一种基于数字岩心技术的储层评价方法及装置

文档序号:151946 发布日期:2021-10-26 浏览:18次 >En<

阅读说明:本技术 一种基于数字岩心技术的储层评价方法及装置 (Reservoir evaluation method and device based on digital core technology ) 是由 李浩然 戴慧英 莫晓光 陈国辉 于 2021-09-22 设计创作,主要内容包括:本发明公开一种基于数字岩心技术的储层评价方法及装置。所述方法包括选择岩心样品,并进行常规气测实验分析获取孔隙度和渗透率基础物性数据;对岩心样品进行CT扫描实验分析,获取孔喉空间参数;通过气测渗透率和不同的孔喉空间参数确定孔喉空间的渗流主控因素,计算渗流主控因素的权重系数,形成渗流主控因素权重表;根据渗流主控因素及其对应的权重计算渗透率评价因子;以孔隙度和渗透率评价因子为参数建立数字岩心评价储层的图版,根据计算得到的渗透率评价因子确定储层评价类别。基于数字岩心技术建立的储层评价图版,能够快速评价样品所在储层类别,为油田现场试油提供及时的数据支撑,提高生产效率,降低勘探开发成本。(The invention discloses a reservoir evaluation method and device based on a digital core technology. Selecting a rock core sample, and analyzing by a conventional gas logging experiment to obtain basic physical property data of porosity and permeability; performing CT scanning experimental analysis on the core sample to obtain pore throat space parameters; determining seepage main control factors of pore throat space through air permeability measurement and different pore throat space parameters, and calculating weight coefficients of the seepage main control factors to form a seepage main control factor weight table; calculating a permeability evaluation factor according to the seepage master control factor and the corresponding weight thereof; and establishing a digital core evaluation reservoir chart by taking the porosity and permeability evaluation factors as parameters, and determining the evaluation category of the reservoir according to the calculated permeability evaluation factors. The reservoir evaluation chart built based on the digital core technology can quickly evaluate the reservoir type of the sample, provides timely data support for oil field oil testing, improves the production efficiency and reduces the exploration and development cost.)

一种基于数字岩心技术的储层评价方法及装置

技术领域

本发明涉及数字岩心技术应用领域,尤其涉及一种基于数字岩心技术的储层评价方法及装置。

背景技术

储层的微观孔隙结构特征直接决定着宏观上的储层孔隙度、渗透率以及储层性能的优劣,是进行储层评价是必不可少的一部分。储层微观孔喉结构的差异性在表象上就体现为孔隙度、渗透率以及各项孔隙结构参数之间相互关系的变化。

近些年,数字岩心技术已发展成为岩石物理实验的重要组成部分,CT扫描技术作为数字岩心构建的典型代表,可以在不破坏样品的条件下探测岩石内部的三维结构,定量分析储层微观孔喉结构参数。

随着数字岩心分析资料的逐渐丰富,基于数字岩心技术对储层类别评价成为油田勘探实践需求。现行储层评价标准是基于传统常规实验测量参数建立的储层评价标准,对数字岩心技术能够定量分析的参数没有相应的评价划分方案。

综上所述,需要建立基于数字岩心技术的储层评价方法。

发明内容

本发明提供了一种基于数字岩心技术的储层评价方法,包括:

选择岩心样品,并进行常规气测实验分析获取孔隙度和渗透率基础物性数据;

对岩心样品进行CT扫描实验分析,获取孔喉空间参数;

通过气测渗透率和不同的孔喉空间参数确定孔喉空间的渗流主控因素,计算渗流主控因素的权重系数,形成渗流主控因素权重表;

根据渗流主控因素及其对应的权重计算渗透率评价因子;

以孔隙度和渗透率评价因子为参数建立数字岩心评价储层的图版,根据计算得到的渗透率评价因子确定储层评价类别。

如上所述的基于数字岩心技术的储层评价方法,其中,孔喉空间参数包括:孔隙度、孔隙半径、喉道半径、配位数、迂曲度和孔喉比。

如上所述的基于数字岩心技术的储层评价方法,其中,渗流主控因素为喉道半径、配位数和迂曲度。

如上所述的基于数字岩心技术的储层评价方法,其中,采用灰色关联分析法分析渗流主控因素的关联度和权重系数,具体包括如下子步骤:

把渗透率序列作为母序列,孔喉空间参数序列作为子序列;

对各参数进行无量纲化处理;

求取母序列与子序列的关联系数;

根据母序列与子序列的关联系数,求出各子因素对母因素之间的关联度;

经归一化处理求取各子因素的权重系数。

如上所述的基于数字岩心技术的储层评价方法,其中,采用下式计算渗透率评价因子:

其中, 为渗透率评价因子,为第i个渗流主控因素的权重系数,为第i个渗透主控因素的无量纲量。

本发明还提供一种基于数字岩心技术的储层评价装置,包括:

基础物性数据获取模块,用于选择岩心样品,获取孔隙度和渗透率基础物性数据;

孔喉空间参数获取模块,用于对岩心样品进行CT扫描实验分析,获取孔喉空间参数:

渗流主控因素权重系数计算模块,用于通过气测渗透率和不同的孔喉空间参数确定孔喉空间的渗流主控因素,计算渗流主控因素的权重系数,形成渗流主控因素权重表;

渗透率评价因子计算模块,用于根据渗流主控因素及其对应的权重计算渗透率评价因子;

储层评价类别确定模块,用于以孔隙度和渗透率评价因子为参数建立数字岩心评价储层的图版,根据计算得到的渗透率评价因子确定储层评价类别。

如上所述的基于数字岩心技术的储层评价装置,其中,孔喉空间参数包括:孔隙度、孔隙半径、喉道半径、配位数、迂曲度和孔喉比。

如上所述的基于数字岩心技术的储层评价装置,其中,渗流主控因素为喉道半径、配位数和迂曲度。

如上所述的基于数字岩心技术的储层评价装置,其中,渗流主控因素权重系数计算模块,具体用于把渗透率序列作为母序列,孔喉空间参数序列作为子序列;对各参数进行无量纲化处理;求取母序列与子序列的关联系数;根据母序列与子序列的关联系数,求出各子因素对母因素之间的关联度;经归一化处理求取各子因素的权重系数。

本发明还提供一种计算机可读存储介质,其特征在于,包括至少一个存储器和至少一个处理器;

存储器用于存储一个或多个程序指令;

处理器,用于运行一个或多个程序指令,用以执行上述任一项所述的一种基于数字岩心技术的储层评价方法。

本发明实现的有益效果如下:基于数字岩心技术建立的储层评价图版,能够快速评价样品所在储层类别,为油田现场试油提供及时的数据支撑,提高生产效率,降低勘探开发成本。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。

图1是本发明实施例一提供的一种基于数字岩心技术的储层评价方法流程图;

图2是平均喉道半径与渗透率的关系图;

图3是迂曲度与渗透率的关系图;

图4是平均配位数与渗透率的关系图;

图5是数字岩心评价储层的图版示意图;

图6是数字岩心解释标准和试油结论对应关系示例图。

具体实施方式

下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例一

本发明实施例一提供一种基于数字岩心技术的储层评价方法,储层性能由储集性能和渗流性能决定。储集性能可由孔隙度反映,渗流性能可由渗透率反映,渗透率受到微观孔喉空间多因素影响。本发明从渗透率入手,研究不同微观孔喉参数与渗透率之间相关性,确定渗流主控因素。对渗流主控因素采用灰色关联法,分析不同因素对渗透率的影响力,并且建立渗透率评价因子,结合渗透率评价因子和孔隙度,建立储层评价图版。

如图1所示,一种基于数字岩心技术的储层评价方法,包括:

步骤110、选择岩心样品,并进行常规气测实验分析获取孔隙度和渗透率基础物性数据;

考虑到常规气测实验分析的需要,钻取直径2.5cm碎屑岩标准岩心样品,对岩心样品进行常规气测实验分析,获取孔隙度和渗透率基础物性数据;例如表1选择某油田地区31块标准碎屑岩岩心样品进行气测孔隙度、渗透率分析:

表1 某油田地区标准碎屑岩岩心样品物性表

步骤120、对岩心样品进行CT扫描实验分析,获取孔喉空间参数;

具体地,对上述示例中31块标准碎屑岩数据进行CT扫描分析,获取如表2所示的孔喉空间参数数据,具体包括:孔隙度、孔隙半径、喉道半径、配位数、迂曲度和孔喉比:

表2 辽河油田地区某岩心样品孔喉空间参数表

步骤130、通过气测渗透率和不同的孔喉空间参数确定孔喉空间的渗流主控因素,计算渗流主控因素的权重系数,形成渗流主控因素权重表;

具体地,通过气测渗透率和不同的孔喉空间参数的相关性分析,根据相关系数的大小,确定孔喉空间的渗流主控因素,如图2、3、4所示,最终确定三个渗流主控因素:喉道半径、配位数和迂曲度。

本申请实施例中,优选采用灰色关联分析法分析渗流主控因素的关联度和权重系数,灰色关联分析法是寻求系统中各因素的主次关系,找出影响各项评价指标的重要因素,从而掌握事物的主要特征,其实质上是对于一个系统发展变化态势的定量描述和比较,它包括母序列与子序列的选定、关联系数、权重的计算等,具体为:

①确定母序列和子序列:考虑到渗透率是油气储层渗流能力的最直接反映因素,孔喉空间参数间接影响储层渗流能力,因而把渗透率序列作为母序列,记为{Xt (0)(0)},t=1,2,…n,孔喉空间参数(喉道半径、配位数和迂曲度)序列作为子序列,记为{Xt (0)(i)},t=1,2,…n,i=1,2,…m;由母序列和子序列可构成原始数据矩阵:

矩阵中,第一列为母序列,参数为渗透率,单位为mD。第二列为子序列,参数为喉道半径,单位为μm。第三列为子序列,参数为配位数。最后一列为子序列,参数为迂曲度。例如,由母序列和子序列构成的原始数据矩阵为:

②由于不同参数的量纲、数值均存在较大差异,为了使各参数具有可比性,首先需要采用下式对各参数进行标准化(无量纲化)处理:

上述示例处理后得到的矩阵为:

无量纲化处理后的母序列为{},子序列为{},同一观测时刻各子因素与母因素之间的绝对差值为:

则同一观测时刻(观测点)各子因素与母因素之间的绝对差值的最大值为:

同一观测时刻(观测点)各子因素与母因素之间的绝对差值的最小值为:

③在标准化矩阵基础上,采用下式求取母序列与子序列的关联系数:

式中,为关联系数;为分辨系数。

上述示例求得关联系数矩阵为:

④在关联系数矩阵基础上,求出各子因素对母因素之间的关联度,进一步经归一化处理求取各子因素的权重系数,形成渗流主控因素权重表;

上述示例的岩心样品经灰色关联分析法处理后得到如表3所示的渗流主控因素权重表:

表3 某油田地区渗流主控因素权重表

步骤140、根据渗流主控因素及其对应的权重计算渗透率评价因子;

采用下式计算渗透率评价因子:

其中,为渗透率评价因子,为第i个渗流主控因素的权重系数,为第i个渗透主控因素的无量纲量。

步骤150、以孔隙度和渗透率评价因子为参数建立数字岩心评价储层的图版,根据计算得到的渗透率评价因子确定储层评价类别;

本申请实施例建立如表4所示的数字岩心储层评价分类表,构建如图5所示的数字岩心评价储层的图版:

表4 数字岩心储层评价分类表

在其它油田区块,如图6所示,采用本申请技术方案选取47块样品进行试油结论验证:干层、差油层基本在Ⅲ储层,油层、油水同层基本在Ⅰ类和Ⅱ类储层,表明数字岩心解释标准和试油结论呈现良好的对应关系。

与上述实施例对应的,本发明实施例提供一种计算机可读存储介质,计算机存储介质中包含一个或多个程序指令,一个或多个程序指令用于被处理器执行一种基于数字岩心技术的储层评价方法。

本发明所公开的实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序指令,当所述计算机程序指令在计算机上运行时,使得计算机执行一种基于数字岩心技术的储层评价方法。

在本发明实施例中,处理器可以是一种集成电路芯片,具有信号的处理能力。处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。

可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。处理器读取存储介质中的信息,结合其硬件完成上述方法的步骤。

存储介质可以是存储器,例如可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。

其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。

易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data RateSDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(EnhancedSDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(DirectRambus RAM,简称DRRAM)。

本发明实施例描述的存储介质旨在包括但不限于这些和任意其它适合类型的存储器。

本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件与软件组合来实现。当应用软件时,可以将相应功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:原位穆斯堡尔谱和原位X射线吸收谱测试样品池及其方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类