电动油泵系统

文档序号:1692226 发布日期:2019-12-10 浏览:34次 >En<

阅读说明:本技术 电动油泵系统 (Electric oil pump system ) 是由 金庆哲 丁相炫 金钟泫 李学成 金圣桓 杨大源 姜承宰 于 2018-12-10 设计创作,主要内容包括:本发明提供了电动油泵系统,以允许在配备有电动油泵的车辆中有效地执行电动油泵(EOP)和油泵控制器(OPU)的冷却。该系统包括电动油泵,该电动油泵中的泵送部分通过电机的动力操作以抽吸和引导加压油。并且油泵控制器操作电动油泵。水冷式冷却装置使用冷却剂冷却油泵控制器,且油冷式冷却装置使用油冷却电动油泵。水冷式冷却装置的冷却剂和油冷式冷却装置的油穿过热交换器,并且当冷却剂和油从热交换器中穿过时,实现热交换。(The invention provides an electric oil pump system to allow cooling of an Electric Oil Pump (EOP) and an oil pump controller (OPU) to be performed efficiently in a vehicle equipped with the electric oil pump. The system includes an electric oil pump in which a pumping portion is operated by power of a motor to suck and guide pressurized oil. And the oil pump controller operates the electric oil pump. The water-cooled cooling device cools the oil pump controller using coolant, and the oil-cooled cooling device cools the electric oil pump using oil. The coolant of the water-cooled type cooling device and the oil of the oil-cooled type cooling device pass through the heat exchanger, and heat exchange is achieved as the coolant and the oil pass through the heat exchanger.)

电动油泵系统

技术领域

本公开涉及车辆的油泵系统,更具体地,涉及电动油泵系统,该电动油泵系统冷却电动油泵(EOP)和油泵控制单元(OPU),以在配备有电动油泵的车辆中有效地执行冷却。

背景技术

在诸如汽油发动机车辆或柴油发动机车辆的常规发动机车辆中,已经使用了机械油泵(MOP),其连接到发动机并由发动机动力驱动,而电动油泵(EOP)已经用于没有发动机或发动机使用受限的环保车辆。例如,混合动力车辆配备有油泵,该油泵引导和供应驱动发动机离合器和变速器(transmission,传动装置)等所需的加压油。由于电动车辆驱动模式不使用发动机,也就是说在混合动力车辆中提供了电动车辆(EV)模式,因此一起提供了由发动机动力驱动的机械油泵(MOP)和由电机动力驱动的电动油泵(EOP)。

近来,在混合动力车辆中,已经消除了机械油泵或其容量已经降低以改善燃料效率,并且电动油泵的使用面积和频率已经增加。无论驱动车辆的发动机如何,车辆中的电动油泵都由单独的电机操作,提供了调节油的供应流量的优点。

电动油泵已经应用于混合动力电动车辆(HEV)以及使用电机作为没有发动机的车辆驱动源的环保车辆,例如通过利用由燃料电池产生的电功率驱动电机来操作的燃料电池电动车辆(FCEV),或通过利用电池的充电功率驱动电机来操作的纯电动车辆(EV)。另外,在使用电动油泵(下文中,称为“EOP”)的车辆中,例如,在混合动力车辆中,已经提供了EOP和油泵控制单元(OPU)(其是一种操作EOP的控制器)。

图1示出了根据相关技术将机械油泵(MOP)和EOP一起使用的示例。如图1所示,MOP3和EOP 4通过过滤器(strainer)2抽吸储存在油底盘1中的油并将加压油引导到阀体7,并且被引导的加压油通过阀体7供应到变速器8。

EOP 4包括电机4a和泵送部分4b,泵送部分4b的转子通过电机4a的动力而进行旋转以抽吸和引导加压油,并且电机4a由油泵控制单元5操作。在EOP 4中,电机4a的旋转轴和泵送部分4b的转子机械连接以传输扭矩。油泵控制单元(以下称为“OPU”)5包括:功率元件(即,开关元件),诸如IGBT,用于操作EOP 4的电机4a;用于连接或断开电源的功率模块和继电器,等等。由于OPU 5包括在操作期间产生热的功率元件、功率模块和继电器,因此需要冷却。

图2示意性地示出了根据相关技术的混合动力车辆的配置,并且示出了配备有EOP和自动变速器(AT)的并联类型混合动力电动车辆(HEV)的配置。如图2所示,在最近的混合动力车辆中,消除了连接到发动机的现有MOP以改善燃料效率,并且已经单独使用能够优化流量供应的EOP。

