一种具有多孔隙光通道结构的超高亮度蓄光陶瓷及其应用

文档序号:997604 发布日期:2020-10-23 浏览:14次 >En<

阅读说明:本技术 一种具有多孔隙光通道结构的超高亮度蓄光陶瓷及其应用 (Ultrahigh-brightness light-storing ceramic with porous light channel structure and application thereof ) 是由 张乐 杨顺顺 陈东顺 邵岑 康健 李明 周天元 李延彬 陈浩 于 2020-07-20 设计创作,主要内容包括:本发明公开了一种具有多孔隙光通道结构的超高亮度蓄光陶瓷及其应用,所述蓄光陶瓷内部具有相互连通的三维孔道结构,孔道直径为200~800微米,孔隙率为55~75%,可应用于消防指示领域。本发明提供的超高亮度蓄光陶瓷,经过20min蓄光,可实现15小时(&gt;0.32mcd/m&lt;Sup&gt;2&lt;/Sup&gt;)的持续发光,初始1min强度&gt;4500mcd/m&lt;Sup&gt;2&lt;/Sup&gt;;60min强度&gt;35mcd/m&lt;Sup&gt;2&lt;/Sup&gt;(室外阳光直射20min,日光灯30min,紫外线5min,室温25℃测试),相较于现有的蓄光陶瓷材料,本发明产品前置光提取效率明显提高25-40%,同时其多孔结构还能提高陶瓷韧性及减轻陶瓷重量。(The invention discloses an ultra-high brightness light-storing ceramic with a porous light channel structure and application thereof, wherein the light-storing ceramic is internally provided with a three-dimensional pore channel structure which is communicated with each other, the diameter of the pore channel is 200-800 micrometers, the porosity is 55-75%, and the light-storing ceramic can be applied to the field of fire-fighting indication. The ultra-high brightness light-storing ceramic provided by the invention can realize 15 hours after light storage for 20min&gt;0.32mcd/m 2 ) Continuous luminescence, initial 1min intensity&gt;4500mcd/m 2 (ii) a Strength at 60min&gt;35mcd/m 2 (the outdoor sunlight is directly irradiated for 20min, the daylight lamp is used for 30min, the ultraviolet ray is used for 5min, and the room temperature is tested at 25 ℃), compared with the existing light-storing ceramic material, the preposed light extraction efficiency of the product is obviously improved by 25-40%, and meanwhile, the porous structure of the product can also improve the toughness of the ceramic and reduce the weight of the ceramic.)

一种具有多孔隙光通道结构的超高亮度蓄光陶瓷及其应用

技术领域

本发明涉及一种蓄光陶瓷,具体涉及一种具有多孔隙光通道结构的超高亮度蓄光陶瓷及其应用,属于无机非金属材料领域。

背景技术

蓄光陶瓷集蓄光材料与陶瓷的优点集于一身,不同于目前的消防指示用蓄光产品的“发光涂料+基质”、“分层复合”和“简单包覆”等结构,其采用一体成型方式进一步提升了蓄光材料制品的性能。在现有技术中,如CN110240472A等专利提出将长余辉蓄光粉与石英陶瓷原料粉经过称量、混合、成型、干燥以及烧结等步骤制备得到“一体式”蓄光陶瓷。这种结构的优势在于:(1)将长余辉材料蓄光功能相结合可透光陶瓷基质相可以实现陶瓷通体发光以达到高光效的要求;(2)避免发光釉层与陶瓷基质因膨胀系数不同造成的釉层开裂;(3)半透光陶瓷基质由于具有较高的耐酸碱侵蚀性能和抗热振性,其具有的热膨胀系数低,体积稳定性好等优势,可作为基质实现蓄光性能。

