柔性器件基板形成用聚酰亚胺前体树脂组合物

文档序号:1060727 发布日期:2020-10-13 浏览:13次 >En<

阅读说明:本技术 柔性器件基板形成用聚酰亚胺前体树脂组合物 (Polyimide precursor resin composition for forming flexible device substrate ) 是由 三浦则男 成田一贵 中山刚成 于 2018-12-27 设计创作,主要内容包括:本发明涉及一种柔性器件基板形成用聚酰亚胺前体树脂组合物,其包含聚酰胺酸,该聚酰胺酸具有由满足下述式(1)和下述式(2)的成分得到的结构,该成分为:包含3,3’,4,4’-联苯四羧酸二酐和均苯四酸二酐中的至少一者的四羧酸成分;包含对苯二胺和4,4’-二氨基二苯基醚中的至少一者的二胺成分;和羧酸单酸酐。式(1)0.97≤X/Y<1.00式(2)0.5≤(Z/2)/(Y-X)≤1.05(式中,X表示上述四羧酸成分的摩尔数,Y表示上述二胺成分的摩尔数,Z表示上述羧酸单酸酐的摩尔数。)。(The present invention relates to a polyimide precursor resin composition for forming a flexible device substrate, comprising a polyamic acid having a structure obtained from a component satisfying the following formula (1) and formula (2): a tetracarboxylic acid component containing at least one of 3,3 &#39;, 4, 4&#39; -biphenyltetracarboxylic dianhydride and pyromellitic dianhydride; a diamine component comprising at least one of p-phenylenediamine and 4, 4&#39; -diaminodiphenyl ether; and carboxylic acid monoanhydrides. X/Y is 0.97-1.00 in the formula (1) (Z/2)/(Y-X) is 0.5-1.05 (X represents the number of moles of the tetracarboxylic acid component, Y represents the number of moles of the diamine component, and Z represents the number of moles of the carboxylic acid monoanhydride).)

柔性器件基板形成用聚酰亚胺前体树脂组合物

技术领域

本发明涉及柔性器件基板形成用聚酰亚胺前体树脂组合物、使用了该组合物的层积体和柔性器件、以及层积体的制造方法。

背景技术

以往,在使用了液晶显示元件、有机EL显示元件的平板显示器等电子器件中使用了玻璃基板,但玻璃存在下述问题:为了轻量化而进行薄膜化时,强度不足,容易损坏。作为玻璃基板的替代,开发出轻量且柔性优异的塑料基板,期待将使用该塑料基板的柔性器件用于各种用途。作为轻量化、薄膜化容易的树脂材料的聚酰亚胺适于塑料基板,提出了各种聚酰亚胺。

在通常的柔性器件的制造中,首先,在玻璃等载体基板上形成聚酰亚胺膜,制作柔性器件基板。另外,有时也在聚酰亚胺膜上进一步形成阻隔层和聚酰亚胺膜而制作柔性器件基板。在如此得到的柔性器件基板上制作TFT等半导体元件。这种工序中,要求聚酰亚胺膜牢固地层积在载体基板、阻隔层上。另外,还要求聚酰亚胺膜可承受器件制造时的高温条件,具有高耐热性。

专利文献1和2中提出了一种聚酰亚胺膜与载体基板的层积体的制造方法。专利文献3和4中提出了一种聚酰亚胺前体,其中,为了改善支撑体与聚酰亚胺膜的粘接性,添加烷氧基硅烷化合物或使烷氧基硅烷化合物反应。专利文献5中提出了一种利用硅烷偶联剂对载体基板进行处理的技术。

另一方面,已知通过对聚酰亚胺进行改性来改善聚酰亚胺的特性的方法。专利文献6中提出了一种利用单酸酐对末端进行了改性的聚酰胺酸。专利文献7中提出了一种利用芳香族二羧酸酐对末端进行了改性的聚酰胺酸。

现有技术文献

专利文献

专利文献1:日本专利第5650458号公报

专利文献2:日本专利第6206446号公报

专利文献3:国际公开第2013/125194号

专利文献4:国际公开第2016/024457号

专利文献5:日本专利第5862866号公报

专利文献6:日本专利第4853534号公报

专利文献7:国际公开第2017/204186号

发明内容

发明所要解决的课题

专利文献1和2中记载的聚酰亚胺膜存在与载体基板的粘接力低、会发生剥离的问题。专利文献3~5中记载的聚酰亚胺前体溶液的稳定性差,所得到的聚酰亚胺膜不具有可承受器件制造时的高温条件的粘接性,并且柔性器件的可靠性受损。

