一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法

文档序号:1236251 发布日期:2020-09-11 浏览:37次 >En<

阅读说明:本技术 一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法 (Preparation method of nano silicon carbide particles based on KCl shape regulator ) 是由 王志江 于 2020-06-22 设计创作,主要内容包括:一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法,它属于碳化硅制备、半导体材料制备技术领域,它要解决现有碳化硅粉体的制备存在形貌不可控,粒径分布不均匀、颗粒团聚度高和纯度低的问题。方法:一、碳源的前处理;二、前处理后的碳源、KCl和硅源球磨,得混合物料;三、混合物料进行高温烧结。本发明通过采用KCl作为形状调节剂,通过与活化前处理的碳源、硅源之间的相互作用,通过控制气相中间产物的形核以及生长行为控制产物形貌以及粒径。本发明中制备的纳米碳化硅颗粒具有粉体粒形貌径分布均匀、纯度高和产业化生产的前景大的优点。本发明应用于纳米级碳化硅颗粒的制备。(A preparation method of nano silicon carbide particles based on a KCl shape regulator belongs to the technical field of silicon carbide preparation and semiconductor material preparation, and aims to solve the problems of uncontrollable morphology, uneven particle size distribution, high particle aggregation degree and low purity existing in the existing preparation of silicon carbide powder. The method comprises the following steps: firstly, pretreating a carbon source; secondly, ball-milling the carbon source, KCl and the silicon source after pretreatment to obtain a mixed material; thirdly, sintering the mixed materials at high temperature. The invention adopts KCl as a shape regulator, controls the morphology and the particle size of a product by the interaction between the KCl and a carbon source and a silicon source which are subjected to activation pretreatment and by controlling the nucleation and growth behaviors of a gas-phase intermediate product. The nano silicon carbide particles prepared by the method have the advantages of uniform powder particle shape and size distribution, high purity and wide industrial production prospect. The method is applied to the preparation of the nano silicon carbide particles.)

一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法

技术领域

本发明属于碳化硅制备、半导体材料制备技术领域,具体涉及一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法。

背景技术

碳化硅材料是一类重要的半导体、结构陶瓷材料,碳化硅是少有的集结构性能和功能性于一体无机非金属材料,具有非常重要的应用意义。例如,陶瓷膜相比于其他有机膜以及传统陶瓷膜性能更加优越,同时制备工艺简单、灵活性高,食品医药加工、海水淡化、废水废气处理、生物工程、能源工程等诸多领域应用前景广泛。目前最为成熟的制备碳化硅陶瓷膜的方法大多为重结晶法以及原位合成法,膜的孔径大小以及形状很大程度上取决于原始碳化硅粉体的粒度和形貌,因此,制备出实际生产可用的粒度形貌可控的碳化硅粉体尤为重要。针对于粒度形貌可控的碳化硅粉体尤其是粒度均一、球形度高的碳化硅粉体的制备研究却十分缺乏。

发明内容

本发明目的是为了解决现有碳化硅粉体的制备存在形貌不可控,粒径分布不均匀和纯度低的问题,而提供一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法。

一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法,它按以下步骤实现:

一、碳源的前处理:对碳源进行过氧化氢溶液活化前处理或金属离子溶液活化前处理;

所述过氧化氢溶液进行活化前处理:质量分数为10%~50%的过氧化氢溶液浸渍碳源,浸渍时间为20~80min,取出后洗涤,于80℃下干燥30~50min;

所述金属离子溶液活化前处理:浓度为0.01~1mol/L的金属离子溶液浸渍碳源,浸渍时间为10~80min,取出后洗涤,于80℃下干燥30~50min;所述金属离子溶液为硫酸铁溶液、二茂铁溶液、硝酸镍溶液或硫酸镍溶液;

二、将步骤一中前处理后的碳源、KCl和硅源置于球磨机中进行固相球磨混合,获得混合物料;