参考图2,混合动力车辆包括:作为车辆驱动源的发动机11和电机13;被布置成连接或断开发动机11和电机13之间的动力的发动机离合器12;用于改变发动机11和电机13的动力以将动力传输到驱动轴15的变速器14;以及与发动机11连接以便能够传送动力的混合动力起动机和发电机(以下称为“HSG”)16。此外,作为车辆驱动源(电源)的电池18通过逆变器17连接到电机13和HSG 16以进行充电或放电。为了操作电机13和HSG 16,逆变器17将电池18的直流电转换成三相交流电(AC)并将AC电流应用到电机和HSG。另外,OPU 20与EOP 19分开设置,并且水冷式冷却系统用于冷却相关技术中的OPU 20。

换句话说,当水泵(电动水泵,EWP)23被驱动而抽吸并引导加压冷却剂时,被引导的冷却剂在OPU 20、散热器21和贮存器22之间的冷却剂管路24中循环以冷却OPU。另一方面,由OPU 20操作的EOP 19也由电机驱动从而需要冷却。因此,需要能够有效冷却车辆中的EOP 19和OPU 20的技术。

本节公开的上述信息仅仅是为了增强对本发明背景的理解,因此它可包含不形成本国的本领域普通技术人员已知的现有技术的信息。

发明内容

因此,本公开提供了一种电动油泵系统,在该系统中可以有效地执行电动油泵(EOP)和油泵控制单元(OPU)的冷却。

为了实现上述目的,根据本公开的示例性实施例的电动油泵系统可包括:电动油泵,该电动油泵中的泵送部分通过电机的动力操作以抽吸和引导加压油;油泵控制器,其被配置成操作电动油泵;水冷式冷却装置,其被配置成使用冷却剂冷却油泵控制器;油冷式冷却装置,其被配置成使用油冷却电动油泵;以及热交换器,该热交换器被设置为,允许水冷式冷却装置的冷却剂和油冷式冷却装置的油穿过其中,并且在穿过的冷却剂和油之间实现热交换。

在示例性实施例中,电动油泵可为这样的油泵:该油泵被配置成将抽吸的加压油引导到阀体以通过阀体将油供应到变速器。此外,电动油泵和油泵控制器可由彼此一体地耦接的整体结构组成,并且热交换器介于其间。

另外,水冷式冷却装置可包括:散热器,该散热器被配置成散发冷却剂的热;冷却剂管路,连接散热器与热交换器;以及水泵,其被配置成抽吸和引导加压的冷却剂以使加压的冷却剂沿散热器和热交换器之间的冷却剂管路循环。另外,热交换器可包括冷却剂所穿过的冷却剂流动路径;并且热交换器和油泵控制器可彼此一体地耦接以能够进行热传递,以使得可通过穿过热交换器的冷却剂流动路径的冷却剂来实现对油泵控制器的冷却。

此外,油冷式冷却装置可包括:第一油流动路径,形成在电动油泵中,以将来自电动油泵的被引导的加压油中的油的一部分分开以在热交换器中流动;第二油流动路径,形成在热交换器中,与第一油流动路径连接,并且当来自第一油流动路径的油流入第二油流动路径时,允许所穿过的油和穿过热交换器的冷却剂流动路径的冷却剂之间的热交换;以及第三油流动路径,形成在电动油泵中,与第二油流动路径连接,并且当来自第二油流动路径的油流入第三油流动路径时,允许冷却电动油泵的电机。

另外,可在电动油泵的泵送部分处设置有抽吸油并使油流动的抽吸口和排出被引导的加压油的排出口;并且第一油流动路径可从出口侧流动路径分开,该出口侧流动路径是从电动油泵的泵送部分连接到排出口,以允许向排出口引导加压油流动,并且第一油流动路径与热交换器中的第二油流动路径连接。

第三油流动路径可从入口侧流动路径连接到热交换器中的第二油流动路径,该入口侧流动路径是与电动油泵的泵送部分处的抽吸口连接,以允许从抽吸口抽吸的油流动。因此,根据根据本公开的电动油泵系统,通过与冷却剂进行热交换的被冷却的油冷却EOP的电机,这可提高电机效率并增加电机中的电流密度,从而使设计能够进行改变,诸如尺寸减小。

