(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂*-9-基)氨基)丙酰胺的多晶型物和固体形式及其制备方法

文档序号:1590583 发布日期:2020-01-03 浏览:54次 >En<

阅读说明:本技术 (S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂*-9-基)氨基)丙酰胺的多晶型物和固体形式及其制备方法 (Polymorphs and solid forms of (S) -2- ((2- ((S) -4- (difluoromethyl) -2-oxooxazolidin-3-yl) -5, 6-dihydrobenzo [ f ] imidazo [1,2-d ] [1,4] oxazepin-9-yl) amino) propanamide and methods of making the ) 是由 P·查克拉瓦蒂 韩翀 S·M·凯利 K·纳格普迪 S·萨维奇 于 2018-04-26 设计创作,主要内容包括:本发明涉及具有以下式I结构的(5)-2-((2-((5)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-J][1,4]氧氮杂&lt;Image he="54" wi="48" file="DDA0002250726240000012.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;-9-基)氨基)丙酰胺(GDC-0077)(或其立体异构体、几何异构体、互变异构体及药用盐)的结晶多晶型物形式,及制备所述多晶型物形式的方法,&lt;Image he="479" wi="693" file="DDA0002250726240000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;(The present invention relates to (5) -2- ((2- ((5) -4- (difluoromethyl) -2-oxooxazolidin-3-yl) -5, 6-dihydrobenzo [ f) having the structure of formula I]Imidazo [1,2-J ] s][1,4]Oxazazem -9-yl) amino) propionamide (GDC-0077) (or its stereoisomers, geometric isomers, tautomers and pharmaceutically acceptable salts) and a process for preparing said polymorphic forms,)

(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6- 二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂*-9-基)氨基)丙酰 胺的多晶型物和固体形式及其制备方法

相关申请的交叉引用

本申请要求于2017年4月28日提交的美国临时申请号62/491,812的优先权权益,该申请的全部内容在此通过引用的方式并入本申请。

技术领域

本发明涉及PI3K抑制剂化合物GDC-0077(名称为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000012

-9-基)氨基)丙酰胺)的多晶型物形式。本发明还涉及获得GDC-0077的多晶型物形式的方法。

背景技术

磷酸肌醇3-激酶(PI3K)为在肌醇环的3-羟基残基处使脂质磷酸化的脂质激酶(Whitman等人(1988)Nature,332:664)。通过PI3-激酶产生的3-磷酸化磷脂(PIP3)发挥募集具有脂质结合结构域(包括普列克(pleckstrin)同源(PH)区)的激酶(诸如Akt及磷酸肌醇依赖性激酶-1(PDK1))的第二信使的作用。Akt与膜PIP3的结合使Akt易位至质膜,使Akt与负责活化Akt的PDK1接触。肿瘤抑制因子磷酸酶PTEN使PIP3去磷酸化且因此发挥Akt活化的负调节剂作用。PI3-激酶Akt及PDK1在多个细胞过程(包括细胞周期调节、增殖、存活、细胞凋亡及运动性)的调节中是重要的且为疾病诸如癌症、糖尿病和免疫炎症的分子机制中的重要组分(Vivanco等人(2002)Nature Rev.Cancer 2:489;Phillips等人(1998)Cancer83:41)。

癌症中的主要PI3-激酶同工型为I类PI3-激酶p110α(US 5824492;US 5846824;US6274327)。心血管及免疫炎性疾病中涉及其它同工型(Workman P(2004)Biochem SocTrans 32:393-396;Patel等人(2004)Proceedings of the American Association ofCancer Research(Abstract LB-247)95th Annual Meeting,March 27-31,Orlando,Florida,USA;Ahmadi K and Waterfield MD(2004)Encyclopedia of BiologicalChemistry(Lennarz W J,Lane M D eds)Elsevier/Academic Press)。PI3激酶/Akt/PTEN途径为癌症药物研发的有吸引力的靶标,这是因为预期所述调节或抑制剂可抑制增殖、逆转对细胞凋亡的抑制并克服癌细胞对细胞毒性剂的抗性(Folkes等人(2008)J.Med.Chem.51:5522-5532;Yaguchi等人(2006)Jour.of the Nat.Cancer Inst.98(8):545-556)。PI3K-PTEN-AKT信号传导途径在众多种癌症中失调(Samuels Y等人(2004)Science 304(5670):554;Carpten J等人(2007)Nature;448:439-444)。

GDC-0077,也称为IUPAC名称:(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000021

-9-基)氨基)丙酰胺,具有有效的PI3K活性(WO2017/001645,US 2017/0015678,Edgar K.等人#156,“Preclinicalcharacterization of GDC-0077,a

Figure BDA0002250726220000022

PI3K alpha inhibitor in early clinicaldevelopment”,和Staben.S.#DDT02-0“Discovery of GDC-0077,a highly isoformselective inhibitor of PI3Kalpha that promotes selective loss of mutant-p110alpha”,American Assoc.for Cancer Res.(AACR)annual meeting,2017年4月2日,华盛顿特区),且正在患有局部晚期或转移实体瘤的患者中加以研究。

药品的多种具有不同固态性质的晶形可显示出在生物利用度、储存期及加工期间的行为上的差异。粉末X射线衍射为按照其独特衍射图而鉴别不同晶相的有力工具。

医药工业经常遇到相同结晶化学实体具有多种多晶型物的现象。多晶型现象通常具有药品(即,活性药物成分(API))能以两种或更多种晶相存在的特征,所述晶相在晶格中具有不同分子排列和/或构象,从而赋予晶体不同的物理化学性质。能可靠地制备所选多晶型形式的能力为决定药品成功的关键因素。

全世界的管理机构均需要适当努力来鉴别药品的多晶型物并检验多晶型物互变。由于通常无法预测多晶型物的行为及其物理化学性质的各自差异,所以必须证实相同产品的批次之间的制造一致性。适当理解多晶型物情况(landscape)及医药多晶型物的性质将有助于制造一致性。

原子水平的晶体结构测定及分子间相互作用为确立绝对构型(对映异构体)、相鉴别、质量控制及工艺过程开发控制及优化提供重要信息。广泛认为X射线衍射为用于医药固体的晶体结构分析及晶形鉴别的可靠工具。

由于结构测定的速度及准确性,优选药品单晶的可用性。然而,并非总是能获得具有适用于数据收集的大小的晶体。在所述情况下,可由通过在环境条件下和/或在可变温度或湿度下测量获得的X射线粉末衍射数据来解析晶体结构。

发明内容

本发明涉及具有以下式I结构的名称为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂-9-基)氨基)丙酰胺的PI3K抑制剂GDC-0077(CAS登记号2060571-02-8,Genentech,Inc.)的多晶型物形式:

或其立体异构体、几何异构体、互变异构体及药用盐。

本发明的一方面为GDC-0077的多晶型物形式的药物组合物。

本发明的一方面为使用GDC-0077的多晶型物形式治疗哺乳动物中过度增殖性病症的方法。

本发明的一方面为制备GDC-0077的结晶多晶型物的方法。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000033

-9-基)氨基)丙酰胺的结晶、无水多晶型物(指定为形式A多晶型物),其显示出具有以在约5.7°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,形式A多晶型物显示出具有以在约5.7°、11.4°和19.0°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,形式A多晶型物显示出具有以在约5.7°、11.4°、17.2°、19.0°、19.7°和24.4°的2θ表示的特征峰的X射线粉末衍射图。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000034

-9-基)氨基)丙酰胺的结晶、无水多晶型物(指定为形式A多晶型物),其显示出具有以在约5.7°的2θ表示的特征峰;或具有以在约5.7°、11.4°和19.0°的2θ表示的特征峰;或具有以在约5.7°、11.4°、17.2°、19.0°、19.7°和24.4°的2θ表示的特征峰的使用Cu Kα辐射的入射束获得的X射线粉末衍射图。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂-9-基)氨基)丙酰胺的结晶、无水多晶型物(指定为形式A多晶型物),其显示出具有以在约5.7°的2θ表示的特征峰;或具有以在约5.7°、11.4°和19.0°的2θ表示的特征峰;或具有以在约5.7°、11.4°、17.2°、19.0°、19.7°和24.4°的2θ表示的特征峰的使用利用Cross Beam光学器件(40kV×44mA)生成的Cu Kα

Figure BDA0002250726220000036

辐射的入射束获得的X射线粉末衍射图。

本发明的一方面为由基本上如图4中显示的X射线粉末衍射图表征的如本文所述的形式A多晶型物。

本发明的一方面为由表2中显示的X射线粉末衍射峰表征的如本文所述的形式A多晶型物。

本发明的一方面为所述的形式A多晶型物,其中差示扫描量热法DSC在约212至215℃显示熔融吸热。

本发明的一方面为所述的形式A多晶型物,其中差示扫描量热法DSC在约214℃显示熔融吸热。

本发明的一方面为由基本上如图7A中显示的13C SSNMR(固态核磁共振)光谱表征的如本文所述的形式A多晶型物。

本发明的一方面为由基本上如图7B中显示的19F SSNMR(固态核磁共振)光谱表征的如本文所述的形式A多晶型物。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000041

-9-基)氨基)丙酰胺的结晶、无水多晶型物(指定为形式D多晶型物),其显示出具有以在约7.5°、10.8°、16.8°和20.4°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,形式D多晶型物显示出具有以在约7.5°、8.6°、10.8°、16.8°、19.2°和20.4°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,如本文所述的形式D多晶型物的特征在于图15A中显示的X射线粉末衍射图。在一些实施方案中,如本文所述的形式D多晶型物的特征在于表3中显示的X射线粉末衍射峰。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000042

