一种具有水下自愈合能力和黏附性的硅橡胶薄膜的制备方法及其应用

文档序号:1730524 发布日期:2019-12-20 浏览:25次 >En<

阅读说明:本技术 一种具有水下自愈合能力和黏附性的硅橡胶薄膜的制备方法及其应用 (Preparation method and application of silicone rubber film with underwater self-healing capability and adhesiveness ) 是由 袁宁一 严昊 丁建宁 戴胜平 周小双 于 2019-09-30 设计创作,主要内容包括:本发明属于新型材料技术领域。具体涉及一种具有水下自愈合能力和黏附性的硅橡胶薄膜的制备方法及其应用,以对苯二甲醛、异氟尔酮二异氰酸酯、三(2-氨基乙基)胺,4,4’-二氨基二苯二硫醚及双(3-氨基丙基)封端的聚(二甲基硅氧烷)为原料,通过缩聚反应形成具有亚胺键,氢键和二硫键的三重可逆交联网络。通过上述反应制备的硅橡胶具有良好的机械性能,快速的水下自愈合性能以及优异的黏附性能和疏水性。本发明的自愈合硅橡胶制备方法简单,原料来源广泛,其多种优异的性能可用于自愈合防水防漏涂层,自愈合防水胶带和易碎材料的保护层等。这种黏性的自愈合硅橡胶在柔性机器人等领域具有广阔的应用前景。(The invention belongs to the technical field of novel materials. The preparation method comprises the steps of taking terephthalaldehyde, isophorone diisocyanate, tri (2-aminoethyl) amine, 4,4&#39; -diaminodiphenyl disulfide and bis (3-aminopropyl) terminated poly (dimethylsiloxane) as raw materials, and forming a triple reversible cross-linked network with imine bonds, hydrogen bonds and disulfide bonds through a polycondensation reaction. The silicone rubber prepared by the reaction has good mechanical properties, rapid underwater self-healing performance, excellent adhesion performance and hydrophobicity. The self-healing silicone rubber has the advantages of simple preparation method, wide raw material sources, and various excellent performances, and can be used for self-healing waterproof and leakproof coatings, self-healing waterproof adhesive tapes, protective layers of fragile materials and the like. The viscous self-healing silicon rubber has wide application prospect in the fields of flexible robots and the like.)

一种具有水下自愈合能力和黏附性的硅橡胶薄膜的制备方法 及其应用

技术领域

本发明属于新型材料技术领域,具体涉及一种具有水下自愈合能力和黏附性的硅橡胶薄膜的制备方法及其应用。

背景技术

聚硅氧烷基弹性体由于其独特的结构和Si-O-Si键的特性而具有优异的性质,然而存在不可逆的共价交联网络,传统的聚硅氧烷弹性体不能修复损伤也不可再循环使用。为了延长硅橡胶的使用寿命以及在受到损伤或断裂时能进行自我修复,大量研究投入到了自愈合聚硅氧烷弹性体的开发上。另外,聚二甲基硅氧烷(PDMS)是一种重要的粘合剂,广泛应用于电子组装,汽车,航空航天,建筑行业等许多领域,商业使用的PDMS由于不存在自修复的功能,作为粘合剂在被破坏后需使用新的粘合剂再次进行粘合,这极大地限制了其应用。因此,开发一种能够自我修复的PDMS能够很大程度上减少浪费并且增加粘合剂的重复使用率,具有更加广阔的应用前景。

近年来,随着物联网、人工智能和人机交换等技术的发展,柔性可穿戴产品受到越来越多的关注和认可。相比于传统柔性材料,硅橡胶有高可拉伸性、环境稳定性优异、生物相容性好等优点,逐渐被应用于能源存储、柔性驱动器和可拉伸传感器等领域。因此通过简单便捷的方法制备机械强度高,室温可自愈合或者其它环境如水下可自愈等多种功能的硅橡胶材料具有重大的研究意义。

发明内容

本发明所要解决的技术问题是提供一种具有优异拉伸性能,室温大气环境下或者水下短自愈合时间,高自愈合效率的硅橡胶,制得的硅橡胶胶带具有较高的黏附强度和多次重复使用的功能并且能与多种材料进行黏合。