专利文献6中记载的聚酰胺酸虽然粘度稳定性和进行酰亚胺化时的机械强度与坚韧性提高,但剥离强度未得到改善。专利文献7中记载的聚酰亚胺膜不是柔性器件基板,而作为玻璃基板的剥离层使用。当然,对于柔性器件基板和剥离层而言,所要求的物性及其基准有很大不同。

对柔性器件基板中使用的聚酰亚胺膜来说,要求改善对于载体基板的剥离强度。本发明的目的在于提供一种柔性器件基板形成用聚酰亚胺前体树脂组合物,其能够获得在确保作为柔性器件用途所要求的机械物性的同时对基板具有高剥离强度的聚酰亚胺膜。

用于解决课题的手段

本发明涉及下述项。

1.一种柔性器件基板形成用聚酰亚胺前体树脂组合物,其包含聚酰胺酸,该聚酰胺酸具有由满足下述式(1)和下述式(2)的成分得到的结构,该成分为:包含3,3’,4,4’-联苯四羧酸二酐和均苯四酸二酐中的至少一者的四羧酸成分;包含对苯二胺和4,4’-二氨基二苯基醚中的至少一者的二胺成分;和羧酸单酸酐。

式(1) 0.97≤X/Y<1.00

式(2) 0.5≤(Z/2)/(Y-X)≤1.05

(式中,X表示上述四羧酸成分的摩尔数,Y表示上述二胺成分的摩尔数,Z表示上述羧酸单酸酐的摩尔数。)

2.如项1所述的柔性器件基板形成用聚酰亚胺前体树脂组合物,其中,3,3’,4,4’-联苯四羧酸二酐的含量为上述四羧酸成分的40摩尔%以上。

3.如项1或2所述的柔性器件基板形成用聚酰亚胺前体树脂组合物,其中,对苯二胺的含量为上述二胺成分的40摩尔%以上。

4.如项1~3中任一项所述的柔性器件基板形成用聚酰亚胺前体树脂组合物,其中,上述羧酸单酸酐为邻苯二甲酸酐或马来酸酐。

5.一种层积体,其包含由项1~4中任一项所述的柔性器件基板形成用聚酰亚胺前体树脂组合物得到的聚酰亚胺膜和玻璃基板。

6.一种柔性器件基板,其包含由项1~4中任一项所述的柔性器件基板形成用聚酰亚胺前体树脂组合物得到的聚酰亚胺膜。

7.一种柔性器件基板,其包含:由项1~4中任一项所述的柔性器件基板形成用聚酰亚胺前体树脂组合物得到的聚酰亚胺膜;和含有选自由氮化硅、氧化硅、氧氮化硅、氧化铝、氧化钛和氧化锆组成的组中的无机物的无机膜。

8.一种柔性器件,其在项6或7所述的柔性器件基板上搭载有TFT。

9.一种层积体的制造方法,该层积体的制造方法包括:将包含聚酰胺酸的柔性器件基板形成用聚酰亚胺前体树脂组合物流延在基板上的工序;和通过加热处理将上述聚酰胺酸进行酰亚胺化而形成聚酰亚胺膜的工序,

该层积体的制造方法的特征在于,

上述聚酰胺酸为具有由满足下述式(1)和下述式(2)的成分得到的结构的聚酰胺酸,该成分为:包含3,3’,4,4’-联苯四羧酸二酐和均苯四酸二酐中的至少一者的四羧酸成分;包含对苯二胺和4,4’-二氨基二苯基醚中的至少一者的二胺成分;和羧酸单酸酐。

式(1) 0.97≤X/Y<1.00

式(2) 0.5≤(Z/2)/(Y-X)≤1.05

(式中,X表示上述四羧酸成分的摩尔数,Y表示上述二胺成分的摩尔数,Z表示上述羧酸单酸酐的摩尔数。)

发明的效果

根据本发明,可以提供一种柔性器件基板形成用聚酰亚胺前体树脂组合物,其能够获得在确保作为柔性器件用途所要求的机械物性的同时、对基板具有高剥离强度的聚酰亚胺膜。由本发明的柔性器件基板形成用聚酰亚胺前体树脂组合物得到的聚酰亚胺膜能够适合用于柔性器件基板。进而,本发明的柔性器件基板形成用聚酰亚胺前体树脂组合物的粘度稳定性提高,能够提高柔性器件的可靠性。

