二氧化碳氧化丙烷临氢脱氢制丙烯和合成气的金属氧化物改性铂基催化剂及方法

文档序号:178104 发布日期:2021-11-02 浏览:23次 >En<

阅读说明:本技术 二氧化碳氧化丙烷临氢脱氢制丙烯和合成气的金属氧化物改性铂基催化剂及方法 (Metal oxide modified platinum-based catalyst for preparing propylene and synthesis gas by carbon dioxide oxidation propane hydrodehydrogenation and method ) 是由 刘忠文 任星 杨国庆 王磊 胡蓉蓉 宋永红 葛汉青 于 2021-07-29 设计创作,主要内容包括:本发明公开了一种二氧化碳氧化丙烷临氢脱氢制丙烯和合成气的金属氧化物改性铂基催化剂及方法,该催化剂的载体是SiO-(2)或Al-(2)O-(3),活性成分为Pt和Sn,助剂为CeO-(2)、MnO-(2)、ZrO-(2)、ZnO、TiO-(2)等金属氧化物中任意一种或多种;以催化剂的质量为100%计,Pt的负载量为0.1%~1.0%,Sn的负载量为0.5%~5.0%,助剂中金属元素的负载量为0.1%~5.0%;该催化剂采用浸渍法制备而成,制备工艺简单,成本低,经济环保。本发明催化剂对二氧化碳氧化丙烷临氢脱氢制丙烯和合成气不仅具有较高的丙烷和二氧化碳转化率,丙烯收率以及稳定性,而且能够富产氢气和一氧化碳。(The invention discloses a metal oxide modified platinum-based catalyst and a method for preparing propylene and synthesis gas by oxidizing propane with carbon dioxide and dehydrogenating the propane in hydrogen 2 Or Al 2 O 3 Active components of Pt and Sn and assistant of CeO 2 、MnO 2 、ZrO 2 、ZnO、TiO 2 Any one or more of metal oxides; based on the mass of the catalyst as 100%, the load capacity of Pt is 0.1-1.0%, the load capacity of Sn is 0.5-5.0%, and the load capacity of metal elements in the auxiliary agent is 0.1-5.0%; the catalyst is prepared by adopting an impregnation method, and has the advantages of simple preparation process, low cost, economy and environmental protection. The catalyst has high conversion rate of propane and carbon dioxide, propylene yield and stability, and can produce hydrogen and carbon monoxide in a rich way.)

二氧化碳氧化丙烷临氢脱氢制丙烯和合成气的金属氧化物改 性铂基催化剂及方法

技术领域

本发明属于催化剂技术领域,具体涉及一种用于二氧化碳氧化丙烷临氢脱氢同时制丙烯和合成气的金属氧化物改性铂基催化剂,及采用该催化剂催化二氧化碳氧化丙烷临氢脱氢同时制丙烯和合成气的方法。

背景技术

丙烯是重要基础化工原料,在现代石化工业中占有十分重要的地位。长期以来,丙烯主要利用石脑油等清油的蒸气热裂解和催化热裂解等工艺生产,但是存在设备投资高、原料处理能力较低、能耗高以及资源枯竭等问题。考虑到丙烯需求缺口大和丙烷综合利用率低两大重要问题,目前丙烷脱氢被看做是一条关键的高效生产丙烯的工艺。

目前从丙烷脱氢制丙烯的直接脱氢(PDH)、氧气氧化脱氢、二氧化碳等弱氧化剂氧化脱氢等现有可能途径看,尽管丙烷直接脱氢已实现工业化,但上述路线存在丙烯收率偏低、催化剂稳定性差等难题。对于丙烷直接脱氢而言,热力学分析结果表明,在反应体系中引入氢气,不利于PDH反应向正向进行,进而抑制的丙烯的生成。但动力学研究结果表明,丙烷临氢脱氢能够有效抑制催化剂上的积炭反应,提高催化剂稳定性的同时,明显降低了碳损失,显著提高了丙烯的收率。因此,从工业应用和动力学角度看,丙烷临氢脱氢具有重要的研究和应用价值。