本发明的设计思路是:以线性聚二甲基硅氧烷为基材,将亚胺键,二硫键和脲基基团同时引入到聚硅氧烷主链中,以脲基基团之间相互作用形成的氢键作为交联点,形成以氢键,亚胺键和二硫键为可逆键的交联网络结构。三(2-氨基乙基)胺(TREN)的引入是为了增加其交联度,加强硅橡胶的韧性和弹性。硅橡胶中分子之间作用力强度较弱的二硫键作为牺牲键可提高其机械性能,而亚胺键可增强自愈合性能,内部大量的氢键可以增强与各类材料结合力,提高其黏合强度。

本发明的技术方案为:首先以氯苯为溶剂,以对苯二甲醛、异氟尔酮二异氰酸酯、三(2-氨基乙基)胺,4,4’-二氨基二苯二硫醚及双(3-氨基丙基)封端的聚(二甲基硅氧烷)为原料,进行一锅缩聚反应,形成了具有亚胺键,氢键和二硫键的三重可逆键交联网络的硅橡胶。其中,异氟尔酮二异氰酸酯(IP)和三(2-氨基乙基)(TREN)胺作为交联剂增加其交联度。最后用与此硅橡胶黏合强度较小的聚丙烯膜保存已制得的硅橡胶薄膜胶带。

本发明中4,4’-二氨基二苯二硫醚的引入额外提供了大量的二硫键,使得硅橡胶材料在机械强度提高的情况下能够保持高的自修复效率;对苯二甲醛作为扩链剂来使用,减少氢键作用而产生的高交联度,使硅橡胶具有更好的柔性;同时,对苯二甲醛的醛基与氨基反应生成的可逆亚胺键在一定程度上可以提高硅橡胶的自修复性。

本发明中的三(2-氨基乙基)胺引入目的是在硅橡胶的交联网络中提供永久性的交联点,以弥补强度较弱的氢键作为交联点而导致的硅橡胶机械循环性能较差的问题,提高了材料的机械强度和机械循环性能。

本发明双重可逆键室温自愈合硅橡胶电容式压力传感器的制备方法如下:

(1)将双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2)、4,4’-二氨基二苯二硫醚(APD)、对苯二甲醛(TPA)按一定比例溶于氯苯中得到混合溶液,混合溶液在室温下搅拌20-30min,直至溶质完全溶解。

(2)将异氟尔酮二异氰酸酯(IP)和三(2-氨基乙基)胺(TREN)各自溶于氯苯,然后先后按比例溶于步骤(1)的混合溶液中,同时将溶液温度升高至50-70℃,待完全溶解后继续搅拌反应3小时。

(3)反应完成后将溶液倒入聚四氟乙烯模具中,并置于60-80℃的鼓风干燥箱中干燥24小时,得到自愈合的硅橡胶黏性薄膜,待硅橡胶冷却至室温后,将硅橡胶薄膜从模具中取出并保存于培养皿中,此硅橡胶薄膜为之后的实际使用胶带。

所述双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2)、4,4’-二氨基二苯二硫醚(APD)、对苯二甲醛(TPA)、异氟尔酮二异氰酸酯(IP)和三(2-氨基乙基)胺(TREN)的摩尔比为3:1:0-3:0-5:0-1;其中TPA上的醛基和IP上的异氰酸酯基需被其余原料上的氨基完全反应。

优选原料H2N-PDMS-NH2、APD、TPA、IP和TREN的摩尔比用量为3:1:2:2.5:0.5,反应完全后干燥24h得到的硅橡胶薄膜呈现黄色。所得硅橡胶薄膜的断裂伸长率为280%,断裂强度为483kPa,室温大气环境下15min内断裂伸长率能恢复至50%,自愈合效率为18%,30min内能恢复至173%,自愈合效率为62%,1h内能恢复至207%,自愈合效率74%,2h内能恢复至235%,自愈合效率为84%,5h内能恢复至263%,自愈合效率为94%,水下自愈合效率在5h内能达到90%以上,对铁片的黏附强度达到300kPa,综合性能达到最优。

步骤(1)中所述将H2N-PDMS-NH2溶于氯苯得到混合溶液,为保持反应正常进行,混合溶液中H2N-PDMS-NH2的浓度控制在200mg/mL左右(控制反应速度)。