三、将步骤二中所得混合物料置于高温烧结炉中,以氩气作为保护气,升温至1300~1800℃反应1~8h,然后冷却至室温,即完成基于KCl形状调节剂的纳米碳化硅颗粒的制备。

本发明的反应原理是:在高温下,碳源以及硅源生成中间气相产物SiO、CO气体从而生成碳化硅,KCl形状调节剂的存在,其中Cl元素可有效控制SiC的生长过程使其沿着碳化硅晶体堆积能量最低的(111)晶面生长,抑制反应过程中过饱和的线状生长,从而实现纳米级颗粒的制备。

本发明的有益效果是:通过采用KCl作为形状调节剂,通过与活化前处理的碳源、硅源之间的相互作用,通过控制气相中间产物的形核以及生长行为控制产物形貌以及粒径。本发明中制备的纳米碳化硅颗粒具有粉体粒形貌径分布均匀、颗粒团聚小、纯度高和产业化生产的前景大的优点。

本发明应用于纳米级碳化硅颗粒的制备。

附图说明

图1是实施例中制备所得基于KCl形状调节剂的纳米碳化硅颗粒的XRD谱图;

图2是实施例中制备所得基于KCl形状调节剂的纳米碳化硅颗粒的微观形貌图。

具体实施方式

本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。

具体实施方式一:本实施方式一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法,它按以下步骤实现:

一、碳源的前处理:对碳源进行过氧化氢溶液活化前处理或金属离子溶液活化前处理;

所述过氧化氢溶液进行活化前处理:质量分数为10%~50%的过氧化氢溶液浸渍碳源,浸渍时间为20~80min,取出后洗涤,于80℃下干燥30~50min;

所述金属离子溶液活化前处理:浓度为0.01~1mol/L的金属离子溶液浸渍碳源,浸渍时间为10~80min,取出后洗涤,于80℃下干燥30~50min;所述金属离子溶液为硫酸铁溶液、二茂铁溶液、硝酸镍溶液或硫酸镍溶液;

二、将步骤一中前处理后的碳源、KCl和硅源置于球磨机中进行固相球磨混合,获得混合物料;

三、将步骤二中所得混合物料置于高温烧结炉中,以氩气作为保护气,升温至1300~1800℃反应1~8h,然后冷却至室温,即完成基于KCl形状调节剂的纳米碳化硅颗粒的制备。

本实施方式步骤二中所述KCl为分析纯的固体粉末,作为形状调节剂使用。

具体实施方式二:本实施方式与具体实施方式一不同的是,步骤一中所述碳源为碳黑、活性炭、碳石墨、碳化蔗糖、碳化纤维素、碳化葡萄糖、石墨烯或氧化石墨烯。其它步骤及参数与具体实施方式一相同。

具体实施方式三:本实施方式与具体实施方式一或二不同的是,步骤一中所述碳源的粒径为10~100nm。其它步骤及参数与具体实施方式一或二相同。

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,步骤一中所述过氧化氢溶液活化前处理:质量分数为25%的过氧化氢溶液浸渍碳源,浸渍时间为50min,取出后洗涤,于80℃下干燥40min。其它步骤及参数与具体实施方式一至三之一相同。

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,步骤一中所述金属离子溶液活化前处理:浓度为0.5mol/L的金属离子溶液浸渍碳源,浸渍时间为40min,取出后洗涤,于80℃下干燥40min。其它步骤及参数与具体实施方式一至四之一相同。

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,步骤二中所述硅源为二氧化硅与硅粉按摩尔比1:(1~4)组成。其它步骤及参数与具体实施方式一至五之一相同。

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,步骤二中所述球磨机的转速为100~300r/min,球磨时间为1~4h,球料比为(1~2):1,磨球材质为硬质合金。其它步骤及参数与具体实施方式一至六之一相同。