-9-基)氨基)丙酰胺的结晶、无水多晶型物(指定为形式D多晶型物),其显示出具有以在约7.5°、10.8°、16.8°和20.4°的2θ表示的特征峰;或具有以在约7.5°、8.6°、10.8°、16.8°、19.2°和20.4°的2θ表示的特征峰的使用Cu Kα辐射的入射束获得的X射线粉末衍射图。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000043

-9-基)氨基)丙酰胺的结晶、无水多晶型物(指定为形式D多晶型物),其显示出具有以在约7.5°、10.8°、16.8°和20.4°的2θ表示的特征峰;或具有以在约7.5°、8.6°、10.8°、16.8°、19.2°和20.4°的2θ表示的特征峰的使用利用CrossBeam光学器件(40kV×44mA)生成的Cu Kα

Figure BDA0002250726220000044

辐射的入射束获得的X射线粉末衍射图。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000045

-9-基)氨基)丙酰胺的结晶、三水合物多晶型物(指定为形式B多晶型物),其显示出具有以在约5.4°、10.5°和25.2°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,形式B多晶型物显示出具有以在约5.4°、10.5°、19.5°、20.1°、21.6°和25.2°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,如本文描述的形式B多晶型物的特征在于图12C中显示的X射线粉末衍射图。在一些实施方案中,如本文描述的形式B多晶型物的特征在于表2A中显示的X射线粉末衍射峰。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000051

-9-基)氨基)丙酰胺的结晶、三水合物多晶型物(指定为形式B多晶型物),其显示出具有以在约5.4°、10.5°和25.2°的2θ表示的特征峰;或具有以在约5.4°、10.5°、19.5°、20.1°、21.6°和25.2°的2θ表示的特征峰的使用Cu Kα辐射的入射束获得的X射线粉末衍射图。

本发明的一方面为(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂-9-基)氨基)丙酰胺的结晶、三水合物多晶型物(指定为形式B多晶型物),其显示出具有以在约5.4°、10.5°和25.2°的2θ表示的特征峰;或具有以在约5.4°、10.5°、19.5°、20.1°、21.6°和25.2°的2θ表示的特征峰的使用利用CrossBeam光学器件(40kV×44mA)生成的Cu Kα

Figure BDA0002250726220000053

辐射的入射束获得的X射线粉末衍射图。

本发明的一方面为药物组合物,其包含治疗有效量的如上所述的形式A的结晶、无水多晶型物,和药用载体、助流剂、稀释剂或赋形剂。

本发明的一方面为药物组合物,其包含治疗有效量的如上所述的形式D的结晶、无水多晶型物,和药用载体、助流剂、稀释剂或赋形剂。

本发明的一方面为药物组合物,其包含治疗有效量的如上所述的形式B的结晶、三水合物多晶型物,和药用载体、助流剂、稀释剂或赋形剂。

本发明的一方面为片剂形式的如上所述的药物组合物。

本发明的一方面为如上所述的药物组合物,其中治疗有效量为约1至约100mg。

本发明的一方面为如上所述的药物组合物,其中将结晶、无水或三水合物多晶型物进行研磨。

本发明的一方面为制备结晶多晶型物的方法,其包括加热(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000054

-9-基)氨基)丙酰胺在乙醇(含水或不含水)或正丙醇(含水或不含水)中的浆液,然后冷却混合物,由此形成形式A结晶多晶型物,其显示出具有以在约5.7°的2θ表示的特征峰;或具有以在约5.7°、11.4°和19.0°的2θ表示的特征峰;或具有以在约5.7°、11.4°、17.2°、19.0°、19.7°和24.4°的2θ表示的特征峰的X射线粉末衍射图。在一些实施方案中,方法包括加热GDC-0077在少于40%(或少于20%,或少于10%)的水存在下的乙醇中的浆液,然后冷却混合物,由此形成形式A多晶型物。在一些实施方案中,方法进一步包括利用结晶GDC-0077(例如,结晶THF溶剂合物)对混合物加晶种。

本发明的一方面为用于制备(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂-9-基)氨基)丙酰胺的结晶三水合物多晶型物的方法,其包括在水(例如,DI水)中浆化(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000062

-9-基)氨基)丙酰胺。在一些实施方案中,方法包括在DI水中在室温浆化(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000063

-9-基)氨基)丙酰胺的形式A多晶型物持续4天。

本发明的一方面为用于治疗有需要的受试者中的癌症的方法,其包括向受试者给药有效量的本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),或向受试者给药药物组合物,该药物组合物包含本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),和药用载体、助流剂、稀释剂或赋形剂。在一些实施方案中,癌症为表达PIK3CA突变的HR-阳性和HER2-阴性乳腺癌。在一些实施方案中,方法进一步包括一种或多种其它治疗剂(例如,氟维司群、帕博西尼(palbociclib)和/或来曲唑)。

本发明的一方面为本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),或包含本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)的药物组合物,其用于治疗癌症。在一些实施方案中,癌症为表达PIK3CA突变的HR-阳性和HER2-阴性乳腺癌。在一些实施方案中,使用的多晶型物进一步包含一种或多种其它治疗剂(例如,氟维司群、帕博西尼和/或来曲唑)。本发明的一方面为本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),或包含本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)的药物组合物在制备用于治疗癌症的药物中的用途。在一些实施方案中,癌症为表达PIK3CA突变的HR-阳性和HER2-阴性乳腺癌。在一些实施方案中,用途进一步包含一种或多种其它治疗剂(例如,氟维司群、帕博西尼和/或来曲唑)。

本发明的一方面为如本文所述的发明。

附图说明

图1显示了起始材料GDC-0077的XRPD图。

图2显示了起始材料GDC-0077的DSC和TGA示踪图。分别在64℃和141℃(开始)发生去溶剂化/蒸发吸热和重结晶吸热,然后在214℃发生熔融吸热。TGA显示了在熔融事件之前约2.5%w/w的重量损失。

图3显示了在筛选GDC-0077的96孔HTS多晶型物中获得的不同的固体形式击中(hit)(形式1-VI)的XRPD图的重叠。

图4显示了无水形式I(形式A)GDC-0077的XRPD。

图5A显示了无水形式I(形式A)GDC-0077在1000X放大倍数(台式Phenom SEM(Nanoscience Instruments,Inc.,AZ))的SEM图像。

图5B显示了无水形式I(形式A)GDC-0077的PLM图像(配备有高分辨率CCD摄像机和载物台的Leica DM 4000B显微镜(Clemex Technologies Inc.,Longueuil,Quebec,Canada),在200X放大倍数)。

图6A显示了无水形式I(形式A)GDC-0077的热分析。

图6B显示了形式IV-VI的TGA。

图6C显示了形式IV-VI的DSC。在DSC示踪图中观察到多种转变(可归因于去溶剂化、形成亚稳定形式和随后转化为形式A及其熔融)并已经指出。

图6D显示了在将形式B(三水合物)加热至195℃后获得的产物相的XRPD,其中包括形式A的图用于比较。如指出的,三水合物在该温度最终转化为无水形式A。

图7A显示了无水形式I(形式A)GDC-0077的13C SSNMR(固态核磁共振)光谱。

图7B显示了无水形式I(形式A)GDC-0077的19F SSNMR。

图8显示了无水形式I(形式A)GDC-0077的水吸附行为。

图9显示了在RT、60℃平衡之前和之后三水合物形式B GDC-0077的等温TGA示踪图。

图10A显示了三水合物形式B GDC-0077在25℃的水吸附行为。

图10B显示了形式III的DSC和TGA。

图11显示了形式A和形式III固体形式的XRPD图的重叠。显示了形式III在RT,和在加热至165℃和195℃时的XRPD图。在较高温度(>165℃),形式III/C转化为形式I/A。

图12A显示了在DI水中浆化4天之后无水(形式A)至水合物(形式B)的转化。转化在12小时内开始,如在无水XRPD图中出现的水合物标记峰(*)指出的。96小时完成形式转化。包括形式B的XRPD图用于参考。

图12B显示了在RT(室温)GDC-0077水合物-无水体系在乙醇-水混合物中的浆液桥接(slurry bridging)实验数据。两种形式的平衡RH(相对湿度)区确定为82-86%,相当于65-83%w/w水含量。

图12C显示了三水合物形式B GDC-0077的XRPD。

图13A显示了GDC-0077THF溶剂合物的XRPD。

图13B显示了GDC-0077THF溶剂合物的热分析。

图13C显示了THF溶剂合物(RT)(加热至175和210℃),以及形式A的XRPD图的重叠。溶剂合物去溶剂化为最终转化为形式A的中间体无水形式。

图14显示了形式D(通过去溶剂化THF溶剂合物(形式A的多晶型物)获得的第二无水形式)的热分析。针对各自的吸热曲线标记相转变。

图15A显示了无水形式D GDC-0077的XRPD。

图15B显示了形式A、D和在正丁醇中浆化形式A和D(1:1混合物)过夜之后获得的GDC-0077的最终固体形式(RT)的XRPD图的重叠。在浆液中形式D转化为形式A。

图16A显示了研磨的GDC-0077的PLM。形式A在研磨后保持稳定。

图16B显示了GDC-0077研磨的批料的DSC和MDSC示踪图。研磨引起通过放热的出现(在113℃以插图标记)证明的无序,放热的出现表明无序相的重结晶和形式A的随后熔融(在214℃吸热)。MDSC不揭示在放热附近的Tg。