二氧化碳氧化丙烷脱氢(CO2-ODP)不仅能够克服PDH能耗高和原料处理能力较低等问题,而且还可以实现温室气体CO2的资源化利用,有望成为一条节能且环境友好的绿色合成工艺,但现有催化剂普遍存在活性偏低、失活迅速等难题。

发明内容

本发明在综合分析现有PDH和CO2-ODP优缺点的基础上,提出在丙烷直接脱氢反应体系中同时引入H2和CO2,一方面利用反应体系中引入的CO2弱氧化剂来缓解丙烷直接脱氢的热力学平衡限制,提高丙烷的转化率,同时在反应体系中引入H2抑制积炭,提高催化剂的寿命和丙烯选择性;另一方面,利用丙烷和二氧化碳重整反应(CRP)、逆水煤气变换反应(RWGS)及二者的耦合效应,达到同时制取丙烯和合成气的目的。

本发明同时提供具有催化PDH、CRP以及RWGS功能的金属氧化物改性铂基催化剂,以满足用于二氧化碳氧化丙烷临氢脱氢同时制丙烯和合成气具有活性高、稳定性好的需求。

针对上述目的,本发明所采用的金属氧化物改性铂基催化剂的载体是SiO2或Al2O3,活性成分为Pt和Sn,助剂为CeO2、MnO2、ZrO2、ZnO、TiO2中任意一种或多种金属氧化物;以催化剂的质量为100%计,Pt的负载量为0.1%~1.0%,Sn的负载量为0.5%~5.0%,助剂中金属元素的负载量为0.1%~5.0%;该催化剂通过下述方法制备得到:

采用浸渍法,按照催化剂的组成,将活性成分的前驱体、助剂的前驱体溶于无水乙醇中,然后将所得溶液与载体粉末混合,于室温下静置6~12h,然后在60~110℃干燥4~10h,500~650℃焙烧3~6h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂。

上述金属氧化物改性铂基催化剂中,以催化剂的质量为100%计,优选Pt的负载量为0.3%~0.6%,Sn的负载量为0.5%~2.5%,助剂中金属元素的负载量1.0%~3.0%。

上述金属氧化物改性铂基催化剂中,优选助剂为CeO2、CeO2-MnO2、CeO2-ZnO或ZrO2-ZnO。

上述助剂为两种以上金属氧化物时,优选其中任意一种金属氧化物在助剂中所占摩尔比例都不低于10%。

上述催化剂制备方法中,所述活性成分Pt的前驱体为H2PtCl6·6H2O,Sn的前驱体为SnCl2·2H2O;所述助剂CeO2、MnO2、ZrO2、ZnO的前驱体为其金属硝酸盐,TiO2的前驱体为四异丙醇钛。

本发明催化剂催化二氧化碳氧化丙烷临氢脱氢制丙烯和合成气的方法为:将40~60目催化剂装填入微型固定床反应器的石英管中,向反应器中通入氢气和氩气的混合气,从室温升温到250~550℃,还原0.5~3h后,切换为氩气,继续升温至500~650℃,然后切换为反应气,所述反应气是二氧化碳气体、氢气、丙烷的体积比为0.5~5.0:0.5~3.0:1.0的混合气,在压力为0.05~0.15MPa下进行反应。

上述催化二氧化碳氧化丙烷临氢脱氢制丙烯和合成气的方法中,优选将40~60目催化剂装填入微型固定床反应器的石英管中,向反应器中通入氢气和氩气的混合气,从室温升温到400~500℃,还原1~2h后,切换为氩气,继续升温至580~630℃,然后切换为反应气,在压力为0.1~0.15MPa下进行反应。

上述反应气优选二氧化碳气体、氢气与丙烷体积比为1~2:1~1.5:1的混合气。

本发明的有益效果如下:

1、本发明将采用浸渍法制备的金属氧化物改性的铂基催化剂用于二氧化碳氧化丙烷临氢脱氢同时制丙烯和合成气反应中,其中助剂CeO2、MnO2、ZrO2、ZnO、TiO2等金属氧化物具有丰富的氧空位和优良的氧化还原性能,一方面能够提高活性组分分散度,促进丙烷高效转化,另一方面能够有效活化CO2。此外,通过严格控制添加的活性组分和助剂含量及其之间的比例,进而调控PDH、CRP、RWGS反应过程以及三者的耦合效应,达到同时高效生产丙烯和合成气的目的。

2、本发明方法一方面利用反应体系中引入的二氧化碳弱氧化剂来缓解丙烷直接脱氢的热力学平衡限制,提高丙烷的转化率,同时在反应体系中引入H2抑制积炭,提高催化剂的寿命。

具体实施方式

下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。

对比例1

以Al2O3为载体,Pt的负载量为1%,将26.8mg H2PtCl6·6H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥6h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为1%Pt/Al2O3

对比例2

以Al2O3为载体,Pt负载量为1%、Sn负载量为1.2%,将27.1mg H2PtCl6·6H2O和23.3mg SnCl2·2H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥6h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到的催化剂,记为1%Pt-1.2%Sn/Al2O3

实施例1

以Al2O3为载体,Pt负载量为0.5%、Sn负载量为0.6%、CeO2中Ce元素负载量为3%,将13.8mg H2PtCl6·6H2O、11.9mg SnCl2·2H2O和96.9mg Ce(NO3)3·6H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在60℃鼓风烘箱中干燥8h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-3%Ce/Al2O3

实施例2

以Al2O3为载体,Pt负载量为0.5%、Sn负载量为0.4%、CeO2中Ce元素负载量为3%,将13.8mg H2PtCl6·6H2O、7.9mg SnCl2·2H2O和96.7mg Ce(NO3)3·6H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在60℃鼓风烘箱中干燥8h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.4%Sn-3%Ce/Al2O3

实施例3

以Al2O3为载体,Pt负载量为0.5%、Sn负载量为0.6%、TiO2中Ti元素负载量为5%,将14.1mg H2PtCl6·6H2O、12.1mg SnCl2·2H2O和316.2mg C12H28O4Ti溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在110℃鼓风烘箱中干燥3h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-5%Ti/Al2O3

实施例4

以Al2O3为载体,Pt负载量为1%、Sn负载量为1.2%、MnO2中Mn元素负载量为3%,将28.0mg H2PtCl6·6H2O、24.0mg SnCl2·2H2O和144.5mg Mn(NO3)2·4H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥4h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为1%Pt-1.2%Sn-3%Mn/Al2O3

实施例5

以SiO2为载体,Pt负载量为0.5%、Sn负载量为0.6%、MnO2中Mn元素负载量为5%,将14.1mg H2PtCl6·6H2O、12.1mg SnCl2·2H2O和243.2mg Mn(NO3)2·4H2O溶于1.2mL无水乙醇中,然后将所得溶液与1.0g SiO2粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥4h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-5%Mn/SiO2

实施例6

以Al2O3为载体,Pt负载量为1%、Sn负载量为1.2%、ZnO中Zn元素负载量为3%,将28.0mg H2PtCl6·6H2O、24.0mg SnCl2·2H2O和143.9mg Zn(NO3)2·6H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥4h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为1%Pt-1.2%Sn-3%Zn/Al2O3

实施例7

以SiO2为载体,Pt负载量为0.5%、Sn负载量为0.6%、ZrO2中Zr元素负载量为2.5%、ZnO中Zn元素负载量为0.5%(Zr/Zn摩尔比=0.8/0.2),将13.8mg H2PtCl6·6H2O、11.9mg SnCl2·2H2O、125.1mg Zr(NO3)4·5H2O和21.7mg Zn(NO3)2·6H2O溶于1.2mL无水乙醇中,然后将所得溶液与1.0g SiO2粉末混合,于室温下静置6h,然后在110℃鼓风烘箱中干燥3h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-2.5%Zr-0.5%Zn/SiO2