具体实施方式

聚酰胺酸具有由下述成分得到的结构,该成分为:包含3,3’,4,4’-联苯四羧酸二酐和均苯四酸二酐中的至少一者的四羧酸成分;包含对苯二胺和4,4’-二氨基二苯基醚中的至少一者的二胺成分;和羧酸单酸酐。具有该结构的聚酰胺酸的主链是包含3,3’,4,4’-联苯四羧酸二酐和均苯四酸二酐中的至少一者的四羧酸成分、与包含对苯二胺和4,4’-二氨基二苯基醚中的至少一者的二胺成分的聚合物,在至少一部分聚酰胺酸中,主链的末端被羧酸单酸酐封端。

从耐热性、尺寸变化率、聚酰胺酸的粘度稳定性的方面出发,四羧酸成分中的3,3’,4,4’-联苯四羧酸二酐的量优选为40摩尔%以上、更优选为60摩尔%以上、进一步优选为80摩尔%以上、也可以为100摩尔%。四羧酸成分中的均苯四酸二酐的量优选为5摩尔%以上、更优选为10摩尔%以上。四羧酸成分中的均苯四酸二酐的量优选为40摩尔%以下、更优选为20摩尔%以下。另外,四羧酸成分中的3,3’,4,4’-联苯四羧酸二酐和均苯四酸二酐的总量优选为40摩尔%以上、更优选为60摩尔%以上、进一步优选为80摩尔%以上、也可以为100摩尔%。

从耐热性、尺寸变化率的方面出发,二胺成分中的对苯二胺的量优选为40摩尔%以上、更优选为60摩尔%以上、进一步优选为80摩尔%以上、也可以为100摩尔%。二胺成分中的4,4’-二氨基二苯基醚的量优选为5摩尔%以上、更优选为10摩尔%以上。二胺成分中的4,4’-二氨基二苯基醚的量优选为60摩尔%以下、更优选为40摩尔%以下、特别优选为20摩尔%以下。在一个实施方式中,二胺成分可以由对苯二胺和/或4,4’-二氨基二苯基醚构成。另外,二胺成分中的对苯二胺和4,4’-二氨基二苯基醚的总量优选为40摩尔%以上、更优选为60摩尔%以上、进一步优选为80摩尔%以上、也可以为100摩尔%。

进而,也可以在无损本发明特性的范围内使用其他四羧酸二酐和二胺。

对追加的四羧酸二酐没有特别限定,从所得到的聚酰亚胺的特性的方面出发,优选芳香族四羧酸二酐、脂环式四羧酸二酐。例如,适当地可以举出2,3,3’,4’-联苯四羧酸二酐、2,2’,3,3’-联苯四羧酸二酐、3,3’,4,4’-二苯甲酮四羧酸二酐、氧双邻苯二甲酸二酐、二苯砜四羧酸二酐、对三联苯四羧酸二酐、间三联苯四羧酸二酐、环丁烷-1,2,3,4-四羧酸二酐、1,2,4,5-环己烷四羧酸二酐等。上述四羧酸二酐无需为一种,也可以为两种以上的混合物。

作为追加的二胺没有特别限定,可以举出4,4’-二氨基二苯基甲烷、间苯二胺、2,4-二氨基甲苯、1,3-双(4-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、间苯二甲胺、对苯二甲胺、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、4,4’-亚甲基双(2,6-二甲苯胺)、α,α’-双(4-氨基苯基)-1,4-二异丙基苯等芳香族二胺、1,6-己二胺、1,7-庚二胺、1,8-辛二胺、1,9-壬二胺、1,10-癸二胺、二氨基丙基四亚甲基、3-甲基七亚甲基二胺、2,11-二氨基十二烷、1,12-二氨基十八烷等脂肪族二胺。上述二胺无需为一种,也可以为两种以上的混合物。

羧酸单酸酐用于对使四羧酸成分与二胺成分反应而得到的聚酰胺酸的末端进行封端。利用羧酸单酸酐对末端进行封端后的聚酰亚胺膜与载体基板、阻隔层的粘接性优异。另外,在将利用羧酸单酸酐对末端进行封端后的聚酰亚胺膜用于柔性器件基板的情况下,所制作的柔性器件的可靠性、电学特性有时也得到改善。对羧酸单酸酐没有特别限定,可以为芳香族羧酸单酸酐,也可以为脂肪族羧酸单酸酐。特别优选芳香族羧酸单酸酐。另外,在特定用途中,羧酸单酸酐优选不包含羟基、羰基、羧基、氨基等其他官能团,例如优选二羧酸单酸酐。芳香族羧酸单酸酐优选具有碳原子数为6~30的芳香环,更优选具有碳原子数为6~15的芳香环,进一步优选具有碳原子数为6~10的芳香环。