图17显示了GDC-0077的固体形式情况。

具体实施方式

除非另外定义,否则本文所用的技术及科学术语均具有与本领域技术人员通常所了解的相同含义,且与下文一致:

定义

词语“包含”和“包括”在用于本说明书及权利要求中时意在说明存在所述特征、整数、组分或步骤,但其不排除一或多个其它特征、整数、组分、步骤或其群组的存在或加入。

如本文所用的术语“约”在涉及X射线粉末衍射图峰位置使用时是指峰的固有变异性,其取决于(例如)所用设备的校准、用于产生多晶型物的方法、结晶材料的寿命等,取决于所用仪器。在此情形中,仪器的测量变异性为约±0.2°2θ。受益于本发明的本领域技术人员可理解“约”在此情况中的使用。涉及其它所定义参数(例如水含量、Cmax、tmax、AUC、固有溶出速率、温度及时间)的术语“约”指示(例如)测量参数或达成参数中的固有变异性。受益于本发明的本领域技术人员可理解如使用词语约所意味的参数的变异性。

如本文所用的“多晶型物”是指化合物的不同结晶形式的出现,不同在于堆积或构象/构型,但具有相同的化学组成。结晶形式在晶格中具有不同的分子排列和/或构象。溶剂合物是包含化学计量或非化学计量的量的溶剂的晶形。如果掺入的溶剂是水,则溶剂合物通常已知为水合物。水合物/溶剂合物可以作为化合物的多晶型物存在,其具有相同的溶剂含量但是不同的晶格堆积或构象。因此,单一化合物可产生多种多晶型形式,其中每一形式具有不同且各异的物理性质,例如溶解度分布、熔点温度、吸湿性、颗粒形状、密度、流动性、成型性(compactibility)和/或X射线衍射峰。每一多晶型物的溶解度可变,因此,鉴别药物多晶型物的存在对于提供具有可预测溶解度分布的药物必不可少。可期望研究药物的所有固态形式(包括所有多晶型形式),且可期望确定每一多晶型形式的稳定性、溶出及流动性质。化合物的多晶型形式可在实验室中通过X射线衍射学及通过诸如红外或拉曼或固态NMR光谱测定等其它方法来区分。关于多晶型物及多晶型物的医药应用的一般综述参见G.M.Wall,Pharm Manuf.3:33(1986);J.K.Haleblian and W.McCrone,J.Pharm.Sci.,58:911(1969);"Polymorphism in Pharmaceutical Solids,Second Edition(Drugs and thePharmaceutical Sciences)",Harry G.Brittain,Ed.(2011)CRC Press(2009);和J.K.Haleblian,J.Pharm.Sci.,64,1269(1975),其均为以引用方式并入本文中。

缩写字"XRPD"意指X射线粉末衍射,其为在固体成分的存在下测量X射线衍射的分析技术。为结晶的且具有规则的重复的原子阵列的材料产生不同的粉末图。具有类似晶胞的材料将得到以2θ°测量的位置类似的粉末图。展现出该性质的溶剂合物称为同构或同晶型溶剂合物。反射强度根据引起衍射的电子密度以及样品、样品制备和仪器参数而改变。XRPD数据的分析为基于关于用于收集数据的X射线衍射系统的已知响应的所测量粉末图的一般外观。对于粉末图中可能存在的衍射峰,可使用其位置、形状、宽度及相对强度分布来表征粉末样品中固态有序的类型。可使用在仪器背景顶部上的任何广泛漫散射(光晕)的位置、形状及强度来表征固态无序的程度及类型。对存在于粉末样品中的固态有序及无序的组合解释提供样品宏观结构的定性量度。

所用术语“包装说明书”是指通常包括于治疗产品的商业包装中的说明书,其含有关于适应症、用法、剂量、给药、禁忌症和/或关于使用所述治疗产品的警告的信息。

本申请使用的短语“药用盐”是指本发明化合物的药用有机或者无机盐。示例性盐包括但不限于硫酸盐、枸橼酸盐、乙酸盐、草酸盐、盐酸盐、氢溴酸盐、氢碘酸盐、硝酸盐、硫酸氢盐、磷酸盐、酸式磷酸盐、异烟酸盐、乳酸盐、水杨酸盐、酸式枸橼酸盐、酒石酸盐、油酸盐、鞣酸盐、泛酸盐、酒石酸氢盐、抗坏血酸盐、琥珀酸盐、马来酸盐、龙胆酸盐、富马酸盐、葡糖酸盐、葡糖醛酸盐、糖二酸盐、甲酸盐、苯甲酸盐、谷氨酸盐、甲磺酸盐、乙磺酸盐、苯磺酸盐、对甲苯磺酸盐和扑酸盐(即1,1’-亚甲基-二-(2-羟基-3-萘甲酸盐))。药用盐可涉及另一种分子如乙酸根离子、琥珀酸根离子或者其它抗衡离子的包合物。抗衡离子可以是稳定母体化合物电荷的任何有机或者无机部分。此外,药用盐可在其结构中具有多于一个带电原子。多个带电原子为药用盐的部分的情况可具有多个抗衡离子。因此,药用盐可具有一个或者多个带电原子和/或者一个或者多个抗衡离子。

若本发明化合物为碱,则期望的药用盐可通过本领域可得的任何合适方法来制备,例如用无机酸(如盐酸、氢溴酸、硫酸、硝酸、甲磺酸、磷酸等)或者用有机酸(如乙酸、马来酸、琥珀酸、扁桃酸、富马酸、丙二酸、丙酮酸、草酸、羟基乙酸、水杨酸、吡喃糖基酸如葡萄糖醛酸或者半乳糖醛酸、α-羟基酸如枸橼酸或者酒石酸、氨基酸如天冬氨酸或者谷氨酸、芳族酸如苯甲酸或者肉桂酸、磺酸如对甲苯磺酸或者乙磺酸等)处理游离碱。

若本发明化合物为酸,则期望的药用盐可通过任何合适方法来制备,例如用无机或者有机碱(如胺(伯胺、仲胺或者叔胺)、碱金属氢氧化物或者碱土金属氢氧化物等)处理游离酸。合适盐的示例性实例包括但不限于从以下物质得到的有机盐:氨基酸如甘氨酸和精氨酸、氨、伯胺、仲胺和叔胺以及环胺如哌啶、吗啉和哌嗪;以及从以下物质得到的无机盐:钠、钙、钾、镁、锰、铁、铜、锌、铝和锂。

期望的药用盐可通过本领域可得的任何合适方法来制备。例如用无机酸(如盐酸、氢溴酸、硫酸、硝酸、甲磺酸、磷酸等)或者用有机酸(如乙酸、马来酸、琥珀酸、扁桃酸、富马酸、丙二酸、丙酮酸、草酸、羟基乙酸、水杨酸、吡喃糖基酸如葡萄糖醛酸或者半乳糖醛酸、α-羟基酸如枸橼酸或者酒石酸、氨基酸如天冬氨酸或者谷氨酸、芳族酸如苯甲酸或者肉桂酸、磺酸如对甲苯磺酸或者乙磺酸等)处理游离碱。例如,由P.Stahl等人,Camille G.(eds.)Handbook of Pharmaceutical Salts.Properties,Selection and Use.(2002)Zurich:Wiley-VCH;S.Berge等人,Journal of Pharmaceutical Sciences(1977)66(1)1 19;P.Gould,International J.of Pharmaceutics(1986)33 201 217;Anderson等人,ThePractice of Medicinal Chemistry(1996),Academic Press,New York;Remington’sPharmaceutical Sciences,18th ed.,(1995)Mack Publishing Co.,Easton PA;和TheOrange Book(Food&Drug Administration,Washington,D.C.在其网站上)讨论了通常认为适于由碱性药用化合物形成药学上有用的或者可接受的盐的酸。将这些公开内容引入到本申请作为参考。

短语“药用的”表示所述物质或者组合物必须与制剂包含的其它成分和/或者用其治疗的哺乳动物在化学上和/或者毒理学上是相容的。

“溶剂合物”是指一种或者多种溶剂分子与本发明化合物的缔合物或者络合物。形成溶剂合物的溶剂的实例包括但不限于水、异丙醇、乙醇、甲醇、DMSO、乙酸乙酯、乙酸和乙醇胺。术语“水合物”是指当溶剂分子是水时的络合物。

术语“手性的”是指具有镜像配偶体的不重迭性性质的分子,而术语“非手性的”是指在其镜像配偶体上可重叠的分子。

术语“立体异构体”是指化学组成相同,但原子或基团在空间中排列不同的化合物。

“非对映异构体”是指具有两个或更多个手性中心并且它们的分子不是彼此的镜像的立体异构体。非对映异构体具有不同的物理性质,例如熔点、沸点、光谱性质和反应性。非对映异构体的混合物可在高分辨率分析程序例如电泳和色谱下分开。