结果,可实现泵电机的成本节省,并且可通过提高泵电机的效率来预期燃料效率改善。此外,通过集成OPU和EOP,有可能最小化连接两侧的电线(缆线)的使用,从而实现成本降低和重量减轻,并减少通过电线的电磁波噪声的发射,从而改善电磁波性能。此外,由此引起的电损耗可最小化,这导致电机效率和燃料效率的改善。

附图说明

现在将参考示出了附图的某些示例性实施例来详细描述本公开的上述和其他特征,它们在下文中仅以说明的方式给出,因此不是对本公开的限制,其中:

图1是示出根据相关技术的一起使用机械油泵和电动油泵的传统油泵系统的示意图;

图2是示出根据相关技术的配备有电动油泵和自动变速器的并联类型混合动力车辆(HEV)的结构的图;

图3是示出根据本公开的示例性实施例的电动油泵系统的配置的图;

图4是示出根据本公开另一示例性实施例的电动油泵系统的配置的图。

应当理解,附图不一定按比例绘制,而是呈现了说明本发明基本原理的各种特征的略微简化的表示。如本文所公开的本发明的具体设计特征,包括例如特定尺寸、取向、位置和形状,将部分地由特定的预期应用和使用环境所确定。在附图中,相同的附图标记在附图的若干图中指示本公开的相同或等同的部分。

具体实施方式

应当理解,本文使用的术语“车辆(vehicle)”或“车辆的(vehicular)”或其他类似术语包括广义的机动车辆,诸如包括运动型多功能车辆(SUV)、公共汽车、卡车、各种商用车辆在内的乘用车,包括各种船舶和船舶的水上运载工具,飞行器等,并且包括混合动力车辆、电动车辆、插电式混合动力电动车辆、氢动力车辆和其他替代燃料车辆(例如,源自石油以外的资源的燃料)。如本文所提到的,混合动力车辆是具有两种或更多种动力源的车辆,例如汽油动力和电动动力车辆。

尽管示例性实施例被描述为使用多个单元来执行示例性过程,但是应当理解,示例性过程也可由一个或多个模块执行。另外,应理解,术语控制器/控制单元是指包括存储器和处理器的硬件设备。存储器被配置成存储模块,并且处理器被特别配置成执行所述模块以执行下面进一步描述的一个或多个过程。

本文使用的术语仅用于描述特定实施例的目的,并不意图限制本公开。如本文所使用的,单数形式“一个”、“一”和“该”也旨在包括复数形式,除非上下文另有明确说明。将进一步理解,当在本说明书中使用时,术语“包括”和/或“包含”指定所陈述的特征、整体、步骤、操作、元件和/或部件的存在,但不排除存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或它们的组。如这里所使用的,术语“和/或”包括相关所列项目中的一个或多个的任何和所有组合。

在下文中,将参考附图详细描述本公开的示例性实施例,以使得本领域技术人员可以容易地实行本公开内容。然而,本公开内容不限于本文描述的这些示例性实施例,而是能够以其他形式体现。

图3是示出根据本公开的示例性实施例的电动油泵系统的配置的图。本公开提供了电动油泵系统,在该系统中可有效地执行电动油泵(EOP)110和油泵控制单元(OPU)130的冷却。配备有本公开的电动油泵系统的车辆可为环保型车辆,诸如混合动力车辆、燃料电池车辆或纯电动车辆,以及可为使用常规电动油泵的车辆。

在本公开中,电动油泵110可由电机111驱动,并且包括该电机111,该电机被配置成经由油泵控制器130从电池接收动力以被驱动;以及泵送部分112,该泵送部分的转子可通过电机111的动力而旋转以抽吸和输送(例如,引导、传输等)加压油。在电动油泵110处,电机111的旋转轴线和泵送部分112的转子可彼此机械连接以传输扭矩。本公开的电动油泵系统中的电动油泵的电机和泵送部分的配置与常规的电动油泵没有不同,并且是本领域技术人员公知的公知技术结构,在此省略其详细说明。

在本公开中,可应用任何电动油泵(其中电机的旋转轴和泵送部分的旋转轴连接以能够传输扭矩以允许泵送部分在转子被电机的扭矩旋转时抽吸和引导加压油),并且可采用已知的电动油泵之一。例如,有可能应用内齿轮式油泵,其是广泛用于混合动力车辆的一种电动油泵。

