一种原位制备多孔硅碳复合负极材料的方法

文档序号:1236252 发布日期:2020-09-11 浏览:30次 >En<

阅读说明:本技术 一种原位制备多孔硅碳复合负极材料的方法 (Method for in-situ preparation of porous silicon-carbon composite negative electrode material ) 是由 李世友 东红 宋如 崔孝玲 李春雷 傅小兰 王鹏 梁文彪 魏媛 丁浩 赵冬妮 于 2020-05-22 设计创作,主要内容包括:一种原位制备多孔硅碳复合负极材料的方法,其步骤为:步骤(1)球磨分散:将低熔点、可溶性无机盐、纳米硅或微纳米硅进行球磨混合,球磨罐内进行惰性气体置换;步骤(2)高温熔融:将步骤(1)所得物料进行惰性环境高温熔融形成熔融混合体;熔融温度为1450~1800℃,升温速率为5~10℃/min;步骤(3)球磨包覆:将步骤(2)所得熔融混合体按比例与碳前驱体或碳材料进行高能球磨混合;球磨罐内进行惰性气体置换;步骤(4)高温碳化:将步骤(3)所得混合物料进行高温碳化;碳化温度为600~1200℃,升温速率为5~10℃/min;步骤(5)水洗干燥:将步骤(4)所得物料进行超声、洗涤5~8h,干燥,得到材料。(A method for preparing a porous silicon-carbon composite negative electrode material in situ comprises the following steps: step (1), ball milling and dispersing: carrying out ball milling and mixing on low-melting-point and soluble inorganic salt, nano silicon or micro-nano silicon, and carrying out inert gas replacement in a ball milling tank; step (2), high-temperature melting: melting the material obtained in the step (1) in an inert environment at high temperature to form a melt mixture; the melting temperature is 1450-1800 ℃, and the heating rate is 5-10 ℃/min; ball-milling and coating: performing high-energy ball milling mixing on the melt mixture obtained in the step (2) and a carbon precursor or a carbon material according to a proportion; replacing inert gas in the ball milling tank; step (4), high-temperature carbonization: carrying out high-temperature carbonization on the mixed material obtained in the step (3); the carbonization temperature is 600-1200 ℃, and the heating rate is 5-10 ℃/min; step (5), washing and drying: and (4) carrying out ultrasonic treatment on the material obtained in the step (4), washing for 5-8 h, and drying to obtain the material.)

一种原位制备多孔硅碳复合负极材料的方法

技术领域

本发明属于锂离子电池技术领域,尤其是原位制备多孔硅碳复合负极材料的技术。

背景技术

锂离子电池是一种被广泛应用于智能电网、动力汽车、可穿戴设备等行业的二次电池。随着社会经济的突飞猛进,人类对锂离子电池能量密度需求日益苛刻,特别对新能源电动汽车续航里程的担忧,因此,开发高能量密度锂离子电池材料成为当今社会的研究热点。在负极材料研究领域,石墨因其良好的物化特性、加工性能和稳定的电化学性能,长期以来一直被用作商业化的主流石墨负极材料。然而,石墨负极材料的有限的理论比容量(LiC6,372 mAh/g)已不能满足当下的应用需求。在所有新兴的石墨负极替代品中,Si基负极由于其优越的容量性能(Li15Si4,3590 mAh/g)被视为最具竞争力的负极材料之一。但是,在锂化或去锂化过程中,硅的导电性差,体积变化大约300%,容易造成极片活性粒子的开裂、电极的粉化、活性粒子之间的导电损失以及形成不稳定的固体电解质界面(SEI)。为解决硅负极的上述问题,开发了具有高性能的多孔硅碳复合材料,该材料具有硅体积膨胀的缓冲空间,并为电解液离子的快速移动提供了传递孔道,具有较好的循环稳定性,满足高性能负极材料的应用需求。

为了能够缓冲硅的体积效应,人们设计了具有多孔结构的硅材料,其内部孔隙为硅的体积膨胀预留了空间,用以缓解机械应力,减少储锂时材料的体积过度膨胀,防止电极的结构被破坏。

