一种热休克蛋白抑制增敏光热治疗的杂化纳米组装体及其制备与应用

文档序号:1823258 发布日期:2021-11-12 浏览:15次 >En<

阅读说明:本技术 一种热休克蛋白抑制增敏光热治疗的杂化纳米组装体及其制备与应用 (Hybrid nano assembly for heat shock protein inhibition sensitization photothermal therapy and preparation and application thereof ) 是由 罗聪 单新竹 张申武 何仲贵 于 2021-08-19 设计创作,主要内容包括:本发明属于药物制剂联合治疗新辅料和新剂型技术领域,具体涉及光敏剂与热休克蛋白90(HSP90)抑制剂共组装纳米粒及其制备,HSP90抑制剂和光敏剂分子通过π-π堆积、疏水作用、氢键等分子间作用力共组装、或共组装后修饰PEG修饰剂,所述光敏剂/HSP90抑制剂的质量比为10:1~1:10,光敏剂和PEG修饰剂的质量比为10:90~90:10。本发明的共组装纳米制剂为开发药物的递送、光热治疗-化疗的联合应用提供新的策略和更多的选择,满足临床中对高效多样化疗联合光热治疗在制剂上的迫切需求。(The invention belongs to the technical field of new auxiliary materials and new dosage forms for combined treatment of pharmaceutical preparations, and particularly relates to co-assembled nanoparticles of a photosensitizer and a heat shock protein 90(HSP90) inhibitor and preparation thereof, wherein the HSP90 inhibitor and photosensitizer molecules are co-assembled through intermolecular forces such as pi-pi accumulation, hydrophobic effect, hydrogen bond and the like, or a PEG modifier is modified after co-assembly, the mass ratio of the photosensitizer to the HSP90 inhibitor is 10: 1-1: 10, and the mass ratio of the photosensitizer to the PEG modifier is 10: 90-90: 10. The co-assembled nano preparation provides a new strategy and more choices for developing drug delivery and combined application of photothermal therapy and chemotherapy, and meets the urgent need of high-efficiency diverse chemotherapy combined photothermal therapy on the preparation in clinic.)

一种热休克蛋白抑制增敏光热治疗的杂化纳米组装体及其制 备与应用

技术领域

本发明属于药物制剂联合治疗新辅料和新剂型技术领域,具体涉及一种光敏剂与热休克蛋白90(HSP90)抑制剂共组装形成的纳米粒,具体涉及包括光敏剂,HSP90抑制剂共组装纳米粒的构建以及其在药物传递中的应用。

背景技术

目前,人类健康不断受到多种恶性肿瘤的威胁。传统的癌症治疗方法,如手术、化疗、放疗均有自身的缺陷,仍未达到预期效果。长期以来,研究者致力于肿瘤治疗新策略的开发。光热疗法(PTT)作为一种无创治疗方式,以其时空选择性和高安全性受到了广泛的关注。近年来,已发现一系列有机光敏剂通过将近红外光转化为肿瘤局部热来发挥抗肿瘤活性。此外,大多数光敏剂的荧光特性使其在肿瘤实时成像和治疗监测方面具有天然优势,因此,PTT是一种成像介导的精准癌症治疗的通用治疗方案。然而,在实际应用过程中,单一的PTT效果却十分局限,通常不能完全根除肿瘤。其主要归结于细胞内存在的一些保护机制,在热刺激下诱导热休克蛋白(heat shock proteins,HSPs)过表达就是其中一种。研究表明,过量产生的热休克蛋白可以参与蛋白质热损伤的修复,增强肿瘤细胞的应激反应和热耐受性。例如,研究发现HSP90是一种重要的分子伴侣,参与调控与肿瘤生长进展相关的功能信号蛋白。基于这一原理,各种HSP90抑制剂已被用于提高PTT对肿瘤的治疗敏感性。

