光学模块及光学式编码器

文档序号:1154656 发布日期:2020-09-15 浏览:4次 >En<

阅读说明:本技术 光学模块及光学式编码器 (Optical module and optical encoder ) 是由 大原智光 堤司树 木村慎治 铃木修平 大场雄介 于 2020-02-06 设计创作,主要内容包括:本发明提供一种光学模块及光学式编码器,制造容易,且能够更可靠地遮蔽来自光源的侧面光。该光学模块具备:固定基板;传感器基板,其粘着于上述固定基板上,且形成有贯通孔;以及发光元件,其以位于上述贯通孔内的方式粘着于上述固定基板上,上述传感器基板具有受光元件和形成于上述受光元件与上述贯通孔之间且上述贯通孔的周围的假受光元件,上述受光元件和上述假受光元件由形成于上述传感器基板的表层的相同导电型的杂质扩散层构成,上述假受光元件的深度大于上述受光元件的深度。(The invention provides an optical module and an optical encoder, which are easy to manufacture and can more reliably shield side light from a light source. The optical module includes: fixing the substrate; a sensor substrate adhered to the fixed substrate and having a through hole formed therein; and a light emitting element bonded to the fixed substrate so as to be positioned in the through hole, wherein the sensor substrate includes a light receiving element and a dummy light receiving element formed between the light receiving element and the through hole and around the through hole, the light receiving element and the dummy light receiving element are formed of impurity diffusion layers of the same conductivity type formed on a surface layer of the sensor substrate, and a depth of the dummy light receiving element is larger than a depth of the light receiving element.)

光学模块及光学式编码器

技术领域

本发明涉及一种光学模块及光学式编码器。

背景技术

为了检测伺服马达的旋转量、旋转速度以及旋转方向,使用光学式编码器。光学式编码器具有检测透过标尺的光的透射型和检测被标尺反射的光的反射型。特别是反射型的光学式编码器能够小型化、薄型化,因此近年来被广泛使用。

作为反射型的光学式编码器,已知如下结构:在具有受光元件的传感器基板的中央设置贯通孔,在该凹部、贯通孔配置LED(Light-Emitting Diode)等光源(例如,参照专利文献1)。

这样,在将光源配置于传感器基板的贯通孔的情况下,从光源的上表面射出的光被标尺反射,反射光由传感器基板的受光元件接收。

现有技术文献

专利文献

专利文献1:日本专利第4021382号

发明内容

发明所要解决的课题

LED等光源不仅上表面,还从侧面产生漏光,因此在将光源配置于传感器基板的贯通孔内的情况下,从光源的侧面漏出的光(侧面光)直接射入传感器基板。另外,因为传感器基板由半导体基板形成,所以传感器基板接收从侧面射入的该侧面光。该侧面光的受光使传感器基板内产生噪声电流。在专利文献1中记载了在传感器基板的贯通孔的侧壁利用铝等的金属薄膜设置遮光部件。

然而,为了如专利文献1记载的那样利用金属薄膜设置遮光部件,需要追加用于形成遮光部件的制造工序,制造成本增加。

另外,为了在贯通孔内配置光源,需要将光源及传感器基板固定于固定基板上。也有可能从光源的侧面射出的侧面光在固定基板与传感器基板的界面反射,从传感器基板的背面侧射入传感器基板内。

本发明提供一种光学模块及光学式编码器,制造容易,且能够更可靠地遮蔽来自光源的侧面光。

用于解决课题的方案

公开的技术为一种光学模块,其具备:固定基板;传感器基板,其粘着于上述固定基板上,且形成有贯通孔;以及发光元件,其以位于上述贯通孔内的方式粘着于上述固定基板上,上述传感器基板具有受光元件和形成于上述受光元件与上述贯通孔之间且上述贯通孔的周围的假受光元件,上述受光元件和上述假受光元件由形成于上述传感器基板的表层的相同导电型的杂质扩散层构成,上述假受光元件的深度大于上述受光元件的深度。

发明效果

根据本发明,制造容易,且能够更可靠地遮蔽来自光源的侧面光。

附图说明

图1是表示第一实施方式的光学式编码器的概略结构的俯视图。

图2是沿着图1中的A-A线的纵剖视图。

图3是表示第一受光元件组与外部端子的电连接关系的图。

图4是表示第二受光元件组与外部端子的电连接关系的图。

图5是表示光学模块整体的等效电路的图。

图6是表示发光元件与传感器基板的层构造的概略剖视图。

图7是表示第一变形例的光学模块的构造的概略剖视图。

图8是表示第二变形例的光学模块的构造的概略剖视图。

图9是表示第四变形例的光学模块的构造的概略剖视图。

图中:

1—光学式编码器,10—发光元件,11—光射出窗,12—端子,13—发光层,20—传感器基板,20a—贯通孔,21—第一受光元件组,21a—受光元件,22—第二受光元件组,22a—受光元件,23—假受光元件(第一假受光元件),24、25、35—电极焊盘,30—固定基板,31、32—粘接层,33—内部配线,35—电极焊盘,36—配线,37a—第一外部端子,37b—第二外部端子,37c—第三外部端子,37d—第四外部端子,37e—第五外部端子,40—标尺,50、51—接合线,52—树脂,60—第二假受光元件,70—贯通电极。

具体实施方式

以下,参照附图对具体实施方式进行说明。在各附图中,对相同结构部分标注相同符号,有时省略重复的说明。

<第一实施方式>

以下对本发明的第一实施方式的反射型的光学式编码器进行说明。

图1是表示第一实施方式的光学式编码器1的概略结构的俯视图。图2是将光学式编码器1沿图1中的A-A线切断的纵剖视图。此外,将图1所示的平面内的一方向设为X方向,将与X方向正交的方向设为Y方向。另外,将与X方向及Y方向正交的方向设为Z方向。

如图1及图2所示,光学式编码器1具有包括发光元件10、传感器基板20以及固定基板30的光学模块和标尺40。

发光元件10例如为LED。发光元件10为pn接合型的二极管,从设于作为阳极侧(p型侧)的上表面的光射出窗11射出光。另外,在发光元件10的阳极侧的上表面形成有用于施加电源电压的端子12。

传感器基板20是平面形状为矩形状的半导体基板,在大致中央部形成有矩形状的贯通孔20a。发光元件10配置于贯通孔20a内。贯通孔20a例如能够通过干法刻蚀形成。贯通孔20a的平面形状不限于矩形状,也可以是圆形等形状。

如图2所示,发光元件10的上表面与传感器基板20的上表面大致在同一面上。发光元件10及传感器基板20经由粘接层31、32分别粘着于固定基板30上。固定基板30是比传感器基板20大的矩形状的绝缘性基板。

粘接层31、32由银浆等导电性粘接剂构成。发光元件10的作为阴极侧(n型侧)的下表面经由粘接层31粘着于固定基板30。此外,在本实施方式中,将传感器基板20粘接于固定基板30的粘接层32也可以是绝缘性的。

在固定基板30形成有用于对发光元件10的阴极赋予接地电位的由铜(Cu)等构成的内部配线33。该内部配线33的一部分从固定基板30的上表面露出,且该露出部分经由粘接层31与发光元件10的下表面(阴极)电连接。内部配线33与设于固定基板30的下表面侧的外部端子33a、33b连接。

设于发光元件10的上表面的端子12与设于传感器基板20的上表面的电极焊盘24经由接合线50连接。

标尺40为在玻璃等透明基板由金属薄膜等形成有预定的图案的反射板。从发光元件10射出的光的一部分被标尺40反射而射入传感器基板20。传感器基板20检测被标尺40进行了调制的光。

如图1所示,在传感器基板20设置有第一受光元件组21和第二受光元件组22。第一受光元件组21为由以预定的间距沿X方向排列的多个受光元件21a构成的绝对检测用的受光元件组。第二受光元件组22为由以与第一受光元件组21不同的间距沿X方向排列的多个受光元件22a构成的增量检测用的受光元件组。详情后面叙述,但受光元件21a及受光元件22a分别为pn接合型的光敏二极管。

另外,在传感器基板20的贯通孔20a的周围以包围贯通孔20a的方式形成有假受光元件23。即,假受光元件23配置于发光元件10与第一受光元件组21及第二受光元件组22之间。假受光元件23为pn接合型的光敏二极管,主要接收从发光元件10的侧面漏出的侧面光。

在传感器基板20的上表面沿着与Y方向平行的边形成有多个电极焊盘25。各电极焊盘25经由形成于传感器基板20的表面上的配线层(未图示)与第一受光元件组21、第二受光元件组22、假受光元件23等连接。