中国专利CN201911136192.8公开了一种锂离子电池硅基负极材料的制备方法,该发明采用喷雾干燥方法进行前驱体制备,烧结、水洗、表面包覆、高温碳化等工艺得到硅基负极材料。该工艺不足之处喷雾干燥液相分散不均一,易发生沉降,导致产品均一性差。另一方面水洗后再次表面包覆,容易将形成的空隙添堵,起不到预留缓冲空间的目的。

中国专利CN201810447992.0公开了一种多级缓冲结构硅碳负极材料及其制备方法和应用,提及多孔硅作为第一级缓冲结构,沥青包覆层作为第二级缓冲结构,鳞片石墨所构建的骨架结构作为第三级缓冲结构。该工艺通过镁热还原,需要用酸洗获得多孔硅结构,不利于环境保护,工艺成本较高,不利于大规模生产。

Journal of Energy Chemistry 杂志2019年第32期124-130页报道了一种新型的蛋黄壳结构Si/C复合材料制备方法,在这种新型结构中,由于HF的强蚀刻效应,多个小尺寸的Si纳米粒子被成功地封装在多孔碳壳层中,形成双层结构。该制备方法的缺点是选用有毒试剂、强腐蚀性酸进行多孔材料的制备,环境污染大、操作困难,很难进行产业化。

发明内容

本发明的目的是提供一种原位制备多孔硅碳复合负极材料的方法,具有较高的壳层强度和内部缓冲空间,能够缓解充放电过程中硅颗粒的体积膨胀,具有较好的循环稳定性,满足作为锂离子电池高性能负极的应用需求。该工艺制备过程简单、环境友好、成本低,适合大规模生产。

本发明是一种原位制备多孔硅碳复合负极材料的方法,其步骤为:

步骤(1)球磨分散:将低熔点、可溶性无机盐、纳米硅或微纳米硅进行球磨混合,加入适量的润湿剂;球磨罐内进行惰性气体置换,球磨转速为400~500r/min,球磨时间10~12h;

步骤(2)高温熔融:将步骤(1)所得物料进行惰性环境高温熔融形成熔融混合体;熔融温度为1450~1800℃,升温速率为5~10℃/min;

步骤(3)球磨包覆:将步骤(2)所得熔融混合体按比例与碳前驱体或碳材料进行高能球磨混合;球磨罐内进行惰性气体置换,球磨转速为400~500r/min,球磨时间4~8h;

步骤(4)高温碳化:将步骤(3)所得混合物料进行高温碳化;碳化温度为600~1200℃,升温速率为5~10℃/min;

步骤(5)水洗干燥:将步骤(4)所得物料进行超声、洗涤5~8h,所得物料进行真空干燥,得到多孔硅碳复合负极材料。

相比现有技术,本发明的有益效果在于:

(1)本发明通过在球磨过程中采用低熔点、可溶性盐,一方面起到助磨剂,实现了纳米硅易团聚分散难的目的,操作简易,效果显著;另一方面作为模板剂,利用水即可除去,避免传统采用有毒有害的氢氟酸刻蚀造孔的方法,安全环保;

(2)本发明采用高温熔融工艺,与传统工艺相比,可以实现硅与无机盐的互熔,实现两者的均匀混合,再次球磨分散包覆,可实现对混熔体均匀包覆。有利于形成多孔硅,多孔碳的两种基材的复合,实现二次缓冲空间。

综上所述,本发明的制备方法工艺流程简易、成本低、操作环保,简单,易于工业化生产,采用该方法制得的硅基负极材料体积膨胀小、循环性能优异且稳定,有效提高了硅基负极材料的循环性能。

附图说明

图1为本发明的工艺流程图,图2为本发明实施例3取得的样品SEM图,图3为实施例3所得产品的电流密度时的循环测试图,图4为实施例3所得产品在不同电流密度时的倍率性能图。

具体实施方式

本发明是一种原位制备多孔硅碳复合负极材料的方法,其步骤为:

步骤(1)球磨分散:将低熔点、可溶性无机盐、纳米硅或微纳米硅进行球磨混合,加入适量的润湿剂;球磨罐内进行惰性气体置换,球磨转速为400~500r/min,球磨时间10~12h;

步骤(2)高温熔融:将步骤(1)所得物料进行惰性环境高温熔融形成熔融混合体;熔融温度为1450~1800℃,升温速率为5~10℃/min;