然而,尽管联合癌症疗法具有突出的优势,但要在体内实现多种药物的同步高效联合递送仍然具有挑战性。生物医学纳米技术已经从根本上改变了药物的递送方式。纳米药物递送系统(nano-DDS)的合理设计在药物递送方面显示出显著的优势,例如改善药物的理化性质,延长体内的药物作用时间,促进了药物的释放。然而,由于不同药物与载体材料之间的亲和力不同,将两种药物共同封装到常规的纳米DDS中会导致药物共载效率低,存在药物过早泄漏和剂量调整不便等诸多问题。此外,由于复杂的制备工艺和载体材料,纳米药物的临床应用一直受到极大的阻碍,并存在潜在的毒性。因此,有必要开发新的策略来进行治疗。

近年来,通过纯药物自组装的无载体纳米粒(NPs)在药物递送中有着广阔前景,特别是对于某些无需载体材料即可自组装成稳定NPs的抗癌药物,构建具有多种药物分子的杂化纳米组装体在联合疗法中更具潜力。

发明内容

基于背景技术所述的技术问题,本发明进一步为了解决光敏剂和HSP90抑制剂包载于聚合物中导致载药量低、药物泄露和辅料相关毒性等问题,设计一种光敏剂与HSP90抑制剂共组装纳米粒,从而实现载药量高、稳定性好、毒副作用低的技术效果,进而解决了单药的治疗效果不理想的问题,提高了化疗和光动力学的联合治疗效果。本发明的目的是以光敏剂与HSP90抑制剂形成共组装纳米粒,或光敏剂和HSP90抑制剂和PEG修饰剂组装而成的纳米粒。

本发明通过以下技术方案实现上述目的:

本发明所述的基于协同抑制热休克蛋白90(HSP90)增敏光热治疗的杂化纳米组装体,HSP90抑制剂和光敏剂分子通过π-π堆积、疏水作用、氢键等分子间作用力共组装、或共组装后修饰PEG修饰剂,光敏剂/HSP90抑制剂的质量比为1:1~10:1,光敏剂和PEG修饰剂的质量比为10:90~90:10。

本发明所述的基于协同抑制热休克蛋白90(HSP90)增敏光热治疗的杂化纳米组装体,光敏剂选自能产生光热效果的光敏剂DiR、ICG、IR820;所述的HSP90抑制剂选自藤黄酸(GA)、Geldanamyvin(GM)、Radicicol(RD)等具有抑制HSP90表达功能的代表性化合物。本发明所述的基于协同抑制HSP90增敏光热治疗的杂化纳米组装体,PEG修饰剂为PCL-PEG、DSPE-PEG、PLGA-PEG、PE-PEG中的一种或二种以上,PEG的分子量为200-20000。

本发明所述的基于协同抑制HSP90增敏光热治疗的杂化纳米组装体的制备方法,包括如下步骤:

将光敏剂和HSP90抑制剂分别溶解到有机溶剂中,搅拌下,将该溶液缓慢滴加到水中,自发形成均匀的共组装纳米粒,最后经旋蒸或透析除去有机溶剂;

或将共组装纳米粒制备完成后,制备PEG修饰剂的有机溶剂,然后在剧烈搅拌下将其滴加至共组装纳米粒中,最后经旋蒸或透析除去有机溶剂。

进一步的,所述的有机溶剂为乙醇、四氢呋喃、二甲基亚砜中的一种或任意两种的组合。进一步的,所述PEG修饰剂优选为DSPE-PEG2K

进一步地,所述光敏剂优选为DiR。

进一步地,所述无水乙醇溶剂中HSP90抑制剂的浓度为0.1-1mol/L。

进一步地,所述HSP90抑制剂优选为GA。

本发明提供了上述方法制备的光敏剂与HSP90抑制剂共组装形成的纳米粒。

本发明提供了前述HSP90抑制剂和光敏剂共组装形成的纳米粒在制备药物传递系统中的应用。

本发明提供了前述HSP90抑制剂和光敏剂共组装形成的纳米粒在制备抗肿瘤药物中的应用。

本发明提供了前述HSP90抑制剂和光敏剂共组装形成的纳米粒在制备注射给药、口服给药或局部给药系统中的应用系统中的应用。

本发明相对于现有技术具有的有益效果如下:

1.本发明制备了一种光敏剂与HSP90抑制剂形成的共组装纳米粒,可用于肿瘤治疗,光敏剂可以有效地引起肿瘤组织的升温,但其升温会代偿性地引起肿瘤细胞热休克蛋白90(HSP90)的表达,从而降低光热对肿瘤细胞的杀伤力。HSP90的抑制剂可以有效地降低热休克蛋白的表达,从而增强光热疗法的疗效。