作为羧酸单酸酐,可以举出例如邻苯二甲酸酐、2,3-二苯甲酮二羧酸酐、3,4-二苯甲酮二羧酸酐、1,2-萘二羧酸酐、2,3-萘二羧酸酐、1,8-萘二羧酸酐、1,2-蒽二羧酸酐、2,3-蒽二羧酸酐、1,9-蒽二羧酸酐、偏苯三酸酐等芳香族羧酸单酸酐、和马来酸酐、琥珀酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、衣康酸酐等脂环式羧酸单酸酐。这些之中,优选邻苯二甲酸酐。另外,羧酸单酸酐也可以为苯基乙炔基邻苯二甲酸酐之类的具有乙炔基的羧酸单酸酐。在特定用途中,优选具有乙炔基的羧酸单酸酐。另一方面,乙炔基有时会使聚酰亚胺的耐热性降低,在特定用途中,优选不包含具有乙炔基的羧酸单酸酐。

四羧酸成分、二胺成分和羧酸单酸酐的各摩尔比例满足下述式(1)和(2)。

式(1) 0.97≤X/Y<1.00

式(2) 0.5≤(Z/2)/(Y-X)≤1.05

(式中,X表示四羧酸成分的摩尔数,Y表示二胺成分的摩尔数,Z表示羧酸单酸酐的摩尔数。)

通过使X/Y为0.97以上,可增加聚酰胺酸的分子量,所得到的聚酰亚胺膜的强度、耐热性提高。X/Y优选为0.98以上。X/Y小于1.00的情况下,二胺成分相对于四羧酸成分过剩。由此,能够形成可利用羧酸单酸酐进行封端的氨基。X/Y优选为0.99以下。

另外,(Z/2)/(Y-X)表示羧酸单酸酐与可封端的氨基的摩尔比。通过使X/Y小于1.00且(Z/2)/(Y-X)为0.5以上,能够提高聚酰胺酸的封端率,能够提高所得到的聚酰亚胺膜的粘接力。(Z/2)/(Y-X)越接近1越优选。(Z/2)/(Y-X)优选为0.6以上、更优选为0.7以上。通过使(Z/2)/(Y-X)为1.05以下,可减少游离的羧酸单酸酐的量,提高所得到的聚酰亚胺膜的强度。(Z/2)/(Y-X)优选为1.03以下、更优选为1.01以下。

这样,通过满足上述式(1)和式(2),能够无损在柔性器件用途中要求的机械物性,得到对基板发挥出高剥离强度的聚酰亚胺膜。

本发明中,对聚酰胺酸的对数粘度没有特别限定,优选30℃下浓度为0.5g/dL的N-甲基-2-吡咯烷酮溶液中的对数粘度为0.2dL/g以上、优选为0.4dL/g以上。对数粘度为0.2dL/g以上时,聚酰胺酸的分子量高,所得到的聚酰亚胺的机械强度、耐热性优异。30℃下浓度为0.5g/dL的N-甲基-2-吡咯烷酮溶液中的对数粘度通常为4.0dL/g以下。

根据需要可以在聚酰亚胺前体树脂组合物中加入酰亚胺化催化剂、有机含磷化合物、无机微粒等。

作为酰亚胺化催化剂,可以举出取代或非取代的含氮杂环化合物、该含氮杂环化合物的N-氧化物化合物、取代或非取代的氨基酸化合物、具有羟基的芳香族烃化合物或芳香族杂环状化合物,特别是可以适当地使用1,2-二甲基咪唑、N-甲基咪唑、N-苄基-2-甲基咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、5-甲基苯并咪唑等低级烷基咪唑、N-苄基-2-甲基咪唑等苯并咪唑、异喹啉、3,5-二甲基吡啶、3,4-二甲基吡啶、2,5-二甲基吡啶、2,4-二甲基吡啶、4-正丙基吡啶等取代吡啶等。酰亚胺化催化剂的用量相对于聚酰胺酸的酰胺酸单元优选为0.01~2倍当量、特别优选为0.02~1倍当量左右。通过使用酰亚胺化催化剂,所得到的聚酰亚胺膜的物性、特别是伸长率、抗边缘撕裂性有时提高。

