧向橡胶减震器,对称安装在安装支架垂直于X轴方向两个安装面的四个角上,用于消除外界振动对机抖激光陀螺的影响;所述Z轴方向减震装置6为八个垂直减震器,对称安装在安装支架垂直于Z轴方向两个安装面的四个角上,用于抑制天文导航装置的转动机构对机抖激光陀螺的振动耦合;

X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403相互正交,分别安装在安装支架X轴正方向的安装面、Y轴负方向的安装面、Z轴正方向的安装面上,X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406正交安装在Y轴方向机抖激光陀螺402的一侧,其中X轴方向石英加速度计404安装在安装支架X轴正方向的安装面上、Y轴方向石英加速度计405安装在安装支架Y轴负方向的安装面上、Z轴方向石英加速度计406安装在安装支架Z轴正方向的安装面上,通过加速度计尺寸效应误差补偿可以消除三个激光陀螺和三个加速度计不重合的影响。

所述的天文导航装置2内嵌在安装框架1中,通过刚性连接(例如通过螺栓固定)固定在安装支架Z轴负方向的安装面上,安装在Z轴方向机抖激光陀螺403的背面。天文导航装置2直接与3个机抖激光陀螺和3个石英加速度计通过安装框架1刚性连接,消除了传统方案带来的减震器变形误差。

所述侧向橡胶减振器的固有频率为30Hz~70Hz,阻尼比为0.06~0.15。侧向橡胶减震器置于机抖激光陀螺捷联惯性导航装置和天文导航装置2的外部,其变形不会影响机抖激光陀螺捷联惯性导航装置和天文导航装置2的组合导航精度。

所述的垂向减震器由铝制减震支架A和橡胶减震垫B构成,利用铝制减震支架使橡胶减震垫处于收缩状态,有效消除天文导航装置2中旋转支撑轴转动带来的扭转振动耦合。垂向减震器同样置于机抖激光陀螺捷联惯性导航装置1和天文导航装置2的外部,其变形不会影响机抖激光陀螺捷联惯性导航装置和天文导航装置2的组合导航精度。

所述的单轴转台3采用低成本一体化交流无刷电机代替常规转台中使用的直流有刷或无刷电机,采用高精密大口径扁平交叉滚子轴承代替常规转台中使用的圆珠滚子角轴承对。

本发明基于以下原理:在惯性/天文组合导航系统中,利用惯性导航装置为天文导航装置提供姿态基准,天文导航装置利用惯性导航装置提供的姿态基准与恒星星图匹配,进而确定载体的位置,具有定位误差不随时间发散的优点。但惯性器件的漂移会影响惯性导航装置的姿态精度,直接决定组合导航系统的精度。本发明利用单轴旋转调制技术周期性的旋转消除惯性器件的常值误差。采用惯性导航装置中惯性器件与天文导航装置硬连接的安装方式,消除减震器变形带来的姿态误差,有效提高组合导航的精度。

本发明具有以下优点:

本发明利用单轴转台的周期性旋转抑制惯性器件的常值误差,提高机抖激光陀螺惯性导航装置自身的姿态精度,改变惯性导航装置与天文导航装置的安装方式,消除机抖激光陀螺惯性导航装置中减震器变形引入的姿态误差,显著提高组合导航精度。

本发明在结构设计上将天文导航装置安装在机抖激光陀螺捷联惯性导航装置的箱体内,可以有效降低组合导航系统的体积和重量。选用扁平式的单轴转台,有效降低了组合导航系统的高度,结构上十分紧凑。

附图说明

图1惯性/天文组合导航系统简单安装示意图;

图2减振器形变测量装置的实时输出数据;

图3为本发明的一种基于机抖激光陀螺的惯性/天文组合导航系统的机抖激光陀螺捷联惯性导航装置系统组成的***图;

图4为本发明的一种基于机抖激光陀螺的惯性/天文组合导航系统的减震装置结构示意图;

图5为本发明的一种基于机抖激光陀螺的惯性/天文组合导航系统的天文导航装置结构示意图;