2.本发明的光敏剂与HSP90抑制剂共组装纳米粒实现载药量高、稳定性好、毒副作用低等技术效果,满足临床中对高效低毒制剂的迫切需求,为同型协同药物纳米粒的组装提供了一个新策略,为联合给药纳米递送系统以及化疗-光热治疗提供了一个有效的纳米平台。

附图说明

为了更清楚地说明本发明实施例,下面将对实施例涉及的附图进行简单地介绍。

图1为本发明实施例1的DG纳米粒和DG PEG2K纳米粒外观照片。

图2为本发明实施例1的DG纳米粒和DG PEG2K纳米粒的透射电镜图。

图3为本发明实施例2的DiR和GA分子对接图。

图4为本发明实施例3的DG纳米粒和DG PEG2K纳米粒的胶体稳定性图。

图5为本发明实施例4的GA溶液剂、DG纳米粒、DG PEG2K纳米粒和DG和DG PEG2K纳米粒加光照中GA的累积释放情况。

图6为本发明实施例5的DiR溶液剂,DG纳米粒和DG PEG2K纳米粒的体外光热转换情况。

图7为本发明实施例6的DiR溶液剂,DG纳米粒和DG PEG2K纳米粒纳米粒的0.5小时细胞摄取共聚焦显微镜下照片。

图8为本发明实施例6的DiR溶液剂,DG纳米粒和DG PEG2K纳米粒纳米粒的2小时细胞摄取共聚焦显微镜下照片。

图9为本发明实施例6的DiR溶液剂,DG纳米粒和DG PEG2K纳米粒纳米粒的细胞摄取流式定量图。

图10为本发明实施例7的GA溶液剂,DiR溶液剂,DiR溶液剂+光照、DG纳米粒,DG纳米粒+光照,DG PEG2K纳米粒,DG PEG2K纳米粒+光照的4T1细胞毒结果。

图11为本发明实施例8的蛋白印迹结果图。

图12为本发明实施例9的DiR溶液剂,DG纳米粒和DG PEG2K纳米粒的血药浓度-时间曲线图。

图13为本发明实施例10中给予DiR溶液剂,DG纳米粒和DG PEG2K纳米粒小鼠活体成像。

图14为本发明实施例10中给予DiR溶液剂,DG纳米粒和DG PEG2K纳米粒小鼠离体器官荧光定量图。

图15为本发明实施例11中DiR溶液剂,DG纳米粒和DG PEG2K纳米粒体内光热转换热成像图。

图16为本发明实施例11中DiR溶液剂,DG纳米粒和DG PEG2K纳米粒体内光热转换温度-时间曲线图。

图17为本发明实施例12在体抗肿瘤实验的小鼠肿瘤生长曲线图。

图18为本发明实施例12在体抗肿瘤实验的小鼠荷瘤率统计图。

图19为本发明实施例12在体抗肿瘤实验的小鼠肿瘤蛋白印迹分析图。

图20为本发明实施例12在体抗肿瘤实验的小鼠离体肿瘤Ki67染色图。

图21为本发明实施例12在体抗肿瘤实验的小鼠离体肿瘤TUNEL染色图。

图22为本发明实施例12在体抗肿瘤实验的小鼠体重变化图。

图23为本发明实施例12组织病理切片图。

图24为本发明实施例12的肝肾功能分析结果。

具体实施方式

下面结合实施例对本发明进行详细的说明,但本发明的实施方式不限于此,显而易见地,下面描述中的实施例仅是本发明的部分实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,获得其他的类似的实施例均落入本发明的保护范围。

实施例1:DG纳米粒的制备

将不同摩尔比的DiR和GA溶解到无水乙醇中,得10mg/mL含药溶液。搅拌下,将该溶液缓缓滴加到2mL去离子水中,DiR和GA自发形成均匀的纳米粒,然后在25℃条件下于去离子水中透析除去纳米制剂中的有机溶剂,得到不含任何有机溶剂的纳米胶体溶液。