“对映异构体”是指彼此为非可重叠镜像的化合物的两种立体异构体。

本申请所使用的立体化学的定义和惯例通常遵循S.P.Parker,Ed.,McGraw-HillDictionary of Chemical Terms(1984)McGraw-Hill Book Company,New York;和Eliel,E.and Wilen,S.,"Stereochemistry of Organic Compounds",John Wiley&Sons,Inc.,New York,1994。本发明化合物可含有不对称中心或手性中心,并因此以不同的立体异构形式存在。本发明化合物的所有立体异构形式意在形成本发明的部分,所述立体异构形式包括但不限于非对映异构体、对映异构体和阻转异构体以及它们的混合物例如外消旋混合物。许多有机化合物以光学活性形式存在,即它们具有旋转平面偏振光的平面的能力。在描述光学活性化合物中,词头D和L或R和S用于表示与其一个或多个手性中心有关的分子的绝对构型。词头d和l或(+)和(-)用于指示化合物旋转平面偏振光的符号,其中(-)或l表示化合物是左旋的。词头为(+)或d的化合物为右旋的。对于给定的化学结构,除了这些立体异构体是彼此的镜像之外,它们是相同的。特定的立体异构体还可称为对映异构体,并且上述异构体的混合物常称为对映体混合物。对映异构体的50:50混合物称为外消旋混合物或外消旋体,其可发生在化学反应或过程中没有立体选择性或立体特异性时。术语“外消旋混合物”和“外消旋体”是指两种对映体物种的等摩尔混合物,没有光学活性。

术语“互变异构体”或“互变异构形式”是指不同能量的可经低能量势垒相互转化的结构异构体。例如,质子互变异构体(也称为质子转移互变异构体)包括经质子迁移的相互转化,例如酮-烯醇和亚胺-烯胺异构化。价键互变异构体包括通过重组某些成键电子的相互转化。

GDC-0077的多晶型物

本发明包括GDC-0077的多晶型物,以及用于生产GDC-0077的多晶型物的过程、方法和试剂,GDC-0077显示为式I(CAS登记号2060571-02-8):

Figure BDA0002250726220000121

且命名为:(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000122

-9-基)氨基)丙酰胺(WO 2017/001645、US 2017/0015678,其以引用方式明确并入)。本文所用的GDC-0077包括其所有立体异构体、几何异构体、互变异构体及药用盐。GDC-0077是研发用于乳腺癌和其他病症的临床治疗的制剂中的API(活性药物成分)。

X射线粉末衍射分析

用市售分析软件对X射线粉末衍射(XRPD)图进行分析。XRPD可用于对不同结晶相、多晶型物、水合物或溶剂合物通过其独特衍射图进行指纹分析。沿横坐标(水平轴)绘制所谓的2θ值(入射束与衍射束之间的一系列角度)。纵坐标(垂直轴)记录通过检测器记录的散射X射线的强度。一组峰用作结晶物质内的结晶晶胞的独特指纹。结晶晶胞为最小原子级3D片段,其在整个晶体中以三维周期性重复。所有结晶物质均通过其结晶晶胞(且因此峰位置)来区分。通过比较所测量峰位置与数据库中保存的峰位置,可独特地鉴别结晶物质。对于纯物质,所有峰的位置一般为界定构成结晶晶胞的基本平行六面体的三个参数a、b、c及三个角度α、β、γ的函数。

图1中显示了作为起始材料的GDC-0077(在实施例1中制备)的XRPD图。如根据增加的基线计数和难以分辨的衍射峰所证明的,起始材料是不充分地结晶的。图2显示了起始材料GDC-0077的DSC(差示扫描量热法)和TGA(热重量分析法)示踪图。分别在64℃和141℃(开始)发生去溶剂化/蒸发吸热和重结晶吸热,然后在214℃熔融吸热。TGA显示在熔融事件之前约2.5%w/w的重量损失。TGA数据(图2)显示通过150℃的约2.5%的重量损失。DSC温谱图显示外推起点为约214℃的急剧的熔融吸热,之前是50-175℃范围内的明显的浅吸热(可能是去溶剂化/蒸发)和放热(结晶/重排/相变)。分别在64℃和141℃(开始)发生去溶剂化/蒸发吸热和重结晶吸热,然后在214℃熔融吸热。TGA显示在熔融事件之前约2.5%w/w的重量损失。

如在实施例2中详述的,几种不同的固体形式击中的XRPD图获得自全板(96孔)高通路筛选。图3显示了在筛选GDC-0077的96孔HTS多晶型物中获得的不同的固体形式击中(形式1-VI)的XRPD图的重叠。两种最频繁获得的形式是形式I和II,其中形式II匹配起始材料(图3)。几种其它新的多晶型物击中由蒸发、沉淀和冷却板鉴定,所述蒸发、沉淀和冷却板按比例放大10X倍,即每种150-200mg用于进一步表征。表1总结了六种不同形式I-VI的按比例放大条件。

表1.GDC-0077的高通量筛选多晶型物击中的按比例放大条件

GDC-0077固体形式

图4显示了无水形式I(形式A)GDC-0077的XRPD。表2显示了GDC-0077形式I/A的XRPD峰检索报告。图5A显示了无水形式I(形式A)GDC-0077在1000X放大倍数的扫描电子显微术(SEM)图像。图5B显示了无水形式I(形式A)GDC-0077在200X放大倍数的偏振光显微术(PLM)图像。发现形式I基本上是结晶的,具有长度为30-40μm(微米)的小的、棒状晶体。无水形式I(形式A)GDC-0077的热分析显示了通过TGA的微不足道的重量损失(约0.25%w/w)和在214℃通过DSC的熔融吸热,因而被视为无水的(图6A)。使用质量变化率(dm/dt)的严格方案,在25℃的水吸附在实验时间标度内显示了<0.3%w/w的微不足道的水分摄取(实施例5)。由于形式I合理地良好表征为无水的、结晶形式,因此其称为形式A。

表2.GDC-0077形式I/A的XRPD峰检索报告

Figure BDA0002250726220000141

表2显示了来自图4的XRPD的GDC-0077的峰检索报告(基本上结晶形式I/A的标记峰,具有31个峰,Max P/N=152.2):GMP [email protected]=136.1。峰:13(pts)/Parabolic Filter,阈值=2.0,截止=5.0%,BG=3/1.0,峰顶=顶峰(Summit)。

通过XRPD(图3),形式IV-VI看起来类似,区别为在5-20°2θ范围内的相对峰强度。这三种形式显示了通过TGA直到150℃的约13%w/w的重量损失(图6B),和通过DSC直到214℃的熔点的多次转变(图6C)。推测这些转变为溶剂损失(第一吸热,88℃,形式IV和V),然后中间体形式的结晶化和其随后熔融/转化为形式A,其在214℃熔融。形式VI显示了通过DSC与形式A类似的去溶剂化然后重结晶吸热的趋势。在DSC示踪图中观察到多次转变,其归因于去溶剂化、形成亚稳定形式和随后转化为形式A及其熔融。在图6C中概述了这些转变。残留溶剂的qNMR数据确定了这些形式是水合物,所述水合物具有13.4-13.8%w/w范围内的水含量,该含量与经由TGA观察到的重量损失密切匹配。所有三种形式在TGA中加热至195℃并通过XRPD分析,且产物相确认为形式A,最终稳定的无水形式(图6D)。由于所有三种形式发现为化学计量地相同,具有非常类似的XRPD图,区别仅在于衍射峰的相对强度,因此它们被视为相同的形式,即三水合物(3摩尔水/摩尔无水物),其将在此后称为形式B。在加热形式B(三水合物)至195℃之后获得的XPRD表明三水合物在该温度最终转化为无水形式A。

进一步表征形式B的去溶剂化行为以及其再水合的能力。因此在60℃在TGA中等温地保持混合物,直到发现重量损失恒定,然后在RT平衡去溶剂化的固体4小时,然后重复实验。图9显示了平衡的固体的等温脱水和重量损失曲线。具体而言,图9显示了在RT、60℃平衡之前和之后三水合物形式B GDC-0077的等温TGA示踪图。如根据数据证明的,水合物容易脱水,在60℃失去几乎所有其晶格水(12%),并且在平衡4小时之后再水合,这表明水容易进出晶格。图10A中描绘了在25℃三水合物形式B GDC-0077的水吸附解吸附行为。动态蒸汽吸附实验提供了关于形式B的脱水行为的信息。形式B的脱水在低于40%RH快速开始(解吸附曲线)且在样品暴露于0%RH的时间时完成。虽然存在显示平衡滞后的迟滞现象,但是无水产物同样容易地在超过40%RH再水合。与再吸附曲线(其中无水形式显示了清楚的“跳跃”,这表明在超过40%RH的无水物-三水合物转化)不同,解吸附好像是逐步的,其中在20-50%RH之间中间体脱水形式是明显的。三水合物在2-3步中脱水,而无水物至水合物形成在>40%RH(25℃)主要在一步中发生。

形式III的XRPD与形式IV-VI不同(图3)。图10B中的形式III的热分析DSC和TGA示踪图显示了几次转变(去溶剂化/蒸发吸热),与图6C中的形式B类似,然后是重结晶放热和最终形式的熔融,该最终形式通过XRPD确认为形式A(图11)。图11显示了形式A和形式III固体形式的XRPD图的重叠。显示了形式III在RT,和加热至165℃和195℃时的XRPD图。在≥165℃加热后形式III转化为形式A(图11)。虽然形式III通过TGA显示了仅3%w/w重量损失,但是通过qNMR发现其水含量为11%。在另一方面,发现形式III与在图1和2中表征的起始材料相同。在比较形式II、形式III和在60℃形式B的等温脱水后获得的产物相的XRPD图后观察到实质性相似,这表明形式II和III是仅部分去溶剂化的形式B的中间体,且区别仅在于其去溶剂化的程度。形式是形式B三水合物的部分脱水的中间体。从形式B的逐步解吸附曲线也表明中间体水合物形式的存在的可能性(图10A)。为了便于命名,形式II/III(部分脱水的形式)称为形式C。在较高温度(>165C),形式III/C转化为形式I/A。