作为有机含磷化合物,可以举出例如单己酰基磷酸酯、磷酸单辛酯、磷酸单月桂酯、磷酸单肉豆蔻酯、磷酸单鲸蜡酯、磷酸单硬脂酯、三乙二醇单十三烷基醚的单磷酸酯、四乙二醇单月桂基醚的单磷酸酯、二乙二醇单硬脂基醚的单磷酸酯、二己酰基磷酸酯、磷酸二辛酯、二癸酰基磷酸酯、磷酸二月桂酯、磷酸二肉豆蔻酯、磷酸二鲸蜡酯、磷酸二硬脂酯、四乙二醇单新戊基醚的二磷酸酯、三乙二醇单十三烷基醚的二磷酸酯、四乙二醇单月桂基醚的二磷酸酯、二乙二醇单硬脂基醚的二磷酸酯等磷酸酯、这些磷酸酯的胺盐。作为胺,可以举出氨、单甲胺、单乙胺、单丙胺、单丁胺、二甲胺、二乙胺、二丙胺、二丁胺、三甲胺、三乙胺、三丙胺、三丁胺、单乙醇胺、二乙醇胺、三乙醇胺等。

作为无机微粒,可以举出微粒状的二氧化钛粉末、二氧化硅(二氧化硅)粉末、氧化镁粉末、氧化铝(氧化铝)粉末、氧化锌粉末等无机氧化物粉末、微粒状的氮化硅粉末、氮化钛粉末等无机氮化物粉末、碳化硅粉末等无机碳化物粉末、和微粒状的碳酸钙粉末、硫酸钙粉末、硫酸钡粉末等无机盐粉末。这些无机微粒可以将两种以上组合使用。为了使这些无机微粒均匀分散,可以应用其本身公知的手段。

在一个实施方式中,聚酰亚胺前体树脂组合物优选不包含烷氧基硅烷等硅烷偶联剂。在使用硅烷偶联剂的聚酰亚胺膜中,硅烷偶联剂有时会渗出。由此,会产生聚酰亚胺膜的粘接力降低、层积体膨胀、和半导体元件的可靠性降低等问题。进而,若在聚酰胺酸溶液中添加或反应硅烷偶联剂,还存在聚酰胺酸溶液的粘度稳定性降低的问题。为了避免这种问题,优选不使用硅烷偶联剂。由本发明的聚酰亚胺前体树脂组合物得到的聚酰亚胺膜改善了对于基板的剥离强度,即便不使用硅烷偶联剂也能提供良好的柔性器件基板。

本发明的聚酰亚胺前体树脂组合物可以包含溶剂。作为溶剂,只要聚酰胺酸溶解就没有特别限定,可以举出与制备聚酰胺酸时使用的溶剂同样的溶剂。溶剂可以为2种以上的混合物。

作为制备聚酰胺酸时使用的溶剂,没有特别限定,可以举出例如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基乙酰胺、N-甲基-2-吡咯烷酮、N-乙基-2-吡咯烷酮、N-乙烯基-2-吡咯烷酮等酰胺溶剂、γ-丁内酯、γ-戊内酯、δ-戊内酯、γ-己内酯、ε-己内酯、α-甲基-γ-丁内酯等环状酯溶剂、碳酸亚乙酯、碳酸亚丙酯等碳酸酯溶剂、三乙二醇等二醇系溶剂、间甲酚、对甲酚、3-氯苯酚、4-氯苯酚等酚系溶剂、苯乙酮、1,3-二甲基-2-咪唑啉酮、环丁砜、二甲基亚砜等。此外,其他一般有机溶剂也可以使用例如甲醇、乙醇等醇系溶剂、苯酚、邻甲酚、乙酸丁酯、乙酸乙酯、乙酸异丁酯、丙二醇甲基乙酸酯、乙基溶纤剂、丁基溶纤剂、2-甲基溶纤剂乙酸酯、乙基溶纤剂乙酸酯、丁基溶纤剂乙酸酯、四氢呋喃、二甲氧基乙烷、二乙氧基乙烷、二丁醚、二乙二醇二甲醚、甲基异丁基酮、二异丁酮、环戊酮、环己酮、甲基乙基酮、丙酮、丁醇、乙醇、二甲苯、甲苯、氯苯、N-甲基己内酰胺、六甲基磷酰三胺、双(2-甲氧基乙基)醚、1,2-双(2-甲氧基乙氧基)乙烷、双[2-(2-甲氧基乙氧基)乙基]醚、1,4-二氧六环、二甲基亚砜、二甲基砜、二苯基醚、二苯砜、四甲基脲、苯甲醚、萜烯、矿物精油、石脑油系溶剂、生物降解性的乳酸甲酯、乳酸乙酯、乳酸丁酯等。所使用的有机溶剂可以为一种,也可以为两种以上。