然而,此方案虽优势明显,但是由于介质折射率差异(如石英基蓄光陶瓷:铝酸盐荧光粉折射率为~1.6,石英基陶瓷折射率为1.45-1.50)在陶瓷内部必然会引起的双折射现象,导致激发光以及荧光的散射损耗,以及整体透过率的降低。加上蓄光陶瓷(折射率大于1.45)与空气(折射率为1.0)间的较大的折射率差,受到外界能量的激发后产生荧光从陶瓷上表面出射时会产生全发射效应,经计算全反射临界角为44°,即只有24.4%的荧光能够从陶瓷上表面出射,其余荧光受限于全反射效应,将在陶瓷内部以波导效应形式传输,直至完全损耗。为实现“一体化”蓄光陶瓷在消防指示、园艺景观等领域更为广泛的应用,进一步提高光的吸收与提取效率。一种具有特征微观结构的荧光陶瓷通过加入造孔剂(如淀粉、聚乙烯醇、糊精等)在陶瓷内部引入气孔使荧光入射到气孔后使荧光以散射或者反射的形式在陶瓷内部传播,提高光提取率与吸收率(如CN109467453A和 CN110204321A等专利)。光路在陶瓷中的散射源主要有包括气孔,第二相以及杂质等。这些散射点一般遵循米氏散射(Mie scattering)原理。如附图1所示,在蓄光陶瓷的制备过程中,散射点的主动引入,一方面增加光子传播的平均自由程,有利于发光离子对自然光的充分吸收;并且有效削弱荧光的波导效应以及全反射效应,从而提高荧光的提取效率与出射效率。

但是造孔剂的原理是其在高温下会发生分解生成气体,但是其往往会伴随着剧烈的氧化还原反应或者热解反应,导致气孔形状偏离正常的球形或者大小不均的情况。因此若要制备这种微观特征结构的蓄光陶瓷,需要针对原材料的特性与产品要求精确选取造孔剂和特定的其他添加剂,同时还需要特定的球磨与烧结工艺等。这无疑会对本领域的工作人员提出极高的要求,最终造成产品的发光效率不稳定等结果。

发明内容

本发明的目的之一是提供一种具有多孔隙光通道结构的超高亮度蓄光陶瓷。

本发明的目的之二是提供上述具有多孔隙光通道结构的超高亮度蓄光陶瓷的应用。

为实现上述目的,本发明提供一种具有多孔隙光通道结构的超高亮度蓄光陶瓷,所述蓄光陶瓷内部具有相互连通的三维孔道结构,孔道直径为200~800微米,孔隙率为55~75%。当孔径低于200微米时,孔道之间难以连通,这种结构就会返回之前的大气孔结构,成为降低光效的散射中心,而且可能因局部气孔较多造成陶瓷整体的局部缺陷较大从而影响良品率;当孔径大于800微米时,陶瓷会产生局部空洞,影响陶瓷外观及强度。

值得说明的是:

在结构上,本发明所提到的“多孔隙结构”区别于现有技术的“气孔”,现有的荧光陶瓷或者蓄光陶瓷的微观结构设计只涉及到了通过微量造孔剂产生封闭的气孔并加控制气孔的形貌及大小以增加光在陶瓷基质中的散射。如附图2 所示的本发明产品结构示意图,和封闭的“气孔”不同,本发明通过大量造孔剂在陶瓷内部形成相互连通的孔洞结构。该结构可作为光线传输的通道,增加了陶瓷的比表面积,提高蓄光陶瓷的光效。

在理论上,现有技术中,荧光入射到陶瓷内部遇到气孔或其他二相后会以散射或者反射的形式在陶瓷内部传播,通过合适的工艺控制气孔的形貌和大小。但是造孔剂在烧结过程中往往因为反应剧烈,气孔的形貌和分布难以控制,很容易造成光路在陶瓷内部的大量损耗。加上蓄光陶瓷与空气间的较大的折射率差,受到外界能量的激发后产生荧光从陶瓷上表面出射时会产生全反射效应,经计算全反射临界角为44°,即只有24.4%的荧光能够从陶瓷上表面出射,其余荧光受限于全反射效应,将在陶瓷内部以波导效应形式传输,直至完全损耗。在本发明中,光路在通道内可经过多次反射并投射近陶瓷中,光通道内部的低折射率介质(相比于蓄光粉和陶瓷基质)可起到部分波导的作用,同时又能避免光路在陶瓷内部的大量散射损耗,因此光通道结合陶瓷基质的结构可以带着陶瓷内部发光中心的更多光子的发射光到达陶瓷表面,极大地提高了光的吸收和发射率。