为防止局部浓度过高而导致反应过快,步骤(2)中交联剂IP和TREN需先各自溶于氯苯,IP和TREN在氯苯中的浓度均控制在10mg/ml,然后在搅拌条件下慢慢滴入上述混合溶液,得到淡黄色透明粘稠状溶液。

步骤(3)中所述反应完成后将溶液倒入聚四氟乙烯模具中,并置于鼓风干燥箱中24h进行固化成膜。干燥时,前12h可将温度控制在60℃,后12h将温度升高至80℃,采用这种方法可以有效除去硅橡胶薄膜成形后残余的气泡并快速除去溶剂,使固化成膜达到最优效果。

步骤(3)所述自愈合硅橡薄膜的具体制备方法为:将步骤(1)中双(3-氨基丙基)封端的聚(二甲基硅氧烷)(Mn=1800g mol-1)(H2N-PDMS-NH2)反应完成后的混合溶液倒满至长10cm宽10cm的聚四氟乙烯模具中,干燥后的得到硅橡胶薄膜厚度为1mm。

本发明制备的自愈合硅橡胶,其多种优异的性能可用于自愈合防水防漏涂层,自愈合防水胶带和易碎材料的保护层等。这种黏性的自愈合硅橡胶在柔性机器人等领域具有广阔的应用前景。

有益效果:

本发明所用原料成本低,制作方法简单,制作周期短。本发明方法同时向聚二甲基硅氧烷主链上引入室温环境下快速可逆的亚胺键和二硫键,将氢键作为其超分子网络交联点,制得的硅橡胶具有在大气及水下快速的自愈合性能,无需外部额外的刺激条件在5h内能恢复90%以上的机械性能;优异的机械性能,实际使用胶带断裂伸长率为280%,最大断裂强度为483kPa,对各种材料具有较大的黏附强度;制备的硅橡胶胶带在遭到破坏后能够自我修复和重新黏合,无需更换新胶带,延长使用寿命并增加循环使用率;由于硅橡胶本身具备的疏水性和胶带良好的金属黏附性,可用于自修复金属防锈层等。

本发明制备的硅橡胶薄膜在水下具有与大气环境下相近自愈合性能,并且其本身具有较强的黏附性,可作为自修复的防水胶带进而用于各个方面,现有的文献并没有涉及到这方面的应用和功能。本发明的硅橡胶在机械性能以及自修复性能方面优于大部分现有的自愈合硅橡胶。

附图说明

图1为根据实施例1,2,3,对比实施例1,2制备的不同自愈合硅橡胶薄膜的断裂拉伸应力-应变曲线图;

图2为根据实施例1制备的室温下不同自愈合时间PDMS-1薄膜的应力-应变曲线图;

图3为根据实施例1制备的室温下不同自愈合时间PDMS-1薄膜的循环拉伸应力-应变曲线图;

图4为根据对比实施例1制备的室温下不同自愈合时间PDMS-4薄膜的循环拉伸应力-应变曲线图;

图5为根据实例1制备的PDMS-1薄膜在空气和水下相同时间下的自愈合效率对比图;

图6为根据实例2制备的PDMS-2薄膜在空气和水下相同时间下的自愈合效率对比图;

图7为根据实施例1制备的硅橡胶胶带对于不同材料表面黏附强度对比图;

图8为根据实施例1制备的PDMS-1薄膜对于水滴的接触角测量;

图9为根据实施例2制备的PDMS-2薄膜对于水滴的接触角测量;

图10为根据实施例1制备的同一硅橡胶胶带在铁片表面连续重复五次黏附强度的测量;

图11为根据实施例1制备的硅橡胶胶带对铁片表面防水防锈效果对比图(左:未帖胶带,右:黏附胶带;两者都放置在水环境下15天)

具体实施方式

下面通过实施例对本发明做进一步详细说明,这些实施例仅用来说明本发明,并不限制本发明的范围,结合实例说明实施方式,具体工艺如下:

实施例1

取5g双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2),0.23g4,4’-二氨基二苯二硫醚(APD)和0.25g对苯二甲醛(TPA)溶于25mL的氯苯,将溶液在室温下充分搅拌25min,待完全溶解后,将0.51g异氟尔酮二异氰酸酯和0.07g三(2-氨基乙基)胺(浓度均为0.1g/ml)的氯苯溶液分别缓慢滴入到上述混合溶液中。在60℃下搅拌3h后将混合溶液倒入长10cm宽10cm高5mm的聚四氟乙烯模具中,于60℃下干燥12小时,后将温度升高至80℃干燥12小时,得到的硅橡胶薄膜(PDMS-1)厚度在1mm左右,取出后保存于培养皿中。