本发明的聚酰亚胺前体树脂组合物中,对起因于聚酰胺酸的固体成分浓度没有特别限定,相对于聚酰胺酸与溶剂的总量,优选为5质量%~45质量%、更优选为7质量%~40质量%、进一步优选为9质量%~30质量%。若固体成分浓度低于5质量%,则生产率和使用时的处理有时变差,若高于45质量%,则溶液的流动性有时消失。

另外,本发明的聚酰亚胺前体树脂组合物在30℃的溶液粘度没有特别限定,优选为1000Pa·s以下、更优选为0.1~500Pa·s、进一步优选为0.1~300Pa·s、特别优选为0.1~200Pa·s时在处理上合适。若溶液粘度超过1000Pa·s,则流动性消失,在金属、玻璃等载体基板上的均匀涂布有时变得困难,另外若低于0.1Pa·s,则在涂布到金属、玻璃等载体基板上时有时会发生流挂、收缩等,并且有时难以得到特性高的聚酰亚胺膜。

本发明的聚酰亚胺前体树脂组合物利用羧酸单酸酐对末端进行了封端,因此储藏稳定性优异。本发明的聚酰亚胺前体树脂组合物的粘度变化率优选为±10%以下、更优选为±5%以下、进一步优选为±3%以下。通过使粘度变化率为该范围,长期保持后粘度的变化也小,在涂布到各种基材上时能够抑制不均的发生。此处,“粘度变化率”表示将聚酰亚胺前体树脂组合物在25℃下保持30天时的粘度的变化。具体而言,利用下述计算方法,由25℃下保持30天后的聚酰亚胺前体树脂组合物的粘度(保持后粘度)和25℃下保持30天前的聚酰亚胺前体树脂组合物的粘度(保持前粘度)求出。

(粘度变化率(%))={(保持后粘度)-(保持前粘度)}/(保持前粘度)×100

本发明的聚酰亚胺前体树脂组合物的制造方法通常包括:第1工序,使四羧酸成分和二胺成分以满足式(1)的摩尔比例在溶剂中进行反应,得到末端具有氨基的聚酰胺酸;和第2工序,使所得到的聚酰胺酸和羧酸单酸酐以满足式(2)的摩尔比例进行反应,对聚酰胺酸的末端进行封端。

在第1工序中,为了抑制酰亚胺化反应,在例如100℃以下、优选在80℃以下的较低温度下进行。虽无限定,但通常反应温度为25℃~100℃、优选为40℃~80℃、更优选为50℃~80℃,反应时间通常为0.1~24小时左右、优选为2~12小时左右。通过使反应温度和反应时间为上述范围内,能够高效地得到高分子量的聚酰胺酸的溶液组合物。需要说明的是,反应也可以在空气气氛下进行,通常在非活性气体气氛下、优选在氮气气氛下进行。

在第2工序中,可以适当设定反应温度,从可靠地对聚酰胺酸的末端进行封端的方面考虑,优选为25℃~70℃、更优选为25℃~60℃、进一步优选为25℃~50℃。反应时间通常为0.1~24小时左右。

可以使用本发明的聚酰亚胺前体树脂组合物制造柔性器件基板。进而,可以使用所得到的柔性器件基板制造柔性器件。

在柔性器件基板的制造中,首先,将本发明的聚酰亚胺前体树脂组合物流延在载体基板上,通过加热处理进行酰亚胺化,由此形成聚酰亚胺膜。可以将所得到的聚酰亚胺膜用于柔性器件基板。对载体基板没有限制,通常使用钠钙玻璃、硼硅酸盐玻璃、无碱玻璃等玻璃基板或铁、不锈钢等的金属基板。聚酰胺酸溶液在载体基板上的流延方法没有特别限定,可以举出例如旋涂法、丝网印刷法、棒涂法、电沉积法等现有公知方法。加热处理条件没有特别限定,优选在50℃~150℃的温度范围干燥后,在最高加热温度为150℃~600℃、优选为200℃~550℃、更优选为250℃~500℃下进行处理。

聚酰亚胺膜的厚度优选为1μm以上。厚度小于1μm时,聚酰亚胺膜无法保持充分的机械强度,在作为柔性器件基板使用时,有时无法承受应力而被破坏。另外,聚酰亚胺膜的厚度优选为20μm以下。若聚酰亚胺膜的厚度增厚至超过20μm,则柔性器件的薄型化变得困难。为了保持作为柔性器件充分的耐性并进一步薄膜化,聚酰亚胺膜的厚度更优选为2~10μm。