进一步地,上述具有多孔隙光通道结构的超高亮度蓄光陶瓷可通过以下步骤制备得到:

(1.1)称量:以原料粉体总质量为100%计,分别称取质量百分比为50%~55%的10~30目的石英原料、25%~29%的50~100目的石英原料、6%~15%的150~250 目的石英原料,其余为制备铕、镝共掺的铝酸锶长余辉荧光粉的原料粉体;再称取占原料粉体总质量35%~55%的造孔剂,所述造孔剂为碳酸氢铵、淀粉、碳酸氢铵与淀粉按质量比1:3~6组成的混合物中的一种;

(1.2)混料:将步骤(1)称量的粉体原料置于球磨罐内,同时加入磨球和去离子水进行球磨混合;

(1.3)成型:将步骤(2)球磨后的浆料进行真空除泡处理,然后将除泡后的浆料注入模具中成型,得到素坯;

(1.4)干燥:将步骤(3)得到的素坯静置7~12小时后进行脱模,然后置于干燥箱内干燥;

(1.5)烧结:将步骤(4)干燥后的素坯在还原气氛下进行高温煅烧,煅烧温度为800~1200℃,保温时间为3~6h,随后随炉冷却至室温,即得到蓄光陶瓷材料。

优选的,步骤(1.1)中,所述制备铕、镝共掺的铝酸锶长余辉荧光粉的原料粉体为SrCO3、Al2O3、Eu2O3和Dy2O3,根据化学式SrAl2O4:Eu2+,Dy3+中各元素的化学计量比称量得到。

优选的,步骤(1.2)中,所述磨球与原料粉体总质量的质量比为1.5~3:1,所述去离子水的添加量为原料粉体总质量的12%~17%。

优选的,步骤(1.2)中,所述球磨的转速为160~300r/min,球磨时间为20~25 h。

优选的,步骤(1.3)中,所述真空除泡的真空度为-10~-30kpa,除泡时间为30~50min。

优选的,步骤(1.4)中,所述干燥温度为60~100℃,干燥时间为15~24h。

进一步地,上述具有多孔隙光通道结构的超高亮度蓄光陶瓷还可以通过以下步骤制备得到:

(2.1)将玻璃基质原料、长余辉蓄光粉、分散剂和氧化铝粉放入造粒机内,加入掺杂有造孔剂的去离子水后直接机械搅拌造粒,搅拌4~8小时后加入增塑剂,继续搅拌1~3小时得到混料;整个搅拌过程的搅拌转速在100~300rad/min;所述玻璃基质原料选用无色玻璃粉,所述玻璃基质原料的粒径为10~400微米;所述长余辉蓄光粉的粒径为10~500微米;所述氧化铝的粒径为10~500纳米;所述分散剂为三聚磷酸钠;所述造孔剂为天然有机细粉;所述增塑剂为甲基纤维素;所述玻璃基质原料与长余辉蓄光粉的质量比为9~49:1;所述分散剂的添加量为玻璃基质原料与长余辉蓄光粉总质量的0.1~0.9%,所述增塑剂的添加量为玻璃基质原料与长余辉蓄光粉总质量的0.1~0.9%,所述造孔剂的添加量为玻璃基质原料与长余辉蓄光粉总质量的35~55%,所述氧化铝粉体的添加量为玻璃基质原料与长余辉蓄光粉总质量的0.1~0.4%,所述去离子水的添加量为玻璃基质原料与长余辉蓄光粉总质量的20%~50%;

(2.2)将步骤(1)得到的混料分装进模具中,利用自动压片机进行压片;模具形状为产品要求所需,压力在5~40MPa,保压时间在5~20s,随后脱模送进窑炉进行干燥并烧制;