在固定基板30的上表面的与传感器基板20的各电极焊盘25对置的位置形成有电极焊盘35。电极焊盘25和与该电极焊盘25对置的电极焊盘35经由接合线51连接。电极焊盘25及电极焊盘35由铝等形成。电极焊盘25、电极焊盘35以及接合线51被树脂52密封。

各电极焊盘35经由由铜等构成的配线36与形成于固定基板30的下表面的外部端子37连接。外部端子37被分类成第一外部端子37a、第二外部端子37b、第三外部端子37c、第四外部端子37d、第五外部端子37e。

第一外部端子37a为用于从第一受光元件组21取得绝对检测用的检测信号的检测端子。第二外部端子37b为用于从第二受光元件组22取得增量检测用的检测信号的检测端子。第三外部端子37c为用于对假受光元件23的阳极侧(p型侧)赋予接地电位(GND)的接地端子。

第四外部端子37d为用于向第一受光元件组21包括的各受光元件21a、第二受光元件组22包括的各受光元件22a以及假受光元件23的阴极侧(n型侧)供给电源电压(VCC),使构成各受光元件的光敏二极管成为反向偏压的电源端子。第五外部端子37e为用于向发光元件10的阳极侧供给电源电压(VCC)的电源端子。

图3是表示第一受光元件组21包括的各受光元件21a与第一外部端子37a及第四外部端子37d的电连接关系的图。如图3所示,各第一外部端子37a与第一受光元件组21包括的任一个受光元件21a连接。通过由第一外部端子37a得到的检测信号,能够检测绝对位置信息。

图4是表示第二受光元件组22包括的各受光元件22a与第二外部端子37b及第四外部端子37d的电连接关系的图。如图4所示,各第二外部端子37b与第二受光元件组22包括的受光元件22a中的两个受光元件22a连接。具体来说,各第二外部端子37b与分离受光元件22a的排列间距的四倍的距离的两个受光元件22a连接。通过由第二外部端子37b得到的检测信号,能够检测相对位置信息。

图5是表示光学模块整体的等效电路的图。如图5所示,发光元件10通过被设为正向偏压而发光。从发光元件10射出的光由被设为反向偏压的受光元件21a及受光元件22a接收。另外,从发光元件10射出的光中的侧面光由被设为反向偏压的假受光元件23接收并吸收。

图6是表示发光元件10及传感器基板20的层构造的概略剖视图。图6示意性地示出沿着光学模块的Y方向的截面。

如图6所示,在本实施方式中,传感器基板20由n型半导体基板(例如,硅基板)形成。受光元件21a及受光元件22a由通过在n型半导体基板的表层掺杂p型杂质而形成的p型扩散层构成。构成受光元件21a及受光元件22a的各p型扩散层的距表面的深度大致相同。将该p型扩散层的深度设为D1。

同样地,假受光元件23由通过在n型半导体基板的表层掺杂p型杂质而形成的p型扩散层构成。即,假受光元件23由与受光元件21a及受光元件22a相同的导电型的杂质扩散层构成。

假受光元件23形成于包围贯通孔20a的环状的区域。另外,构成假受光元件23的p型扩散层的距表面的深度D2大于深度D1。即,D2>D1。p型扩散层的深度能够通过控制对杂质进行离子注入时的加速电压来决定。

受光元件21a、22a及假受光元件23通过被设为反向偏压,在周围的pn接合区域产生的耗尽层DL扩展。假受光元件23具有吸收因由从贯通孔20a内侵入到传感器基板20内的光而产生的载流子的作用。

发光元件10在p型层与n型层之间具有层状的发光层13,因此从发光层13的上表面以外,从侧面也射出光。该侧面光的光量为发光元件10射出的整体光量的百分之几左右。如果这样的侧面光侵入传感器基板20内,且到达受光元件21a、22a的耗尽层DL,则产生噪声电流,导致S/N的降低,但在本实施方式中,侵入到传感器基板20内的侧面光的大部分被假受光元件23吸收,因此可抑制噪声电流的产生。

另外,侵入到传感器基板20内的侧面光可能在传感器基板20的下表面、粘接层32的表面反射,但在本实施方式中,将假受光元件23形成至比受光元件21a、22a深的位置,因此这样的反射光也被假受光元件23吸收,可抑制噪声电流的产生。

如上所述,根据本实施方式,不像以往那样在贯通孔的侧壁设置遮光部件,能够利用形成于传感器基板20内的假受光元件23遮蔽(吸收)侧面光。假受光元件23由与受光元件21a、22a相同的导电型的杂质扩散层构成,因此能够与受光元件21a、22a等通过同一制造工序制作,不需要追加用于形成假受光元件23的制造工序。因此,根据本实施方式,制造容易,且能够更可靠地遮蔽来自光源的侧面光。