从三水合物(形式B)的表征可以明显看出,如图9、10A和6D所示,三水合物(形式B)在暴露于较高温度和/或低相对湿度(RH)后去溶剂化为形式A。研究了无水形式A向形式B的转化。动态蒸汽吸附(DVS)实验不代表热力学条件,因为它们在较短的时间尺度上进行,该该较短的时间尺度内可能无法达到平衡。为了检查水合物形成,将形式A在DI水中浆化4天(RT)。形式转化(无水物至水合物)在12小时时开始并在4天内完成,如通过XRPD参考形式B检测到的。在DI水中浆化4天后测量无水物(形式A)至水合物(形式B)的转化。图12A显示了在12小时内转化开始,如在无水物XRPD图中出现的约5.5±2θ(度)的水合物标记峰所示。形式转化在96小时完成。

图12B总结了水合物-无水物混合物的浆液桥接实验的结果,其中水活度相对于媒介物组分(%水,v/v)作图。图12B显示了在RT(室温)在乙醇-水混合物中GDC-0077水合物-无水物体系的浆液桥接实验数据。两种形式的平衡RH(相对湿度)区确定为82-86%,相当于65-83%w/w水含量。发现无水形式(形式A)在直到水活度(aw)为0.82时都是稳定的,而在aw>0.86时发现水合物(形式B)是稳定形式。因此,无水物-水合物平衡的aw在0.82-0.86范围内。

在这些不同水活度下获得的固体形式的XRPD图显示无水物/形式A直到0.82aw都保持稳定,而水合物/形式B在aw≥0.86时稳定。

图12C显示了三水合物形式B GDC-0077的XRPD。表2A显示了GDC-0077形式B的XRPD峰检索报告。

表2A GDC-0077三水合物形式B的XRPD峰检索报告

Figure BDA0002250726220000161

图13A显示了GDC-0077THF溶剂合物的XRPD图,通过LC-MS分析发现GDC-0077THF溶剂合物含有10%w/w THF。通过TGA观察到14%w/w的重量损失。DSC显示出在发生吸热之前的多次转变,其通过将样品加热至175℃和201℃进一步研究(图13B)。THF溶剂合物和加热至175℃和210℃后获得的产物相的XRPD图的重叠显示了溶剂合物去溶剂化为中间体无水形式,其最终转化为形式A(图13C)。在175℃并且从TGA可见,THF溶剂合物完全去溶剂化以形成中间体无水形式(形式D),其随后熔融并重结晶成在215℃(开始)熔融的形式A。图14中显示了无水形式D的DSC和TGA示踪图,该无水形式D为通过去溶剂化THF溶剂合物(形式A的多晶型物)获得的第二无水形式。图14显示了形式D的热分析。针对各自的吸热标记相变。熔融前微不足道的重量损失(<1%w/w)证实形式D是无水的。如DSC所示,该无水形式在约188℃熔融,重结晶成随后在215℃熔融的形式A。形式D还通过将粗制起始材料GDC-077(作为活性药物成分(API))在正丙醇:水(99:1v/v)中浆化而获得。发现THF溶剂合物去溶剂化为无水形式D。形式D和形式A是单向转变相关的,形式A在所研究的温度范围内是热力学稳定的形式。图15A显示无水形式D GDC-0077的XRPD。表3显示了形式D的代表性XRPD峰。

表3GDC-0077形式D的XRPD峰检索报告

Figure BDA0002250726220000171

基于Burger和Ramberger的多态性“熔化热规则”,如果熔点较高的多晶型物也具有较高的熔化热,则认为两种多晶型物为是单向转变的(Burger和Ramberger,Mikrochimica Acta(1979),256)。在这种情况下,在约213-215℃熔融的形式A具有约100J/g的熔化热(图6A),而形式D通过GDC-0077THF溶剂合物的热分析显示了熔融开始温度为190℃,熔化热为约82-48J/g(图14),这取决于样品历史和纯度。虽然不能精确确定形式D的ΔH(熔化焓或熔化热的变化),但这些值提供了对规则的良好逼近,这表明这两种形式可能是单向转变相关的。为了进一步证实这一点,在RT在正丙醇中进行浆液桥接实验,其先前已从粗制API中得到形式D。图15B显示了形式A、D以及在正丙醇中将形式A和D(1:1混合物)浆化过夜后获得的GDC-0077的最终固体形式(RT)的XRPD图的重叠。形式D在浆液中转化为形式A。图15B显示了在搅拌12小时后从浆液中分离的固体形式的XRPD图,其与形式A的XRPD图相匹配。这证实形式D转化为形式A。换句话说,形式A是RT与214℃之间更稳定的形式。

图17显示了GDC-0077的固体形式情况,并提供了通过高通量筛选和结晶优化期间确定的不同固体形式的全面概述。如图所示,形式情况显示了不同形式之间的相变,并详细说明了实验条件,使这些转化作为适合形式的结晶和放大试验的指南。XRPD(图4)和固态NMR(图7A和7B)证实形式A。图7A显示了无水形式I(形式A)GDC-0077的13C SSNMR(固态核磁共振)光谱。图7B显示了无水形式I(形式A)GDC-0077的19F SSNMR。热分析DSC和TGA示踪包含在图6中。基于在212℃熔融之前微不足道的重量损失和没有任何脱水事件,形式A证实是无水的。显微术数据(SEM和PLM)显示在图5A和5B中,其中GDC-0077形式API颗粒看起来是片状的。表4显示了5、15和30秒超声处理的粒度分布(PSD)数据。无水形式I(形式A)GDC-0077的水吸附数据显示在图8中。该化合物直到90%RH(25℃)仍吸收微不足道的水分(0.25%w/w)。

表4.作为超声处理时间函数的GDC-0077形式A的粒度分布(PSD)

样品 D10(μm) D50(μm) D90(μm) D[4,3](μm)
GDC-0077形式A 4.76 27.73 208.16 74.60
5秒超声处理 3.24 14.87 40.92 19.09
15秒超声处理 2.70 10.93 27.59 13.44

大小减小对形式A的影响

形式A的研磨可以优化某些PK性质。将放大试验的形式A批料研磨并进行稳定性研究(40℃/75%RH,25℃/60%RH,开口小瓶)。还研磨了三批,其在研磨后表现相似。对研磨的代表性批次进行表征,并确定物理形式。将该批料在100%乙醇中浆化以获得形式A,并使用喷射式研磨机以60psi的压力研磨3.5小时。发现产率为91%。粒度分析(PSD)确定为D10=0.7μm,D50=2.7μm,D90=6.7μm。研磨后,将一部分API(活性药物成分,即GDC-0077)批次在开口小瓶中在40℃/75%RH和25℃/60%RH稳定。在第4周和第8周收集固态数据以评估温度和湿度对物理形式的影响。通过XRPD、PLM、DSC、TGA、水吸附分析和表面积分析表征研磨和稳定性样品。使用非密封卷曲盘以调制模式进行DSC试验,加热速率为从0-175℃的1℃/min,调制幅度为±1℃,时间为60秒。

为了通过XRPD表征研磨的影响,热分析和水吸附显示在研磨后形式保持不变,但基线计数似乎随着峰分辨率的降低而增加。PLM图像(图16A)显示了微晶具有均匀的大小并且约为5μm,这证实了PSD数据,并且证明了研磨的GDC-0077形式A在研磨后保持稳定。在DSC示踪图中产生无序的指示更明显,在该示踪图中在113℃观察到小的放热(图16B的插图),随后为在214℃形式A的熔融吸热(图16B)。这种吸热可归因于无序,其最可能在表面上,如研磨材料的情况。MDSC(调制差示扫描量热法)未揭示玻璃化转变温度(Tg),但仅仅不存在Tg并不排除表面非晶化的可能性,因为高度运动的、无序的表面在Tg时倾向于几乎瞬间结晶。由于通过热重分析法(TGA)测量的无序产生,与未碾磨的批料相比,碾磨材料在熔融之前的重量损失更高。研磨后,研磨导致表面积从0.78至6.68m2/g的显著增加(10X)(表5)。发现通过BET分析确定的该表面积是简单地通过考虑定义粒度的sauter平均直径(D3,2)流体动力学方法产生的表面积(其为3.42m2/g)的两倍。这表明表面积的显著增加是由表面无序的产生引起的。此外,与未碾磨的材料相比,在碾磨的批料的水吸附曲线中观察到水分摄取增加1%w/w(直至90%RH,重量增加0.25%,图8),这进一步证实了碾磨后无序的存在。

表5研磨的和未研磨的GDC-0077的表面积

GDC-0077 BET表面积(m2/g)
未研磨的 0.78±0.03
喷射研磨的 6.68±0.16

在T0、4和8周时间点的研磨样品的XRPD、DSC和TGA图显示GDC-0077物理形式在应力-稳定性条件(开口小瓶)下保持不变,如根据XRPD明显可见的。根据通过DSC稳定样品中ΔH(25℃/60%RH)的降低或完全没有重结晶吸热(40℃/75%RH),暴露于水分后研磨诱导的无序的减少或消失是明显的。这并不出乎意料,因为在暴露于充当增塑剂的水分后可能发生无序相的退火或重结晶。因此,GDC-0077形式A显示研磨诱导的无序,但结晶形式在大小减小后保持不变。推测该无序是表面相关的并且在暴露于水分后减少/退火成结晶形式。物理形式在开放条件下在40℃/75%RH和25℃/60%RH保持稳定长达8周。