众所周知,在作为一种旋转齿轮泵的内齿轮式油泵中,泵送部分包括两个齿形转子,即内转子和外转子,并且内转子与电机的旋转轴连接,以能够传输扭矩。此外,本公开中的电动油泵可为具有泵送部分的叶片泵的形式,其中叶片安装在转子处,或为具有泵送部分的外齿轮式泵的形式,其中驱动齿轮安装在转子处并且驱动齿轮与从动齿轮接合。

此外,在本公开中,电动油泵110(下文中,称为“EOP”)包括电机111和泵送部分112,其被配置成通过油滤清器141抽吸油然后将加压油引导到阀体142以经由阀体142将加压油供应到变速器140(自动变速器,AT)。在电动油泵110中,当电机111由油泵控制器或控制单元130(以下称为“OPU”)操作时,由电机111的动力旋转的泵送部分112可被配置成抽吸调节后的流量的油并传输加压油。

在本公开中,由EOP 110供应的油可用作如上所述的自动变速器140中的操作流体,或可用作发动机离合器等中的操作流体,并且可用于润滑、冷却和提供车辆中的液压的目的。例如,当提供电机作为车辆驱动源,即,用于操作车辆的驱动电机时,可通过从本公开的EOP 110供应的油来冷却和润滑电机,并且可通过从本公开的EOP 110供应的油来润滑减速器。

OPU 130可包括:用于操作EOP 110的电机111的电源模块作为内部生热部件131,以及用于连接或断开电源的继电器。这里,功率模块可包括多个功率元件(即,开关元件),诸如IGBT(绝缘/隔离栅极双极晶体管)。如上所述,OPU 130的元件和部件都是在操作期间发热的生热部件,因此需要冷却。另外,EOP 110还具有在驱动期间从线圈等发热的电机111,因此,电机部件(诸如线圈)也需要冷却。

对于OPU 130和EOP 110的同时冷却和有效冷却,在本公开中,OPU 130可与EOP110整体组合,而不是相对于OPU 130(参考图1和图2)单独配置的常规EOP 110,OPU 130和EOP 110可通过在它们之间设置热交换器120而彼此整体地组合。另外,在本公开中,冷却装置可被配置成冷却待进行水冷却的OPU 130和待进行油冷却的EOP 110。

换句话说,如图3所示,根据本公开的电动油泵系统可包括EOP 110、配置成操作EOP 110的OPU 130、配置成冷却OPU 130的水冷式冷却装置101、被配置成冷却EOP 110的油冷式冷却装置102和被配置成允许水冷式冷却装置101的冷却剂和油冷式冷却装置102的油分别穿过并在冷却剂和油之间进行热交换的热交换器120。这里,热交换器120可与EOP 110和OPU 130集成,并且如在示例性实施例中那样,热交换器120可集成为***在OPU 130和EOP 110之间。

水冷式冷却装置101可具有用于常规电力电动部分(PE)的冷却装置配置,该常规电力电动部分使用车辆中的冷却剂来冷却生热部件。换句话说,水冷式冷却装置101可包括:散热器151,其被配置成放出冷却剂的热;贮存器152,其被配置成储存冷却剂;冷却剂管路154,其连接散热器151和贮存器152以及热交换器120;以及水泵153,其被配置成抽吸和引导加压油沿冷却剂管路154循环。水泵153可为电动水泵(EWP)。当该水泵153***作以抽吸和传输加压冷却剂时,冷却剂可沿冷却剂管路154在热交换器120、散热器151和贮存器之间循环。

尽管未在图3中详细示出,但是为了允许冷却剂有效地吸收由生热部件131(诸如OPU 130的动力元件)产生的热,可提供冷却剂流动路径,冷却剂可通过这些冷却剂流动路径在OPU 130的外壳或壳体中流动。例如,水护套形式的冷却剂流动路径可设置在外壳或壳体中,并且穿过冷却剂流动路径的冷却剂吸收来自OPU 130中的生热部件(例如,动力设备,动力模块、继电器131等等)的热,因此,可实现OPU 130的冷却。

此外,穿过OPU 130的冷却剂流动路径的冷却剂此后在穿过热交换器120中的冷却剂流动路径123的同时与油进行热交换,并且可从热交换器120放出以沿冷却剂管路154朝向散热器151流动,因此,冷却剂可在穿过散热器151的同时释放热。众所周知,在操作期间流入车辆的流动空气或由散热器风扇(未示出)吹送的空气穿过散热器151,并且在穿过散热器销周围的空气和穿过散热器芯的冷却剂之间实现热交换,因此,可从冷却剂释放热。