实施例2

取7g双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2),0.32g4,4’-二氨基二苯二硫醚(APD)和0.35g对苯二甲醛(TPA)溶于30mL的氯苯,将溶液在室温下充分搅拌20min,待完全溶解后,将0.72g异氟尔酮二异氰酸酯和0.19g三(2-氨基乙基)胺的氯苯溶液(浓度均为0.1g/ml)分别缓慢滴入到上述混合溶液中。在60℃下反应3h后,将混合溶液倒入长10cm宽10cm高5mm的聚四氟乙烯模具中,于60℃下干燥24小时,得到的硅橡胶薄膜(PDMS-2)厚度在1.5mm左右,取出后用培养皿保存。

实施例3

取5g双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2)和0.23g的4,4’-二氨基二苯二硫醚(APD)溶于25mL的氯苯,将溶液在室温下充分搅拌30min,待完全溶解后,将0.93g异氟尔酮二异氰酸酯和0.07g三(2-氨基乙基)胺(浓度为0.1g/ml)的氯苯溶液分别缓慢滴入到上述混合溶液中。在60℃下反应2.5h后,将混合溶液倒入长7cm宽7cm高5mm的聚四氟乙烯模具中,于70℃下干燥24小时,得到的硅橡胶薄膜(PDMS-3)厚度在1mm左右并且较为透明,取出后用聚丙烯薄膜保存。

采用万能试用机分别对实施例1、2、3和对比实施例1中的硅橡胶薄膜进行机械性能合自愈性能研究。拉伸试验使用的样品大小为:50mm×10mm×1mm的长方体,拉伸加载速率为:50mm/min,测试结果为五次测试的平均值。如图1、3、4、5所示,PDMS-1,PDMS-2,PDMS-3,PDMS-4的断裂伸长率分别为280%,260%,1400%,380%,PDMS-1表现出最优的综合性能并且具有较快水下自愈速率。

硅橡胶胶带的黏附强度由搭接剪切拉伸模型进行测量。在进行黏附测试之前分别用丙酮、乙醇以及去离子水对金属片,有机板和玻璃板等进行超声清洗30min,在室温下进行干燥,然后将硅橡胶薄片贴附在各类材料,黏附面积为10mm×10mm。

对比实施例1

先后将5g双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2),0.23g 4,4’-二氨基二苯二硫醚(APD)和0.19g对苯二甲醛(TPA)溶于20mL的氯苯,将溶液在室温下充分搅拌30min,然后将0.51g异氟尔酮二异氰酸酯溶于5ml氯苯溶液(浓度为0.1g/ml),缓慢滴入到上述混合溶液中。60℃下继续搅拌反应3h后,将混合溶液倒入长7cm宽7cm高5mm的聚四氟乙烯模具中,于60℃下干燥12小时,后将温度升高至80℃同样干燥12小时,得到的硅橡胶薄膜(PDMS-4)厚度在1mm左右,取出后用聚丙烯薄膜保存。

与实施例1对比,未加TREN的机械强度以及回复性能明显比含有TREN的硅橡胶差。

对比实施例2

取5g双(3-氨基丙基)封端的聚(二甲基硅氧烷)(H2N-PDMS-NH2),0.18g4,4'-二氨基二苯基甲烷(结构与APD相似但不含二硫键)和0.25g对苯二甲醛(TPA)溶于25mL的氯苯,将溶液在室温下充分搅拌25min,待完全溶解后,将0.51g异氟尔酮二异氰酸酯和0.07g三(2-氨基乙基)胺(浓度均为0.1g/ml)的氯苯溶液分别缓慢滴入到上述混合溶液中。在60℃下搅拌3h后将混合溶液倒入长10cm宽10cm高5mm的聚四氟乙烯模具中,于60℃下干燥12小时,后将温度升高至80℃干燥12小时,得到的硅橡胶薄膜(PDMS-5)厚度在1mm左右,取出后保存于培养皿中。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种低气味异氰酸酯混合物、制备方法及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!