治疗方法

本文详述的结晶形式的GDC-0077可用于治疗患有由PI3K相关的异常细胞生长、功能或行为引起的疾病或病症(例如癌症)的人或动物患者,因此可通过下列方法治疗:该方法包括向所述人或动物患者给药本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)。患有癌症的人或动物患者也可以通过包括向所述人或动物患者给药本文详述的GDC-0077的结晶多晶型物的方法进行治疗。由此可以改善或减轻患者的病况。

本发明的方法还包括治疗选自下列的癌症:乳腺癌、卵巢癌、***、***癌、睾丸癌、泌尿生殖道癌症、食管癌、喉癌、胶质母细胞瘤、神经母细胞瘤、胃癌、皮肤癌、角化棘皮瘤、肺癌、表皮样癌、大细胞癌、非小细胞肺癌(NSCLC)、小细胞癌、肺腺癌、骨癌、结肠癌、腺瘤、胰腺癌、腺癌、甲状腺癌、滤泡癌、未分化癌、***状癌、***瘤、黑素瘤、肉瘤、膀胱癌、肝癌和胆道癌、肾癌、胰腺癌、骨髓疾病、淋巴瘤、毛细胞癌、口腔癌、鼻咽癌、咽癌、唇癌、舌癌、口癌、小肠癌、结肠直肠癌、大肠癌、直肠癌、脑和中枢神经系统癌症、何杰金氏癌症、白血病、支气管癌、甲状腺癌、肝和肝内胆管癌、肝细胞癌、胃癌、胶质瘤/胶质母细胞瘤、子宫内膜癌、黑素瘤、肾和肾盂癌、膀胱癌、子宫体癌、子***、多发性骨髓瘤、急性髓性白血病、慢性髓性白血病、淋巴细胞性白血病、慢性淋巴细胞性白血病(CLL)、髓性白血病、口腔和烟癌、非何杰金淋巴瘤、黑素瘤和结肠绒毛腺瘤。

基于表达分析、免疫组织化学分析和细胞系剖析研究,结肠、乳腺、宫颈、胃、肺的恶性肿瘤和多发性骨髓瘤最有可能对PI3K调节剂或抑制剂起反应。

组合疗法

GDC-0077的多晶型物可以单独或与其它治疗剂组合用于治疗本文所述的疾病或病症,例如炎症或过度增殖性病症(例如癌症)。在某些实施方案中,本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)在药物组合制剂或给药方案中作为组合疗法与其它第二治疗化合物组合,所述第二化合物具有抗炎或抗过度增殖性质,或者可用于治疗炎症、免疫应答病症或过度增殖性病症(例如癌症)。其它治疗剂可以是CDK4/6抑制剂、Bcl-2抑制剂、JAK抑制剂、抗炎剂、免疫调节剂、化学治疗剂、细胞凋亡增强剂、神经营养因子、用于治疗心血管疾病的药剂、用于治疗肝病的药剂、抗病毒剂、用于治疗血液病症的药剂、用于治疗糖尿病的药剂和用于治疗免疫缺陷病的药剂。第二治疗剂可以是NSAID抗炎剂。第二治疗剂可以是化学治疗剂。药物组合制剂或给药方案的第二化合物优选具有与GDC-0077互补的活性,使得它们不会相互产生不利影响。这些化合物适合以对预期目的有效的量组合存在。在一个实施方案中,本发明的组合物包含本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)与治疗剂例如CDK4/6抑制剂的组合。

组合疗法可以作为同时或顺序方案给药。当顺序给药时,组合可以两次或多次给药来给药。组合给药包括使用单独的制剂或单一药物制剂共同给药,以及以任何顺序连续给药,其中优选存在两种(或所有)活性剂同时发挥其生物活性的时间段。

任何上述共同给药的药剂的合适剂量是目前使用的剂量,并且由于新鉴定的药剂和其它治疗剂或治疗的组合作用(协同作用)可以降低。

组合疗法可以提供“协同作用”并证明是“协同的”,即当活性成分一起使用时实现的效果大于单独使用化合物所产生的效果的总和。当活性成分:(1)在组合的单位剂量制剂中共同配制和同时给药或递送;(2)作为单独的制剂交替或并行递送;或(3)通过某种其它方案时,可以获得协同效应。当在交替疗法中递送时,当化合物顺序给药或递送时,例如通过在单独的注射器中的不同注射、单独的丸剂或胶囊或单独的输注,可以获得协同效应。通常,在交替疗法期间,每种活性成分的有效剂量顺序给药,即连续给药,而在组合疗法中,一起给药有效剂量的两种或更多种活性成分。

在疗法的具体实施方案中,本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)可以与其它治疗剂、激素或抗体剂(例如本文所述的那些)组合,以及与手术疗法和放射疗法组合。因此,根据本发明的组合疗法包括给药本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),以及使用至少一种其它癌症治疗方法。将选择GDC-0077的结晶多晶型物和其他药物活性治疗剂的量和给药的相对时间以获得所需的组合治疗效果。

与本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)组合使用的其它治疗剂包括5-FU、多西他赛、埃日布林(eribulin)、吉西他滨、考比替尼(cobimetinib)、帕他色替(ipatasertib)、紫杉醇、他莫昔芬、氟维司群、GDC-0810、***、帕博西尼、贝伐单抗、帕妥珠单抗、曲妥单抗艾坦辛(trastuzumab emtansine)、曲妥单抗及来曲唑。

在一些实施方案中,提供了用于治疗有需要的受试者中的癌症的方法,包括向受试者给药治疗有效量的本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)。在一些实施方案中,癌症是乳腺癌。在一些实施方案中,癌症是激素受体阳性(HR+)乳腺癌。在一些实施方案中,癌症是***受体阳性(ER+)乳腺癌。在一些实施方案中,癌症是HER2-阴性乳腺癌。在一些实施方案中,癌症是HR+转移性乳腺癌。在一些实施方案中,癌症是HR-阳性、HER2-阴性晚期乳腺癌。在一些实施方案中,癌症是HER2-阴性、ER-阴性和孕酮受体(PR)阴性乳腺癌。在一些实施方案中,受试者是人。在一些实施方案中,受试者是绝经后妇女。在一些实施方案中,乳腺癌亚型是Basal或Luminal。在一些实施方案中,癌症具有PIK3CA突变。在一些实施方案中,癌症表达选自E542K、E545K、Q546R、H1047L和H1047R的PIK3CA突变体。在一些实施方案中,癌症表达PTEN突变体。

在这些实施方案的一些中,治疗癌症(例如,乳腺癌)的方法还包括向受试者给药一种或多种其它治疗剂。在一些实施方案中,所述一种或多种其它治疗剂选自CDK4/6抑制剂(例如,帕博西尼、瑞博西尼(ribociclib)和玻玛西尼(abemaciclib))、选择性***受体降解剂(SERD)(例如氟维司群)和芳香酶抑制剂(例如来曲唑)。在一些实施方案中,其它治疗剂是帕博西尼。在一些实施方案中,其它治疗剂是氟维司群。在一些实施方案中,一种或多种其它治疗剂是帕博西尼和来曲唑。

本发明的一方面为本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),或包含本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)的药物组合物,其用于治疗癌症。在一些实施方案中,癌症是表达PIK3CA突变的HR-阳性和HER2-阴性乳腺癌。在一些实施方案中,使用的多晶型物还包含一种或多种其它治疗剂(例如氟维司群、帕博西尼和/或来曲唑)。

本发明的一方面为本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B),或包含本文详述的GDC-0077的结晶多晶型物(例如,结晶无水物形式A、结晶无水物形式D或结晶三水合物形式B)的药物组合物在制备用于治疗癌症的药物中的用途。在一些实施方案中,癌症是表达PIK3CA突变的HR-阳性和HER2-阴性乳腺癌。在一些实施方案中,用途还包含一种或多种其它治疗剂(例如氟维司群、帕博西尼和/或来曲唑)。

药物组合物和制剂

式I的GDC-0077的多晶型物形式可按照标准制药规范来配制以用于治疗哺乳动物(其包括人)中过度增殖性病症的治疗性处置(其包括预防性治疗)的治疗性组合。本发明提供了包含GDC-0077与一种或者多种药用载体、助流剂、稀释剂或者赋形剂的药物组合物。

合适的载体、稀释剂、助流剂和赋形剂是本领域技术人员公知的,并且包括以下物质,如碳水化合物、蜡、水溶性聚合物和/或者水溶胀性聚合物、亲水性物质或者疏水性物质、明胶、油、溶剂、水等。

制剂可使用常规溶解和混合操作制备。通常将本发明化合物配制成提供容易可控制的药物剂量且使患者能够依从所给出的方案的药物剂型。

取决于用于给药药物的方法,用于给药的药物组合物(或者制剂)可按多种方式包装。一般地,用于分配的物品包括容器,容器内存放有适当形式的药物制剂。合适的容器是本领域技术人员公知的,并且包括以下物质,如瓶(塑料的和玻璃的)、小袋、安瓿、塑料袋、金属圆筒等。容器还可包括防止不慎重取得包装中的内含物的的防干扰装置。此外,在容器上具有描述容器中的内含物的标签。所述标签还可包括适当的注意事项。