由本发明的聚酰亚胺前体树脂组合物得到的聚酰亚胺膜牢固地层积在玻璃基板上。关于玻璃基板与聚酰亚胺膜的剥离强度,在依照JIS K6854-1测定时,通常为50mN/mm以上、优选为100mN/mm以上、更优选为200mN/mm以上、进一步优选为300mN/mm以上。

另外,也可以在由本发明的聚酰亚胺前体树脂组合物得到的聚酰亚胺膜上层积树脂膜或无机膜等第2层,形成柔性器件基板。特别是,无机膜可以作为水蒸气阻隔层使用,是合适的。作为水蒸气阻隔层,可以举出包含例如选自由氮化硅(SiNx)、氧化硅(SiOx)、氧氮化硅(SiOxNy)、氧化铝(Al2O3)、氧化钛(TiO2)、氧化锆(ZrO2)等金属氧化物、金属氮化物和金属氮氧化合物组成的组中的无机物的无机膜。通常,作为这些薄膜的成膜方法,已知真空蒸镀法、溅射法、离子镀等物理蒸镀法、和等离子体CVD法、催化化学气相沉积法(Cat-CVD法)等化学蒸镀法(化学气相沉积法)等。

也可以在树脂膜或无机膜上层积由本发明的聚酰亚胺前体树脂组合物得到的聚酰亚胺膜,形成柔性器件基板。可以使用与载体基板时相同的方法,利用本发明的聚酰亚胺前体树脂组合物在树脂膜或无机膜上层积聚酰亚胺膜。

即使在无机膜为基板的情况下,由本发明的聚酰亚胺前体树脂组合物得到的聚酰亚胺膜也能牢固地层积。关于聚酰亚胺膜与无机膜(例如氧化硅膜)的剥离强度,在依照JISK6854-1测定时,通常为50mN/mm以上、优选为100mN/mm以上、更优选为200mN/mm以上、进一步优选为300mN/mm以上。

在柔性器件的制造中,在如此形成的柔性器件基板(特别是聚酰亚胺膜)上形成显示装置或光接受器件所需要的电路。该工序根据器件的种类而不同。在制造TFT液晶显示器件的情况下,在聚酰亚胺膜上形成例如非晶硅的TFT。TFT例如包含栅极金属层、非晶硅膜等半导体层、氮化硅栅极介电层、ITO像素电极。进而,也可以利用公知的方法在其上形成液晶显示器所需要的结构。本发明中得到的聚酰亚胺膜的耐热性、韧性等各种特性优异,因此对形成电路等的方法没有特别限制。

将如上所述在表面形成有电路等的柔性器件基板(特别是聚酰亚胺膜)从载体基板剥离。对剥离方法没有特别限制,例如可以通过从载体基板侧照射激光等来进行剥离。

作为本发明中的柔性器件,可以举出液晶显示器、有机EL显示器、电子纸等显示装置、太阳能电池、CMOS等光接受器件。本发明特别适合用于薄型化且希望赋予柔性的器件。

实施例

下面,利用实施例来更详细地说明本发明。需要说明的是,本发明不限定于以下的实施例。

下面示出以下示例中使用的特性的测定方法。

<溶液粘度>

使用E型旋转粘度计,测定25℃、10rpm下的溶液粘度。

<粘度稳定性>

将在25℃下保持30天后的溶液粘度的粘度变化率为±5%以下的试样记为○,除此以外记为×。

<层积体的层间剥离强度>

通过JIS K6854-1中记载的90°剥离试验,以10mm宽、十字头速度50mm/分钟进行测定。

以下示例中使用的化合物的简写符号如下。

s-BPDA:3,3’,4,4’-联苯四羧酸二酐

PMDA:均苯四酸二酐

PPD:对苯二胺

ODA:4,4’-二氨基二苯基醚

PEPA:4-苯基乙炔基邻苯二甲酸酐

NMP:N-甲基-2-吡咯烷酮

γ-APS:3-氨基丙基三乙氧基硅烷

以下示例中使用的化合物的量以摩尔比例表示。将二胺的总量设为100摩尔%,其他化合物的量以相对于二胺总量的摩尔比例表示。

[实施例1]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(2摩尔%),得到粘度为3.0Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为538mN/mm。

[实施例2]

通过化学气相沉积法(CVD)在实施例1中得到的聚酰亚胺/玻璃层积体的聚酰亚胺膜上形成SiOx膜。将实施例1中得到的聚酰亚胺前体树脂组合物旋涂到该SiOx膜上。将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,进一步形成厚度为10μm的聚酰亚胺膜,得到具有2层聚酰亚胺层的层积体。该层积体未观察到膨胀等,另外,该层积体的SiOx层与层积在其上的聚酰亚胺层的90°剥离强度为499mN/mm。