步骤(3)球磨包覆:将步骤(2)所得熔融混合体按比例与碳前驱体或碳材料进行高能球磨混合;球磨罐内进行惰性气体置换,球磨转速为400~500r/min,球磨时间4~8h;

步骤(4)高温碳化:将步骤(3)所得混合物料进行高温碳化;碳化温度为600~1200℃,升温速率为5~10℃/min;

步骤(5)水洗干燥:将步骤(4)所得物料进行超声、洗涤5~8h,所得物料进行真空干燥,得到多孔硅碳复合负极材料。

以上所述的原位制备多孔硅碳复合负极材料的方法,所述步骤(1)中加入适量的润湿剂;其中,硅基材料、模板剂、润湿剂的质量比为1:15~20:0.5~2;所述润湿剂为工业乙醇,或者工业甲醇,或者去离子水。

以上所述的原位制备多孔硅碳复合负极材料的方法,步骤(1)所述低熔点、可溶性无机盐是碳酸钠,或者碳酸钾,或者磷酸钠,或者磷酸钾,或者磷酸二氢钠,或者磷酸二氢钾,或者碳酸氢钠,或者是以上所述两种的组合。

以上所述的原位制备多孔硅碳复合负极材料的方法,步骤(1)所述熔融混合体温度控制在14501600℃。

以上所述的原位制备多孔硅碳复合负极材料的方法,步骤(2)所述熔融混合体、碳前驱体的质量比为:1:25~50,或熔融混合体、碳前驱体、碳材料的质量比为:1:15~35:10~15。

以上所述的原位制备多孔硅碳复合负极材料的方法,所述步骤(1)中的硅基材料为纳米硅或微纳米硅,所述硅基材料的D50尺寸为100~1000nm。

以上所述的原位制备多孔硅碳复合负极材料的方法,所述步骤(3)中的碳前驱体为沥青,或者树脂;碳材料为活性碳,或者石墨,或者石墨烯。

为了更清楚地说明本发明的技术方案,下面将结合附图1对各个实施例作进一步描述。应当理解的是,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。以下各实施例中,若非特指,所有的百分比均为重量单位。下述实施例中的方法,如无特别说明,均为本领域的常规方法。

实施例1:原位制备多孔硅碳复合负极材料的方法,其包括如下步骤:

(1)在保护气氛下,将碳酸钠、纳米硅粉(D50:100nm)、工业乙醇以1:15:0.5的比例混合,添加到高能球磨罐中进行高能球磨混合,球磨时间控制10h,速度控制在400r/min,得到物料A。将所得物料A进行惰性气氛环境下高温熔融形成熔融混合体B;温度为1450℃,升温速率为5℃/min;

(2)将步骤(1)所得熔融混合体B与高温沥青混合物按质量比1:25进行高能球磨混合;球磨时间4h,转速为400r/min,得到物料C。将所得混合物料C进行高温碳化, 得到物料D,温度设置为800℃,升温速率8℃/min;

(3)将步骤(2)所得物料D进行超声、洗涤5h,得到物料E;将所得物料E进行真空干燥,得到多孔硅碳复合负极材料。并进行相关物理性能和电化学性能评价。

实施例2:原位制备多孔硅碳复合负极材料的方法,其包括如下步骤:

(1)在保护气氛下,将磷酸钠、微纳米硅粉(D50:1000nm)、工业甲醇以1:20:2的比例混合,添加到高能球磨罐中进行高能球磨混合,球磨时间控制12h,速度控制在500r/min,得到物料A。将所得物料A进行惰性气氛环境下高温熔融形成熔融混合体B;温度为1600℃,升温速率为10℃/min;

(2)将步骤(1)所得熔融混合体B与酚醛树脂混合物按质量比1:50进行高能球磨混合;球磨时间8h,转速为400r/min,得到物料C。将所得混合物料C进行高温碳化, 得到物料D,温度设置为600℃,升温速率5℃/min;

(3)将步骤(2)所得物料D进行超声、洗涤8h,得到物料E;将所得物料E进行真空干燥,得到多孔硅碳复合负极材料。并进行相关物理性能和电化学性能评价。

实施例3:原位制备多孔硅碳复合负极材料的方法,其包括如下步骤:

(1)在保护气氛下,将磷酸二氢钠、纳米硅粉(D50:200nm)、去离子水以1:15:2的比例混合,添加到高能球磨罐中进行高能球磨混合,球磨时间控制10h,速度控制在400 r/min,得到物料A。将所得物料A进行惰性气氛环境下高温熔融形成熔融混合体B;温度为1500℃,升温速率为5℃/min;

(2)将步骤(1)所得熔融混合体B与中温沥青、人造石墨混合物按质量比1:15:10进行高能球磨混合;球磨时间8h,转速为400 r/min,得到物料C。将所得混合物料C进行高温碳化,得到物料D,温度设置为700℃,升温速率5℃/min;

(3)将步骤(2)所得物料D进行超声、洗涤12h,得到物料E;将所得物料E进行真空干燥,得到多孔硅碳复合负极材料。并进行相关物理性能和电化学性能评价。

图3为实施例3所得产品(Porous [email protected])与硅材料(SiNPs),硅碳负极复合材料([email protected])作为负极电极片、以1M LiPF6 (DMC :EC=1:1vol%)+10%FEC为电解液、聚丙烯膜为隔膜构成扣式锂离子电池在0.2C的电流密度时的循环测试图;图4为实施例3所得产品([email protected])与硅材料(SiNPs),硅碳负极复合材料([email protected])作为负极电极片、以1M LiPF6 (DMC :EC=1:1vol%)+10%FEC为电解液、聚丙烯膜为隔膜构成扣式锂离子电池在不同电流密度时的倍率性能图。

实施例4:原位制备多孔硅碳复合负极材料的方法,其包括如下步骤:

(1)在保护气氛下,将磷酸二氢钠、纳米硅粉(D50:500nm)、去离子水以1:15:2的比例混合,添加到高能球磨罐中进行高能球磨混合,球磨时间控制10h,速度控制在400 r/min,得到物料A。将所得物料A进行惰性气氛环境下高温熔融形成熔融混合体B;温度为1500℃,升温速率为5℃/min;

(2)将步骤(1)所得熔融混合体B与高温沥青、天然石墨混合物按质量比1:35:15进行高能球磨混合;球磨时间10h,转速为400 r/min,得到物料C。将所得混合物料C进行高温碳化,得到物料D,温度设置为700℃,升温速率5℃/min;

(3)将步骤(2)所得物料D进行超声、洗涤10h,得到物料E;将所得物料E进行真空干燥,得到多孔硅碳复合负极材料。并进行相关物理性能和电化学性能评价。

为了对比实施例1~4的多孔硅碳缓冲效果,我们选择进行两个对比实施例。实施例5选用实施例3中的硅材料不进行任何处理,直接测试。

实施例6,不加入无机盐工艺,按照传统硅碳包覆工艺制备硅碳材料,制备参数按照实施例3中的包覆和碳化工艺参数,得到产品。

对实施例1-6所得产品进行扣式电池测试:取上述各个实施例制备所得硅碳复合负极材料、导电碳黑、CMC、SBR按94:1.5:2:2.5混合均匀,涂于铜箔上,将涂好的极片放入温度为110℃真空干燥箱中真空干燥6h备用。模拟电池装配在充氩气的手套箱中进行,电解液为1mol LiPF6+EC:DEC:DMC=1:1:1(体积比),按体积比添加10%FEC,金属锂片为对电极,电化学性能测试在武汉蓝电电池测试仪上进行,充放电电压范围为0.005V至2V,充放电速率为0.2C。其测试数据如下表1所示:

表1实施例产品的物理性能和电化学性能数据

通过表1数据显示,本发明获得硅碳复合材料具有较高的首次库伦效率和放电比容量,尤其实施例3放电比容量高达780.5mAh/g,首次库伦效率为79.0%,且50次循环后效率仍保持在99.0%以上。本发明实现对纳米/微纳米颗粒的完全、均匀分散,并形成缓冲空间,并为电解液离子的快速移动提供了传递孔道,具有较好的循环稳定性,可满足对锂离子电池中高性能负极的应用需求。

以上所述,仅为本发明的具体实施例,但本发明的保护范围并不局限于此,任何熟悉本领域技术的技术人员在本发明公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围以权利要求书的保护范围为准。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:Si-TiO_2-C复合纳米线的制备方法及其制品、应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类