可制备GDC-0077的多晶型物形式的药物制剂用于多种给药途径和类型,其与药用稀释剂、载体、赋形剂、助流剂或者稳定剂(Remington’s Pharmaceutical Sciences(1995)18th edition,Mack Publ.Co.,Easton,PA)以冻干制剂、磨细的粉末剂或者水溶液剂形式使用。配制可如下进行:在环境温度在适当的pH以及在期望的纯度与生理学可接受的载体(即在采用的剂量和浓度下对受体是无毒性的载体)混合。制剂的pH主要取决于具体用途和化合物的浓度,但范围可为约3至约8。

所述药物制剂优选为无菌的。特别地,用于体内给药的制剂必须为无菌的。所述灭菌通过滤过经无菌滤膜容易地完成。

药物制剂通常可储存为固体组合物、片剂、丸剂、胶囊、冻干制剂或者水溶液剂。

本发明的药物制剂将按照与良好医学实践一致的方式(即量、浓度、时间表、过程、媒介物和给药途径)来确定剂量和给药。在此背景下考虑的因素包括所治疗的具体病症、个体患者的临床情况、病症的起因、药剂的递送位点、给药方法、给药的时间表和医学实践者已知的其它因素。

可接受的稀释剂、载体、赋形剂和稳定性在所用的剂量和浓度下对受体是无毒性的,并且包括缓冲剂如磷酸盐、枸橼酸盐和其它有机酸;抗氧化剂,包括抗坏血酸和蛋氨酸;防腐剂(如十八烷基二甲基苄基氯化铵;氯化六甲双铵;苯扎氯铵、苄索氯胺;苯酚、丁醇、乙醇或者苄醇;对羟基苯甲酸烷基酯,如对羟基苯甲酸甲酯或者对羟基苯甲酸丙酯;儿茶酚;间苯二酚;环己醇;3-戊醇和间甲酚);低分子量(少于约10个残基)多肽;蛋白质,如血清白蛋白、明胶或者免疫球蛋白;亲水性聚合物,如聚乙烯吡咯烷酮;氨基酸,如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或者赖氨酸;单糖、二糖和其它碳水化合物,包括葡萄糖、甘露糖或者糊精;螯合剂,如EDTA;糖如乳糖、蔗糖、甘露醇、海藻糖或者山梨醇;成盐的抗衡离子,如钠离子;金属络合物(例如Zn-蛋白质络合物);和/或者非离子型表面活性剂,如TWEENTM(包括吐温80)、PLURONICSTM或者聚乙二醇(PEG)(包括PEG400)。活性药物成分还可包埋在通过例如凝聚技术或者通过界面聚合制备的微胶囊中,例如在胶体药物递送系统(例如脂质体、白蛋白微球、微乳液、纳米颗粒和纳米胶囊)中或者在粗乳液中,分别为羟基甲基纤维素或者明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊。所述技术披露于Remington’sPharmaceutical Sciences 18th edition,(1995)Mack Publ.Co.,Easton,PA。药物制剂的其它实例可于Liberman,H.A.and Lachman,L.,Eds.,Pharmaceutical Dosage Forms,Marcel Decker,Vol 3,2nd Ed.,New York,NY中找到。

片剂可以包含一种或多种药用载体、助流剂、稀释剂或者赋形剂,所述赋形剂选自微晶纤维素、乳糖、淀粉乙醇酸钠和硬脂酸镁。

药用助流剂可选自二氧化硅、粉状纤维素、微晶纤维素、金属硬脂酸盐、铝硅酸钠、苯甲酸钠、碳酸钙、硅酸钙、玉米淀粉、碳酸镁、无石棉滑石粉、Stearowet C、淀粉、淀粉1500、月桂基硫酸镁、氧化镁和其组合。

所述药物制剂包括适于本申请详述的给药途径的制剂。制剂可适宜地以单位剂量形式存在并可通过药学领域公知的任何方法制备。技术和制剂通常参见Remington’sPharmaceutical Sciences 18th Ed.(1995)Mack Publishing Co.,Easton,PA。所述方法包括使活性成分与构成一种或者多种助剂的载体结合的步骤。通常制剂如下制备:使活性成分与液态载体或者微细分散的固态载体或者与这两种载体同时均匀和紧密地结合,然后必要时,对产品进行成型。

药物组合物可呈无菌注射制剂,如无菌注射水性混悬剂或者油性混悬液制剂形式存在。该混悬液可使用上文已提及的合适的分散剂或者润湿剂和助悬剂根据本领域已知方法配制。无菌注射制剂可以是于无毒性的肠胃外可接受的稀释剂或者溶剂中的无菌注射溶液或者混悬液,如于1,3-丁二醇中的溶液,或者由冻干粉末制备。可使用的可接受媒介物和溶剂包括水、林格氏溶液和等渗氯化钠溶液。此外,无菌不挥发性油通常可用作溶剂或者助悬介质。出于该目的,可采用任何温和的不挥发性油,包括合成性甘油一酯或者甘油二酯。此外,脂肪酸如油酸同样可用于制备注射剂。

药物组合物的给药

本发明的药物组合物可通过任何适于所要治疗病症的途径给药。适合的途径包括口服途径、肠胃外途径(其包括皮下、肌内、静脉内、动脉内、吸入、皮内、鞘膜内、硬膜外和输注技术)、经皮途径、直肠途径、鼻途径、局部途径(其包括口腔含服和舌下途径)、***途径、腹膜内途径、肺内途径和鼻内途径。局部给药还可涉及经皮给药如经皮贴剂或者离子电渗疗法装置的使用。药物的制剂在Remington’s Pharmaceutical Sciences,18th Ed.,(1995)Mack Publishing Co.,Easton,PA中有讨论。药物制剂的其它实例可在Liberman,H.A.andLachman,L.,Eds.,Pharmaceutical Dosage Forms,Marcel Decker,Vol 3,2nd Ed.,NewYork,NY中找到。对于局部免疫抑制性治疗,可通过病灶内给药给予所述化合物,其包括在移植前用所述抑制剂灌注或者以其它方式接触移植物。应当理解的是,优选的途径可随着(例如)接受者的情况而变化。口服给予所述化合物时,它可以与可药用的载体、助流剂或者赋形剂一起配制为丸剂、胶囊剂、片剂等。肠胃外给予所述化合物时,如下文详述,它可与可药用的肠胃外媒介物或者稀释剂一起并以单位剂量可注射的形式配制。

治疗人类患者的剂量可以为约1mg至约100mg的GDC-0077的多晶型物形式,诸如约2mg至约500mg、约3mg至约20mg、约3mg至约15mg、约3mg至约20mg、约1mg、约2mg、约3mg、约4mg、约5mg、约6mg、约9mg、约12mg、约15mg或约20mg的所述化合物。取决于包括所述具体化合物的吸收、分布、代谢和***的药代动力学(PK)和药效学(PD)性质,可每日一次(QD)、每日两次(BID)或者更频繁地给予剂量。除此之外,毒性因素可影响剂量和给药用量方案。当口服给药时,所述丸剂、胶囊剂或者片剂可每日两次、每日一次或者更不频繁地(如对于具体的时间周期,每周一次或者每两周或者三周一次)摄入。所述用药方案可重复多个治疗周期。

实施例

实施例1(S)-2-((2-((S)-4-(二氟甲基)-2-氧代噁唑烷-3-基)-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000251

-9-基)氨基)丙酰胺(GDC-0077)的分离和物理化学特性

根据WO 2017/001645、US 2017/0015678(其每个都通过引用的方式并入)制备GDC-0077。

将(S)-3-(9-溴-5,6-二氢苯并[f]咪唑并[1,2-d][1,4]氧氮杂

Figure BDA0002250726220000252

-2-基)-4-(二氟甲基)噁唑烷-2-酮(600mg,1.50mmol)、L-丙氨酸(267mg,3.00mmol)、碘化亚铜(57mg,0.30mmol)和磷酸三钾(637mg,3.00mmol)悬浮在二甲基亚砜(6.0mL)中。在100℃加热反应混合物2小时。在使得冷却至室温后,加入二甲基亚砜(4.0mL)、氯化铵(480mg,9.00mmol)和三乙胺(3.1mL,22.5mmol)。在5分钟内向所得的搅拌混悬液中分批加入1-[双(二甲基氨基)亚甲基]-1H-1,2,3-***并[4,5-b]吡啶鎓3-氧化物六氟磷酸盐(5.10g,13.5mmol)。在室温搅拌反应混合物1小时,然后通过

Figure BDA0002250726220000253

过滤,利用乙酸乙酯洗涤。利用饱和的碳酸氢钠水溶液洗涤有机萃取物并且利用乙酸乙酯萃取水相。利用盐水洗涤合并的有机萃取物,利用硫酸钠干燥,过滤并在真空中蒸发。在硅胶上经由急骤色谱法(溶剂梯度:0-5%的在二氯甲烷中的甲醇),然后通过手性超临界流体色谱法纯化粗制残留物以得到294mg(46%)的GDC-0077,其为灰白色固体。LCMS(ESI):RT(min)=2.89[M+H]+=408,方法=A;1H NMR(400MHz,DMSO-d6)δ8.00(d,J=8.7Hz,1H),7.38(br s,1H),7.18(s,1H),7.00(br s,1H),6.71(t,J=55.9Hz,1H),6.41(dd,J=8.8,2.3Hz,1H),6.16(d,J=7.2Hz,1H),6.09(d,J=1.9Hz,1H),5.02-4.89(m,1H),4.63-4.52(m,2H),4.39-4.30(m,4H),3.76(五重峰,J=7.0Hz,1H),1.30(d,J=7.1Hz,3H)。