(2.3)窑炉升温制度为:室温~200℃,速率在2~5℃/min,保温10~30min;随后继续升温至400~900℃,保温60~120min;然后随炉冷却至100℃以下取出,得到蓄光自发光石英陶瓷。

优选的,步骤(2.1)中,蓄光粉选取在暗处所发出的光为黄、黄绿、绿、蓝绿、橙红等多种颜色其中的一种或多种,如发光颜色为蓝紫色的铕、钕激活 CaAl3O4:Eu,Nb,蓝绿色的铕、镝激活Sr4Al14O25:Eu,Dy,黄绿色的铕、镝激活SrAl2O4:Eu,Dy等铝酸盐体系;Eu,Dy激活的焦硅酸盐蓝色粉,Mg激活的正硅酸盐白色发光粉体等硅酸盐体系;黄绿色的ZnS:Cu系列,蓝色的CaS: Bi系列,红色的CaS:Eu系列的硫化物体系等。

优选的,步骤(2.1)中所用的原料还包括用以美化或者符合产品特殊要求所需的与长余辉蓄光粉发光配合的颜料,所述颜料与长余辉蓄光粉的质量比为 3.5以下。

本发明还提供上述具有多孔隙光通道结构的超高亮度蓄光陶瓷在消防指示领域的应用。

与现有技术相比,本发明具有如下有益效果:

1.本发明提供的超高亮度蓄光陶瓷,经过20min蓄光,可实现15小时(>0.32 mcd/m2)的持续发光,初始1min强度>4500mcd/m2;60min强度>35mcd/m2 (室外阳光直射20min,日光灯30min,紫外线5min,室温25℃测试)。

2.本发明提供的超高亮度蓄光陶瓷,相较于现有的蓄光陶瓷材料,本发明产品中孔隙的尺寸在200~800微米范围内,孔隙率为55-75%。前置光提取效率明显提高25-40%。同时除提高光效外,多孔结构还能提高陶瓷韧性及带来轻便性。

3.本发明提出的三维多孔隙光通道结构打破了技术偏见,不同于现有技术中尽量减少气孔或者有意识引入气孔并进行形貌及分布控制,而是简单通过添加过量造孔剂的形式形成一种新的蓄光陶瓷特征结构,并取得显著的发光效果,为本领域相关人员提供了一种新的思路。

附图说明

图1为现有技术中造孔剂微观形貌引入第二相后光路传播模型图;

图2为本发明蓄光陶瓷产品的光路传播示意图;

图3为本实施例1、实施例4制备的样品的X射线衍射图谱。

具体实施方式

下面结合附图和具体实施例对本发明作进一步详细说明。

下述实施例中,除非另有说明,所述的实验方法通常按照常规条件或制造厂商建议的条件实施;所有的原料、试剂均可通过市售购买的方式获得。

以制备100g目标产物,配料表见表1,表2。

表1实施例1-3配料表

Figure BDA0002591941490000061

实施例1

具体制备方法包括下列步骤:

(1)称量:按照表1中1#所示,分别称量不同粒径的石英、SrCO3、Al2O3、 Eu2O3、Dy2O3的原料粉体以及造孔剂碳酸氢铵;

(2)混料:将步骤(1)所称得的粉体置于装有150g高纯氧化铝球的球磨罐内,同时加入12g去离子水进行球磨混合,球磨转速为160r/min,球磨时间为20h;

(3)成型:将步骤(2)得到的浆料进行真空除泡处理,真空环境-10kpa 下除泡30min;然后将除泡后的浆料注入石膏模具,成型得到素坯;

(4)干燥:将步骤(3)得到的素坯静置7h后进行脱模,脱模后将其放置于干燥箱内干燥15h,干燥温度为60℃;

(5)烧结:将步骤(4)干燥后的素坯在还原气氛下进行高温煅烧,煅烧温度为800℃,升温速率为3℃/min,保温时间为3h,随后随炉冷却至室温,即得到具有多孔隙光通道结构的蓄光陶瓷材料。