实施例8

以Al2O3为载体,Pt负载量为0.5%、Sn负载量为0.6%、CeO2中Ce元素负载量为4.7%、MnO2中Mn元素负载量为0.3%(Ce/Mn摩尔比=0.85/0.15),将14.1mg H2PtCl6·6H2O、12.1mg SnCl2·2H2O、154.3mg Ce(NO3)3·6H2O和15.7mg Mn(NO3)2·4H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥4h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-4.7%Ce-0.3%Mn/Al2O3

实施例9

以Al2O3为载体,Pt负载量为0.5%、Sn负载量为0.6%、CeO2中Ce元素负载量为2.4%、TiO2中Ti元素负载量为0.6%(Ce/Ti摩尔比=0.6/0.4),将13.8mg H2PtCl6·6H2O,11.9mg SnCl2·2H2O,78.9mg Ce(NO3)3·6H2O和34.5mg C12H28O4Ti溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置8h,然后在110℃鼓风烘箱中干燥4h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-2.4%Ce-0.6%Ti/Al2O3

实施例10

以Al2O3为载体,Pt负载量为0.5%、Sn负载量为0.6%、CeO2中Ce元素负载量为2.7%、ZrO2中Zr元素负载量为2%、MnO2中Mn元素负载量为0.3%(Ce/Zr/Mn摩尔比=0.42/0.46/0.12),将14.1mg H2PtCl6·6H2O、12.1mg SnCl2·2H2O、89.1mg Ce(NO3)3·6H2O、100.5mg Zr(NO3)4·5H2O和14.6mg Mn(NO3)2·4H2O溶于1mL无水乙醇中,然后将所得溶液与1.0g Al2O3粉末混合,于室温下静置6h,然后在80℃鼓风烘箱中干燥4h,马弗炉中550℃下焙烧4h,自然冷却至室温,压片,造粒,过40~60目筛,得到催化剂,记为0.5%Pt-0.6%Sn-2.7%Ce-2%Zr-0.3%Mn/Al2O3

将对比例1~2和实施例1~10制备的催化剂用于催化二氧化碳氧化丙烷临氢脱氢同时制丙烯和合成气反应,具体试验方法如下:

将500mg 40~60目催化剂置于固定床反应器的石英管中,向反应器中通入H2与Ar体积比为1:9的混合气,流量为50mL·min-1,以5℃·min-1的升温速率从室温升至500℃,待温度稳定后,继续还原1h。随后关闭混合气,切换为Ar,以5℃·min-1的升温速率升温至600℃,待温度稳定后,切换为反应气,并以N2作为内标气,所述反应气是CO2、C3H8、H2的体积比为1:1:1的混合气,CO2、C3H8、H2和N2的流量分别为16、16、16和2mL·min-1,反应气体的总流量为50mL·min-1,在P=0.1MPa条件下反应。反应器流出的产物是在常州盘诺仪器有限公司生产的PANNA A91 Plus型气相色谱仪上进行分析的。反应的主要产物有CO2、CO、CH4、C2H6、C2H4、C3H8、C3H6、H2。用Ar当作色谱柱载气,TCD用于分析CO2、CO、H2的含量,FID则分析CH4、C2H4、C2H6、C3H6、C3H8的含量。为了对催化剂的稳定性进行定量比较,计算不同催化剂的相对失活率R(R=(X5-X80)/X5×100%,X5和X80分别代表反应5min和80min后的丙烷转化率),其中R值越大说明催化剂失活越快,也就是稳定性较差。实验结果见表1。

表1

由表1可见,与传统催化剂对比例1和2相比,本发明中经过金属氧化物改性的催化剂对二氧化碳氧化丙烷临氢脱氢制丙烯和合成气反应而言,在保持高丙烯选择性的同时,能够显著提高丙烷和二氧化碳转化率以及稳定性。更重要的是,通过引入金属氧化物,产氢量显著增加,提高了合成气的产率。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:R142b加热裂解制备VDF用高性能催化剂的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!