通过在50℃将GDC-0077在乙醇中浆化4小时,然后在氮气吹扫下蒸发溶剂以得到高度结晶的形式A,获得GDC-0077形式A(无水物)。DSC温谱图显示出一个吸热转变,起始于约212-214℃,相关的熔化热为约107J/g。形式A在室温的水溶解度在pH 7.06时为30.8μg/mL。通过在DI水中将形式A在4天(RT)内浆化,离心浆液以除去上清液,然后在RT干燥固体几小时,获得三水合物形式。

使用辊压机对形式A GDC-0077进行干法制粒,之后是压片操作。片剂中的其它成分包括微晶纤维素(

Figure BDA0002250726220000254

PH102,FMC BioPolymer)、乳糖(

Figure BDA0002250726220000255

316,Foremost FarmsUSA)、淀粉乙醇酸钠(JRS Pharma)和硬脂酸镁(Macron FineChemicals)。

实施例2高通量多晶型物筛选(HTS)

使用Symyx CM2系统(Freeslate Inc.,CA)进行96孔板自动化HTS以鉴定GDC-0077的潜在多晶型形式。向每个孔中加入约20mg API,向其中加入800μl(微升)溶剂(纯净或混合物),并将浆液在50℃搅拌2小时。溶剂包括水、1,2-二氯乙烷、庚烷、环己烷、乙醇、1-丙醇、乙腈、丁胺、硝基甲烷、1,4-二噁烷、苯、全氟庚烷、乙酸乙酯、(三氟甲基)苯、丁-2-酮(MEK)、1,2-二甲氧基乙烷、2-甲基四氢呋喃、四氯化碳、二甲基乙酰胺、四氢呋喃(THF)、丙酮、苯甲醚、甲苯和2-乙氧基乙醇。从该“主”板中过滤上清液并分配到三个单独的板中进行蒸发,通过抗溶剂添加沉淀并在8-10小时内从50-20℃控制冷却。溶剂以及抗溶剂的细节在图2中概述。在所有情况下,蒸发或吸走残留溶剂,并使用偏振光显微术和X射线粉末衍射术检查固体。比较结晶击中的XRPD图,然后按比例放大潜在的“不同”击中及其表征。

实施例3浆液桥接

制备范围为0-100%水的不同组成的去离子(DI)水-乙醇(无水乙醇)混合物,并使用水活度计测量它们的水活度。在RT建立浆液实验,其中将三水合物和无水形式的GDC-0077(总共40mg)的1:1混合物加入到这些溶剂混合物(1.5mL液体)中,并在RT搅拌4天。4天后,将样品等分并离心。通过XRPD分析固体,分析上清液的水活度。将形式A和D的1:1混合物在RT在正丙醇中浆化过夜。离心浆液,并通过XRPD分析固体形式。

实施例4环境X射线粉末衍射(XRPD)

利用Rigaku

Figure BDA0002250726220000261

衍射仪(Rigaku Corp.,Tokyo,Japan),使用利用CrossBeam光学器件(40kV×44mA)产生的Cu Kα

Figure BDA0002250726220000262

辐射的入射束收集XRPD图。使用顶部填充方法将GDC-0077粉末样品填充到零背景支架上,并且以1或3.0°/min的扫描速度和0.02°或0.04°2θ(2θ)的步长在2-40°2θ范围内在bragg-brentano或平行束配置(反射几何)中获得扫描。使用商业软件(version 9,Materials Data Inc.,Livermore,CA)分析数据。

实施例5水吸附分析

在25℃和氮气流速为200mL/min将约5-6mg粉末样品置于自动化水吸附分析仪(Q5000SA,TA instruments,New Castle,DE)的样品盘中。最初将样品在0%RH“干燥”总共600分钟(在60℃,然后25℃),然后使其从0-90%逐渐增加RH,增量为10%,每个RH的停留时间为240分钟,dm/dt窗口为0.001%,持续30分钟。随后使用相同的方案逐渐减小RH,减量10%回到0%RH。对于水合物样品,该过程相反,其中起始RH保持在90%,然后逐步逐渐降低至0%,接着类似地逐步增加回90%。这样做是为了确保在实验开始时保留水合的水。

实施例6水活度

在电容传感器模式中使用Aqualab 4TEV(Decagon Devices,WA)作为水活度计,以获得溶剂混合物和浆液上清液在25±0.2℃的数据。使用供应商提供的标准品(饱和盐溶液)在0.25-1的aw范围内校准仪器。在稳定三次连续读数后获得所有aw值。

实施例7差示扫描量热法(DSC)

使用配备有冷藏冷却配件的DSC Q2000TM(TA instruments,New Castle,DE)分析约3-8mg粉末样品。将样品包装在非密封盘(TzeroTM,铝盘)中,并通常在干燥氮气吹扫下从20-250℃加热。使用蓝宝石(基线)和铟(温度和电池常数)校准仪器。使用商业软件(Universal Analysis 2000,version 4.7A,TA Instruments)分析数据。实验条件和盘配置如下:

实施例8热重分析法(TGA)

非等温实验:在热重分析仪(Discovery TGA,TA instruments)中,将3-4mg GDC-0077样品在开放的铝盘中以10℃/min的加热速率从RT加热至350℃和在干燥氮气吹扫下从RT加热至350°。使用

Figure BDA0002250726220000271

和镍进行温度校准。标准重量100mg和1gm用于重量校准。

等温实验:在热重分析仪(Q500 TGA,TA instruments)中,将3-4mg GDC-0077样品在开放的铝盘中以10℃/min的加热速率从RT加热至60℃,等温保持在60℃过夜。然后通过XRPD分析样品或在样品盘中在RT平衡4小时,然后使用与上述相同的实验参数在60℃等温重复。

实施例9偏振光显微术(PLM)

将样品分散在硅油中,并在配备有高分辨率CCD摄像机和电动载物台(ClemexTechnologies Inc.,Longueuil,Quebec,Canada)的视频增强的Leica DM 4000B显微镜的正交偏振片下以200X放大倍数观察。使用Clemex Vision PE软件(Clemex TechnologiesInc.,Longueuil,Quebec,Canada)获得显微照片。

实施例10扫描电子显微术(SEM)

将粉末样品溅射涂覆在SEM短截线(stub)上,然后使用台式Phenom SEM(Nanoscience Instruments,Inc.,AZ)检查。以不同的放大倍数获得显微照片。

实施例11粒度分布分析(PSD)

使用配备有Hydros 2000SM湿分散附件(Malvern Instruments Ltd.,Malvern,UK)的Malvern Mastersizer 2000仪器进行粒度分析。称取约30mg API到小瓶中,并加入1mL0.1%Span 85的庚烷溶液。将小瓶超声处理5秒,以1500rpm的搅拌速度向样品仪中加入约0.3mL,并在10-20%的遮蔽下进行PSD。然后将样品再超声处理10秒(总共15秒),向采样仪中加入约0.3mL,获得PLM图像,并进行PSD。然后将相同的样品超声处理另外15秒(总共30秒),加入约0.3mL,拍摄PLM照片并进行PSD。从超声处理研究中,选择适当的超声处理时间。PLM图像和PSD用于确定为了分散团块但防止或最小化晶体破裂需要对样品进行的超声处理量。将另外三个约10mg的样品称重到小瓶中,并加入1mL 0.1%Span 85的庚烷溶液。将样品超声处理持续超声处理研究中确定的超声处理时间。使用预定的超声处理时间进行最终的PSD分析,重复三次。将仪器用异丙醇(IPA)冲洗两次并用庚烷冲洗一次,然后对于每个样品填充0.1%Span 85的庚烷溶液。在最后一个样品进行试验后,用IPA冲洗仪器一次。

实施例12表面积分析

使用具有Micromeritics Smart VacPrep附件(Micromeritics InstrumentCorp.,GA)的Micromeritics ASAP 2460进行表面积测量。将500mg-1g的样品称重到空的ASAP 2460管中并置于Smart VacPrep上,在环境条件下脱气24小时,然后在25℃和100mmHg保持压力下暴露于Krypton气体吸附。在0.050-0.300的相对压力范围内进行11点测量,并使用供应商提供的MicroActive软件分析数据。

实施例13固态核磁共振光谱法(SSNMR)

使用500MHz Bruker仪器(Bruker BioSpin GmbH,Karlsruhe,Germany)进行所有13C(@8kHz旋转速度)SSNMR实验。使用CP/TOSS序列获得13C数据。收集1-2K扫描用于信号平均。使用4ms(毫秒)的接触时间和5秒的循环延迟。棘状突起的(spinal)64序列用于解偶联,脉冲长度为5.3微秒。采用2.9微秒的1H 90度脉冲长度。使用500MHzBruker仪器进行所有19F(@14kHz旋转速度)SSNMR实验。使用CP序列采集19F数据。收集64-256K扫描用于信号平均。使用750微秒的接触时间和7秒的循环延迟。采用3.54微秒的1H 90度脉冲长度。

尽管已出于清楚理解的目的通过示例说明及实施例相当详细地描述上述发明,但所述描述及实施例不应理解为限制本发明的范围。因此,可认为所有适当的修改及等同替换均落在随附权利要求限定的本发明范围内。本文所引用的所有专利及科学文献的公开的全部内容均以引用方式明确并入本申请。

52页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于烯烃聚合的二烃基-甲硅烷基-桥连的-取代环戊二烯基茂金属复合物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!