另外,假受光元件23的杂质浓度也可以与受光元件21a、22a为同程度,但也可以使假受光元件23的杂质浓度比受光元件21a、22a的杂质浓度高。由此,假受光元件23对光的吸收率提高。

以下对上述实施方式的各种变形例进行说明。

<第一变形例>

图7是表示第一变形例的光学模块的构造的概略剖视图。本变形例除了传感器基板20的结构不同以外,为与第一实施方式相同的结构。

本变形例的传感器基板20除了假受光元件23(第一假受光元件),在传感器基板20的下表面侧还形成有第二假受光元件60。第二假受光元件60由与第一假受光元件23相同的导电型的杂质扩散层形成。在本变形例中,第二假受光元件60由p型扩散层构成。第二假受光元件60与第一假受光元件23相同地形成于包围贯通孔20a的环状的区域。

通过将第二假受光元件60设为反向偏压,在构成第二假受光元件60的p型扩散层的周围产生的耗尽层DL扩展。这样,通过除了第一假受光元件23还设置第二假受光元件60,能够更可靠地遮蔽(吸收)从发光元件10侵入传感器基板20的侧面光。

此外,第二假受光元件60也可以与第一假受光元件23连接。另外,第二假受光元件60与第一假受光元件23也可以杂质浓度不同。

<第二变形例>

图8是表示第二变形例的光学模块的构造的概略剖视图。本变形例除了固定基板30的结构不同以外,为与第一实施方式相同的结构。在第一实施方式中,为了将受光元件21a、22a设为反向偏压,从第四外部端子37d经由形成于传感器基板20的上表面侧的配线层(未图示)向传感器基板20的n型区域供给电源电压(VCC)。

本变形例的固定基板30具有用于从传感器基板20的下表面侧向n型区域供给电源电压的贯通电极70。该贯通电极70经由导电性的粘接层32与传感器基板20的下表面侧电连接。贯通电极70从固定基板30的下表面露出,作为用于施加电源电压的电源端子发挥作用。

此外,为了向在第二变形例中说明的第二假受光元件60供给电源电压,也可以使用本变形例的固定基板30。

<第三变形例>

在第一实施方式中,如图6所示,将n型半导体基板用作传感器基板20,但也可以使用p型半导体基板取代n型半导体基板。在该情况下,只要用n型扩散层构成受光元件21a、22a及假受光元件23即可。

在将p型半导体基板用作传感器基板20的情况下,为了将受光元件21a、22a及假受光元件23设为反向偏压,只要对p型区域赋予接地电位即可。因此,在该情况下,传感器基板20的固定基板30侧成为阳极,发光元件10的固定基板30侧成为阴极,因此能够从固定基板30经由共通的电极对传感器基板20的下表面和发光元件10的下表面赋予接地电位。由此,能够将粘接层31和粘接层32做成一个导电性粘接层。

此外,也可以以相反地将传感器基板20的固定基板30侧设为阴极,将发光元件10的固定基板30侧设为阳极的方式使发光元件10的导电型相反。在该情况下,只要从固定基板30经由共通的电极向传感器基板20的下表面和发光元件10的下表面供给电源电压即可。

<第四变形例>

图9是表示第四变形例的光学模块的构造的概略剖视图。本变形例除了传感器基板20的结构不同以外,为与第一实施方式相同的结构。在第一实施方式中,如图6所示,将构成假受光元件23的杂质扩散层形成为比构成受光元件21a、22a的杂质扩散层深,但在本变形例中,将两者设为同程度的深度。

另外,在本变形例的传感器基板20中,将用于使传感器基板20粘着于固定基板30的粘接层32设为包括吸光部件的导电性粘接剂。能够使用具有粘接性的遮光片作为本变形例中的粘接层32。

这样,通过将粘接层32设为包括吸光部件的导电性粘接剂,能够不加深假受光元件23而抑制在传感器基板20的下表面、粘接层32的表面反射的反射光。

此外,在上述实施方式及变形例中,作为光元件10使用了LED,但也能使用半导体激光器。

以上对本发明优选的实施方式进行了详细说明,但本发明不限于上述的实施方式,在不脱离本发明的范围的情况下,能够对上述的实施方式添加各种变形及替换。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:光学式编码器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类