在上述配置中,OPU 130的外壳或壳体可包括入口,冷却剂可通过该入口流入以冷却诸如动力设备或动力模块等的生热部件131,并且入口可连接到外壳或壳体中的冷却剂流动路径(例如,冷却剂护套)。热交换器120可包括出口,通过该出口,可放出已经经历OPU130的冷却并且与油进行热交换的冷却剂。

出口可经由冷却剂管路154与散热器151连接,以将通过在热交换器120处的出口排出的冷却剂经由冷却剂管路154供应到散热器151。结果,在水冷式冷却装置101中,当水泵153操作以引导加压冷却剂时,被引导的冷却剂可沿冷却剂管路154移动,然后可通过入口流入OPU 130的外壳或壳体中的冷却剂流动路径,以在其中流动。这导致冷却剂在冷却剂流过冷却剂流动路径时冷却OPU 130,并且冷却剂在冷却OPU 130期间接收热,然后流到热交换器120。

然后,冷却剂在穿过热交换器120时与下面描述的油冷式冷却装置102的油进行热交换,在热交换器中从油接收热。另外,冷却剂可通过出口从热交换器120排出,然后通过冷却剂管路流到散热器151。冷却剂可通过从散热器151释放热来冷却,然后移动到贮存器152,然后,加压冷却剂可再次被水泵153抽吸并引导以沿冷却剂管路154循环。在该循环过程中,OPU 130可通过冷却剂连续冷却。

另外,在热交换器120中,可通过与冷却剂进行热交换来冷却油,然后在热交换器120中冷却的油可循环通过油冷式冷却装置102以冷却EOP 110的电机111。在上面的描述中,冷却剂可在穿过OPU 130的外壳或壳体中的冷却剂流动路径(水护套)之后流到热交换器120,但是如图3所示,冷却剂可直接通过冷却剂管路154供应到热交换器120。

可提供入口121和出口122二者,在入口121中冷却剂流入热交换器120,在出口122中在经受冷却OPU 130和与油的热交换之后的冷却剂被排出。热交换器120的入口121可通过冷却剂管路154与水泵153连接,并且热交换器120的出口122可通过冷却剂管路154与散热器151连接。特别地,当冷却剂穿过热交换器120中的冷却剂流动路径123时,冷却剂吸收由OPU 130产生的热,并且该冷却剂还与穿过热交换器120中的油流动路径124的油交换热。

在此配置中,热交换器120和OPU 130可集成为处于可热传递的接触状态,以通过穿过热交换器120的冷却剂来冷却OPU 130的生热部件131。然后,根据在热交换器120中的冷却剂和油的热交换,冷却剂从已经冷却EOP 110的电机111的油接收热,并且油可被热交换器120中的冷却剂冷却。

另一方面,在油冷式冷却装置102中,油流动路径可被配置成使得由EOP 110引导的加压油,即通过EOP 110供应到变速器140的油的一部分可在EOP 110内部分开以流到热交换器120,并且油流动路径可被配置成使得油移动到EOP 110的电机侧的内部以在分开的油穿过热交换器120之后冷却电机111。特别地,EOP 110的泵送部分112可包括抽吸口113和排出口118,通过该抽吸口113可抽吸油,并且通过该排出口118可引导和排出加压油。

抽吸口113可通过油管路144与油滤清器141侧连接,以允许通过自动变速器140循环的油被抽吸通过油滤清器141。排出口118可经由油管路143连接到阀体142,以经由阀体142将加压油供应到自动变速器140。此外,油冷式冷却装置102的油流动路径可具有这样的流动路径配置:从加压油被引导到的泵送部分112的出口侧流动路径117分开,即,从连接到泵送部分112处的排出口的出口侧流动路径117分开,并且穿过电机111、热交换器120以及再次穿过电机111的内部以与入口侧流动路径114连接。

换句话说,油冷式冷却装置102可包括第一油流动路径115,其中由EOP 110引导的加压油的一部分可在EOP 110内部分开以朝向热交换器120流动;第二油流动路径124,其设置在热交换器120内部并与第一油流动路径115连接;以及第三油流动路径116a和116b,其设置在EOP 110内部以允许用于冷却电机111的油穿过,并且第三油流动路径116a和116b可与第二油流动路径124连接。这里,第一油流动路径115可从加压油被引导到的泵送部分112的出口侧流动路径117分开。