XRD的测试结果显示,所制备的样品的X射线衍射峰与铝酸锶蓄光粉的标准卡片相吻合(由于测试样品厚度原因,特征峰小角度整体偏移)。此外,XRD 图谱在20~40的衍射角范围内,呈现非常明显的馒头峰,证明了非晶态二氧化硅的存在;经阿基米德排水法测量,该陶瓷气孔率为55.0%;经SEM测试统计孔道平均直径为200微米;前置光提取率提高了25%。

实施例2

具体制备方法包括下列步骤:

(1)称量:按照表1中2#所示,分别称量不同粒径的石英、SrCO3、Al2O3、Eu2O3、Dy2O3的原料粉体以及造孔剂,所述造孔剂为碳酸氢铵与淀粉按质量比1: 4组成的混合物;

(2)混料:将步骤(1)所称得的粉体置于装有200g高纯氧化铝球的球磨罐内,同时加入15g去离子水进行球磨混合,球磨转速为200r/min,球磨时间为24h;

(3)成型:将步骤(2)得到的浆料进行真空除泡处理,真空环境-15kpa 下除泡40min;然后将除泡后的浆料注入石膏模具,成型得到素坯;

(4)干燥:将步骤(3)得到的素坯静置10h后进行脱模,脱模后将其放置于干燥箱内干燥20h,干燥温度为80℃;

(5)烧结:将步骤(4)的素坯在还原气氛下进行高温煅烧,煅烧温度为 1000℃,升温速率为4℃/min,保温时间为4.5h,随后随炉冷却至室温,即得到具有多孔隙光通道结构的蓄光陶瓷材料。

经阿基米德排水法测量,该陶瓷气孔率为62.5%;经SEM测试统计孔道平均直径为480微米;前置光提取率提高了37%。

实施例3

具体制备方法包括下列步骤:

(1)称量:按照表1中3#所示,分别称量不同粒径的石英、SrCO3、Al2O3、 Eu2O3、Dy2O3的原料粉体以及造孔剂淀粉;

(2)混料:将步骤(1)所称得的粉体置于装有300g高纯氧化铝球的球磨罐内,同时加入17g去离子水进行球磨混合,球磨转速为300r/min,球磨时间为25h;

(3)成型:将步骤(2)得到的浆料进行真空除泡处理,真空环境-30kpa 下除泡50min;然后将除泡后的浆料注入石膏模具,成型得到素坯;

(4)干燥:将步骤(3)得到的素坯静置12h后进行脱模,脱模后将其放置于干燥箱内干燥24h,干燥温度为100℃;

(5)烧结:将步骤(4)的素坯在还原气氛下进行高温煅烧,煅烧温度为 1200℃,升温速率为5℃/min,保温时间为6h,随后随炉冷却至室温,即得到具有多孔隙光通道结构的蓄光陶瓷材料。

经阿基米德排水法测量,该陶瓷气孔率为74.8%;经SEM测试统计孔道平均直径为776微米;前置光提取率提高了30%。

表2实施例4-6配料表

编号 4<sup>#</sup> 5<sup>#</sup> 6<sup>#</sup>
蓄光粉 2g 10g 5g
玻璃粉 98g 90g 95g
造孔剂 35g 45g 55g
氧化铝粉 0.4g 0.4g 0.2g
增塑剂 0.1g 0.6g 0.3g
分散剂 0.1g 0.4g 0.3g
去离子水 50g 20g 40g

实施例4

具体制备方法包括下列步骤:

(1)将粒径10微米的无色玻璃粉、粒径10微米的长余辉蓄光粉(SrAl2O4: Eu,Dy)、分散剂三聚磷酸钠和粒径10纳米的氧化铝粉放入造粒机内,加入掺杂有粒径10微米的造孔剂天然有机细粉的去离子水后直接机械搅拌造粒,搅拌4小时后加入增塑剂甲基纤维素,继续搅拌1小时得到混料,为糊料、砂浆或粘稠物;整个搅拌过程的搅拌转速在100rad/min;