[实施例3]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(4摩尔%),得到粘度为2.9Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为512mN/mm。

[实施例4]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入马来酸酐(4摩尔%),得到粘度为3.1Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为282mN/mm。

[比较例1]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(100摩尔%),进一步搅拌30分钟,得到粘度为1.1Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

通过旋涂将所得到的液态聚酰亚胺前体树脂组合物涂布到厚度625μm的6英寸硅基板上后,用130℃的加热板烘烤2分钟,按照厚度为5μm的方式制膜。接下来,使用固化炉在200℃下加热固化30分钟、进而在350℃下加热固化60分钟而进行酰亚胺化,得到聚酰亚胺膜。酰亚胺化后的膜厚为3μm。该层积体未观察到膨胀等,但聚酰亚胺膜与硅基板的90°剥离强度为10mN/mm,基本上未粘接。

[比较例2]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(99.5摩尔%)和作为硅烷偶联剂的γ-APS(0.5摩尔%),进一步搅拌30分钟,得到粘度为19.0Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为×。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。通过化学气相沉积法(CVD)在所得到的聚酰亚胺/玻璃层积体的聚酰亚胺膜上形成SiOx膜。将所制备的聚酰亚胺前体树脂组合物再次旋涂到SiOx膜上。将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,进一步形成厚度为10μm的聚酰亚胺膜,得到具有2层聚酰亚胺层的层积体。该层积体未观察到膨胀等,但该层积体的SiOx层与层积于其上的聚酰亚胺层的90°剥离强度为4mN/mm,基本上未粘接。

[比较例3]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(8摩尔%),得到粘度为3.2Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,但聚酰亚胺膜非常脆,无法进行90°剥离强度的测定。

[比较例4]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(97摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(2摩尔%),得到粘度为2.8Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,但聚酰亚胺膜非常脆,无法进行90°剥离强度的测定。

[比较例5]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(96.1摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(7.8摩尔%),得到粘度为3.0Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,但聚酰亚胺膜非常脆,无法进行90°剥离强度的测定。

[比较例6]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(92.4摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(13.9摩尔%),得到粘度为3.1Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,但聚酰亚胺膜非常脆,无法进行90°剥离强度的测定。

[实施例5]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(97摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(3摩尔%),得到粘度为1.4Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为417mN/mm。

[实施例6]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入PEPA(4摩尔%),得到粘度为4.4Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为318mN/mm。

[实施例7]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(99.5摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(1摩尔%),得到粘度为4.4Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为417mN/mm。

[实施例8]

向经氮气置换的反应容器中投入ODA(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(4摩尔%),得到粘度为3.3Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、400℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为608mN/mm。

[实施例9]

向经氮气置换的反应容器中投入PPD(50摩尔%)、ODA(50摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(39.2摩尔%)和PMDA(58.8摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(4摩尔%),得到粘度为2.0Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、400℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,另外,该层积体的聚酰亚胺膜与玻璃基板的90°剥离强度为288mN/mm。

[比较例7]

向经氮气置换的反应容器中投入PPD(100摩尔%)和NMP,在40℃加热搅拌15分钟,使单体溶解。之后,加入s-BPDA(98摩尔%),进一步搅拌30分钟,得到聚酰胺酸溶液。之后,向聚酰胺酸溶液中加入邻苯二甲酸酐(4.5摩尔%),得到粘度为4.4Pa·s(25℃)的液态聚酰亚胺前体树脂组合物。将该聚酰亚胺前体树脂组合物在25℃下静置30天,实施粘度稳定性评价。评价结果为○。

将所制备的聚酰亚胺前体树脂组合物旋涂到玻璃基板上,将涂膜在120℃、150℃、200℃、250℃、500℃下各加热处理10分钟,在玻璃基板上形成厚度为10μm的聚酰亚胺膜。所得到的聚酰亚胺/玻璃层积体未观察到膨胀等,但聚酰亚胺膜非常脆,无法进行90°剥离强度的测定。

[表1]

Figure BDA0002635390180000181

工业实用性

本发明的聚酰亚胺前体树脂组合物即便不包含硅烷偶联剂,也能提供对基板具有优异的剥离强度的聚酰亚胺膜,可以适合用作例如液晶显示器、有机EL显示器、电子纸等显示装置、薄膜太阳能电池的光接受元件等光接受器件等柔性器件的基板。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:聚酰亚胺化合物及包含该聚酰亚胺化合物的成型物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!