因此,泵送部分112处的加压油中的油的一部分(例如,第一部分)可在出口侧流动路径117处朝向第一油流动路径115流动,而另一部分油(例如,第二部分)可在出口侧流动路径117处通过泵送部分112的排出口118排出以受到朝向阀体142的引导。此外,第一油流动路径115可与作为热交换器120内部的油流动路径的第二油流动路径124连接,并且第二油流动路径124可与作为用于冷却电机111的油流动路径的第三油流动路径116a和116b连接。

第三油流动路径可包括多个分开的流动路径116a和通过再次连结这些分开的流动路径而形成的流动路径116b,连结的流动路径116b可连接对油进行抽吸的泵送部分112的入口侧流动路径114,即与抽吸口113连接的入口侧流动路径114。

如图3所示,在EOP 110的电机111的内部,多个分开的流动路径116a可形成在电机111侧处的壳体内部,并且定位在转子和定子(未示出)的外部以包围它们。穿过分开的流动路径116a的油可稍后穿过连结的流动路径116b。因此,从EOP 110的泵送部分112引导到出口侧流动路径117的加压油中的油的一部分可被分成朝向第一油流动路径115流动,并且另外的加压油可被引导到阀体142然后供应到自动变速器140。

如上所述,分到第一油流动路径115并在其中流动的油可穿过热交换器120内部的第二油流动路径124。此时,当穿过热交换器120内部的第二油流动路径124时,油可与穿过热交换器120内部的冷却剂流动路径的冷却剂交换热。由于车辆中的冷却剂维持在特定温度(例如,大约80℃)以下,因此冷却剂可冷却热交换器120中的油,从而在油穿过热交换器120中的第二油流动路径124时通过与冷却剂的热交换而进行冷却。

此后,经冷却的油可在穿过电机111侧的壳体内的分开的流动路径116a的同时冷却电机111,并且已经冷却电机111的油可通过之后连结的流动路径116b朝向泵送部分112的入口侧流动路径114流动,然后在入口侧流动路径114处与通过抽吸口113从自动变速器140抽吸的油结合,以在压力下朝向泵送部分12的出口侧流动路径117引导。因此,在根据本公开的电动油泵系统中,由水泵153循环的冷却剂可冷却OPU 130的生热部件131,并且由EOP 110循环的油可冷却EOP 110的电机111。

此外,在热交换器120中,在冷却剂和油之间发生热交换,其中油可被冷却剂冷却,然后穿过热交换器的冷却剂可从散热器151排出。在本公开中,通过与冷却剂进行热交换而冷却的油可冷却EOP的电机,以提高电机效率并增加电机中的电流密度,从而允许诸如尺寸减小的设计变化。结果,有可能通过提高泵电机的效率来实现泵电机的成本降低和燃料效率提高的效果。

此外,通过将OPU和EOP集成在一起,有可能最小化连接两侧的电线(缆线)的使用,从而实现成本和重量的减少,并减少通过电线的电磁波噪声的发射,从而改善电磁波性能。此外,可最小化由于电线引起的电损耗,这促使电机效率和燃料效率的改善。

另一方面,图4是根据本公开另一示例性实施例的电动油泵系统的示意图,示出了其中油流动的方向和路线不同的示例性实施例的配置。

如图4所示,油流动的方向和路线不同于在泵送部分112和电机111中,以及在热交换器120中流动的油的方向和路线。如图所示,使油在电机111和热交换器120中与图3所示的示例性实施例相反地流动。

即使在图4中,由水泵153循环的冷却剂也冷却生热部件131,并且由EOP 110循环的油可冷却EOP 110的电机111。

此外,在热交换器120中,在冷却剂和油之间发生热交换,其中油可被冷却剂冷却,并且穿过热交换器的冷却剂然后可从散热器151排出热。

尽管已经参考示例性实施例描述了本公开,但是应该理解,本领域技术人员可在本公开的范围内修改和改变本公开的元件。另外,可以在不偏离本公开的基本领域的范围内对特定情况或材料进行许多改变。因此,本公开不限于本公开的示例性实施例的详细描述,而是将包括所附权利要求范围内的所有实施例。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种降阻力结构机油冷却器组件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!