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是,步骤二中所述混合物料,每100质量份中有10~60份前处理后的碳源、0.5~10份的KCl和余量的硅源。其它步骤及参数与具体实施方式一至七之一相同。

具体实施方式九:本实施方式与具体实施方式一至八之一不同的是,步骤三中所述升温为:以5~10℃/min的速率升温至800℃,然后以2.5~5℃/min的速率继续升温至1300~1800℃。其它步骤及参数与具体实施方式一至八之一相同。

具体实施方式十:本实施方式与具体实施方式一至九之一不同的是,步骤三中所述冷却为:以5~10℃/min的速率降温至800℃,然后随炉冷却至室温。其它步骤及参数与具体实施方式一至九之一相同。

具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是,步骤三中所述氩气的纯度为99.99%。其它步骤及参数与具体实施方式一至十之一相同。

通过以下实施例验证本发明的有益效果:

实施例:

一种基于KCl形状调节剂的纳米碳化硅颗粒的制备方法,它按以下步骤实现:

一、碳源的前处理:对碳源进行过氧化氢溶液活化前处理;

所述过氧化氢溶液活化前处理:质量分数为35%的过氧化氢溶液浸渍碳源,浸渍时间为30min,取出后洗涤,于80℃下干燥30min;

二、将步骤一中前处理后的碳源、KCl和硅源置于球磨机中进行固相球磨混合,获得混合物料;

三、将步骤二中所得混合物料置于高温烧结炉中,以氩气作为保护气,升温至1700℃反应3h,然后冷却至室温,即完成基于KCl形状调节剂的纳米碳化硅颗粒的制备。

本实施例步骤一中所述碳源为碳黑,粒径为30nm。

本实施例步骤二中所述硅源为二氧化硅与硅粉按摩尔比1:1组成。

本实施例步骤二中所述球磨机的转速为100~300r/min,球磨时间为1~4h,球料比为2:1,磨球材质为硬质合金。

本实施例步骤二中所述混合物料,每100质量份中有12份前处理后的碳源、1份的KCl和余量的硅源。

本实施例步骤三中所述升温为:以5~10℃/min的速率升温至800℃,然后以2.5~5℃/min的速率继续升温至1700℃。

本实施例步骤三中所述冷却为:以5~10℃/min的速率降温至800℃,然后随炉冷却至室温。

本实施例中的反应方程为:

(1)SiO2(s)+Si(s)=2SiO(g)

(2)SiO2(s)+C(s)=SiO(g)+CO(g)

(3)C(s)+CO2(g)=2CO(g)

(4)SiO(g)+3CO(g)=SiC(s)+2CO2(g)

在高温下,碳源以及硅源生成中间气相产物SiO、CO气体从而生成碳化硅,KCl形状调节剂的存在,其中Cl元素可有效控制SiC的生长过程使其沿着碳化硅晶体堆积能量最低的(111)晶面生长,抑制反应过程中过饱和的线状生长,从而实现纳米级颗粒的制备。

本实施例中制备的基于KCl形状调节剂的纳米碳化硅颗粒,其X射线衍射(XRD)谱图如图1所示,可见在图中35.7°、41.4°、60.0°、71.8°和75.4°处的衍射峰分别对应β-SiC的(111)、(200)、(220)、(311)以及(222)晶面,33.6°对应碳化硅中的堆垛层错缺陷的特征峰;没有发现杂质峰,说明采用本实施例的方法可成功制备β-SiC材料,并且产品纯度高。

本实施例中制备的基于KCl形状调节剂的纳米碳化硅颗粒,其微观形貌;从图2中可知,以KCl作为形状调节剂可成功制备出粒径分布均匀,平均尺寸为80nm的碳化硅颗粒;其中Cl元素可有效控制SiC的生长过程使其沿着碳化硅晶体堆积能量最低的(111)晶面生长,抑制反应过程中过饱和的线状生长,从而实现纳米级颗粒的制备。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种原位制备多孔硅碳复合负极材料的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!