(2)选用自动压片机将步骤(1)得到的混料分装进模具中进行压片;模具形状为正方形(20cm*30cm),压力在5MPa,保压时间在5s,随后脱模送进窑炉进行干燥并烧制;

(3)窑炉升温制度为:室温~200℃,速率在5℃/min,保温30min,保证坯体水分完全蒸发;随后继续升温至400℃,升温速率4℃/min,保温60min,保证无色玻璃粉在半熔融状态内完成结晶和晶核长大及气孔排出过程,且不会对长余辉自发光材料造成热损伤;然后随炉冷却至100℃以下取出,得到蓄光自发光石英陶瓷。

XRD的测试结果显示,所制备的样品的X射线衍射峰与铝酸锶蓄光粉的标准卡片相吻合。此外,XRD图谱在20~40的衍射角范围内,呈现非常明显的馒头峰,证明了非晶态二氧化硅的存在;经阿基米德排水法测量,该陶瓷气孔率为 56.3%;经SEM测试统计孔道平均直径为264微米;前置光提取率提高了29%。

实施例5

具体制备方法包括下列步骤:

(1)将粒径300微米的无色玻璃粉、粒径200微米的长余辉蓄光粉 (Sr4Al14O25:Eu,Dy)、分散剂三聚磷酸钠和粒径300纳米的氧化铝粉放入造粒机内,加入掺杂有粒径0.1微米的造孔剂天然有机细粉的去离子水后直接机械搅拌造粒,搅拌6小时后加入增塑剂甲基纤维素,继续搅拌2小时得到混料,为糊料、砂浆或粘稠物;整个搅拌过程的搅拌转速在200rad/min;

(2)选用自动压片机将步骤(1)得到的混料分装进模具中进行压片;模具形状为正方形(20cm*20cm),压力在30MPa,保压时间在15s,随后脱模送进窑炉进行干燥并烧制;

(3)窑炉升温制度为:室温~200℃,速率在3℃/min,保温30min,保证坯体水分完全蒸发;随后继续升温至800℃,升温速率5℃/min,保温120min,保证无色玻璃粉在半熔融状态内完成结晶和晶核长大及气孔排出过程,且不会对长余辉自发光材料造成热损伤;然后随炉冷却至100℃以下取出,得到蓄光自发光石英陶瓷。

经阿基米德排水法测量,该陶瓷气孔率为68.3%;经SEM测试统计孔道平均直径为567微米;前置光提取率提高了40%。

实施例6

具体制备方法包括下列步骤:

(1)将粒径400微米的无色玻璃粉、粒径400微米的长余辉蓄光粉(CaAl3O4: Eu,Nb)、分散剂三聚磷酸钠和粒径500纳米的氧化铝粉放入造粒机内,加入掺杂有粒径0.8微米的造孔剂天然有机细粉的去离子水后直接机械搅拌造粒,搅拌 8小时后加入增塑剂甲基纤维素,继续搅拌3小时得到混料,为糊料、砂浆或粘稠物;整个搅拌过程的搅拌转速在300rad/min;

(2)选用自动压片机将步骤(1)得到的混料分装进模具中进行压片;模具形状为正方形(20cm*20cm),压力在40MPa,保压时间在20s,随后脱模送进窑炉进行干燥并烧制;

(3)窑炉升温制度为:室温~200℃,速率在2℃/min,保温30min,保证坯体水分完全蒸发;随后继续升温至600℃,升温速率3℃/min,保温90min,保证无色玻璃粉在半熔融状态内完成结晶和晶核长大及气孔排出过程,且不会对长余辉自发光材料造成热损伤;然后随炉冷却至100℃以下取出,得到蓄光自发光石英陶瓷。

经阿基米德排水法测量,该陶瓷气孔率为75.0%;经SEM测试统计孔道平均直径为800微米;前置光提取率提高了36%。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种青泥紫砂及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!