图6为本发明的一种基于机抖激光陀螺的惯性/天文组合导航系统的侧面橡胶减震器结构示意图;

图7为本发明的一种基于机抖激光陀螺的惯性/天文组合导航系统的垂向减震器结构示意图;

具体实施方式

下面结合附图和具体实施例对本发明作进一步详细说明。

本发明所述的一种基于机抖激光陀螺的惯性/天文组合导航系统的具体结构组成如图3所示,包括安装框架1、天文导航装置2、单轴转台3、X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403、X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406、X轴方向减震装置5、Z轴方向减震装置6;所述安装框架1用于提供一个安装天文导航装置2、单轴转台3、X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403、X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406、X轴方向减震装置5、Z轴方向减震装置6的框架;所述天文导航装置2包括小视场星敏感器201和旋转支撑轴202,其中小视场星敏感器201用于观测太空中某一位置的几颗恒星,并利用自身的星图库进行匹配,计算出光轴的赤经和赤纬,再利用天文三角形的算法来计算出载体的经度和纬度;旋转支撑轴202采用双轴旋转机构,用于实现小视场星敏感器201的方位运动和俯仰转动,搜索、跟踪和观测恒星的位置;旋转支撑轴202也可以采用单轴旋转机构,用于实现小视场星敏感器201的俯仰转动,再配合单轴转台3的方位转动,搜索、跟踪和观测恒星的位置。旋转支撑轴202采用单轴旋转机构时,单轴旋转机构绕俯仰轴进行转动,利用单轴转台3的周期性转动进行方位转动。所述的单轴转台3直接与安装框架1刚性固联,带动机抖激光陀螺捷联惯性导航装置和天文导航装置2同步旋转,利用单轴转台3周期性的旋转调制机抖激光陀螺捷联惯性导航装置中惯性器件的误差(主要是陀螺和加速度计的常值误差,)进而提高组合导航系统的姿态精度;所述X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403、X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406统称为机抖激光陀螺捷联惯性导航装置,其中X轴方向机抖激光陀螺401用于敏感X轴方向的角速度增量信息,Y轴方向机抖激光陀螺402用于敏感Y轴方向的角速度增量信息,Z轴方向机抖激光陀螺403用于敏感Z轴方向的角速度增量信息,X轴方向石英加速度计404用于敏感X轴方向的线加速度信息,Y轴方向石英加速度计405用于敏感Y轴方向的线加速度信息,Z轴方向石英加速度计406用于敏感Z轴方向的线加速度信息;所述X轴方向减震装置5为八个侧向橡胶减震器,对称安装在安装支架垂直于X轴方向两个安装面的四个角上,用于消除外界振动对机抖激光陀螺的影响;所述Z轴方向减震装置6为八个垂直减震器,对称安装在安装支架垂直于Z轴方向两个安装面的四个角上,用于抑制天文导航装置的转动机构对机抖激光陀螺的振动耦合;

X轴方向机抖激光陀螺401、Y轴方向机抖激光陀螺402、Z轴方向机抖激光陀螺403相互正交,分别安装在安装支架X轴正方向的安装面、Y轴负方向的安装面、Z轴正方向的安装面上,X轴方向石英加速度计404、Y轴方向石英加速度计405、Z轴方向石英加速度计406正交安装在Y轴方向机抖激光陀螺402的一侧,其中X轴方向石英加速度计404安装在安装支架X轴正方向的安装面上、Y轴方向石英加速度计405安装在安装支架Y轴负方向的安装面上、Z轴方向石英加速度计406安装在安装支架Z轴正方向的安装面上,通过加速度计尺寸效应误差补偿可以消除三个激光陀螺和三个加速度计不重合的影响。

所述的天文导航装置2内嵌在安装框架1中,通过刚性连接(例如通过螺栓固定)固定在安装支架Z轴负方向的安装面上,安装在Z轴方向机抖激光陀螺403的背面。天文导航装置2直接与3个机抖激光陀螺和3个石英加速度计通过安装框架1刚性连接,消除了传统方案带来的减震器变形误差。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种定位精度的预测方法和系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!