检测所制备的纳米制剂的粒径、粒径分布及DiR和GA的协同指数,结果见表1。

表1.DG纳米粒的粒径、粒径分布以及GA和PPa的协同指数

如表1所示,纳米粒的粒径都在80-200nm之间,协同指数0.35-0.75。其中DiR:GA=3:1时,DG纳米粒的分布较均匀,DiR和GA协同指数较高。初步优选DiR和GA的比例为3:1。

(1)非PEG化的DG纳米粒的制备方法:精密称取2mg DiR和0.33倍摩尔量的藤黄酸(GA),用240μL无水乙醇溶液将其溶解,搅拌下,将该溶液缓缓滴加到2mL去离子水中,自发形成均匀的DG纳米粒,然后在25℃条件下用去离子水透析除去纳米制剂中的有机溶剂,得到不含任何有机溶剂的纳米胶体溶液(图1)。

(2)PEG修饰的DG纳米粒的制备方法:精密称取2mg DiR和0.33倍摩尔量的藤黄酸(GA),用240μL无水乙醇溶液将其溶解,搅拌下,将该溶液缓缓滴加到2mL去离子水中,随后再精密称取0.6mg PEG修饰剂(DSPE-PEG2K),用乙醇溶解,配置成为10mg/mL的乙醇溶液,搅拌下,将该溶液缓缓滴加到上述体系中,得到均匀DG PEG2K纳米粒。然后在25℃条件下用去离子水透析除去纳米制剂中的有机溶剂,得到不含任何有机溶剂的纳米胶体溶液(图1)。

通过动态光散射法检测所制备的DG纳米粒和DG PEG2K纳米粒的粒径、粒径分布、Zeta电位和载药量,结果见表2。

表2.DG纳米粒的粒径、粒径分布、Zeta电位和载药量

通过透射电子显微镜测定实施例1中制备的DG纳米粒和PEG修饰的DG PEG2K纳米粒的粒径和形态,结果如图2,透射电镜图表明纳米粒为均一的球形,粒径在80nm左右。

实施例2:DiR和GA组装机理分析

通过计算机模拟,探索DiR和GA组装的机理,采用殷赋云计算平台的Vina方案完成分子对接计算。化合物DiR和GA在MMFF94力场下进行能量最小化获得3D结构,形成稳定纳米组装体。采用AutoDock Vina程序进行半柔性对接,结果如图3所示,DiR和GA分子之间存在多种作用力,如π-π堆积、疏水作用力和氢键作用,这些作用力对DiR和GA的共组装做出了巨大贡献。

实施例3:纳米粒的胶体稳定性试验

将实施例1中制备的DG纳米粒和DG PEG2K纳米粒取出1mL,加入到10mL含有10%FBS的磷酸盐缓冲液(PBS,pH为7.4)中,在37℃的条件下孵育72小时,并且在预定的时间点(0,1,2,4,6,8,12和24小时)通过动态光散射法测定其粒径变化。结果如图4所示,与非PEG修饰的DG纳米粒相比,DG PEG2K纳米粒胶体稳定性较好,在24小时内粒径没有发生明显的变化。优选PEG修饰的DG纳米粒。

实施例4:体外药物释放

通过体外透析方法评价了GA溶液剂,DG PEG2K纳米粒和DG PEG2K纳米粒+光照的释放行为。含有20%乙醇和1%Tween80的PBS(pH 7.4)作为释放介质。DG纳米粒+光照和DGPEG2K NPs+光照光照处理3分钟(808nm,3W/cm2)。然后将1mL GA溶液,DG纳米粒和DG PEG2K纳米粒(相当于0.21mg GA)添加到透析膜中,并在锥形瓶中放置30mL释放介质。将烧瓶置于37℃的摇床中。在预设的时间点(0小时,0.5小时,1小时,2小时,4小时,6小时,8小时,12小时)取出1mL释放介质,并将相同体积的介质加入锥形瓶中。通过HPLC确定GA的累积释放量。色谱分离条件:C18色谱柱(4.6×150mm,5μm);流动相A:乙腈,70%;流动相B:水,30%。流速为1.0mL/min,GA的检测波长为210nm。

我们探讨了GA溶液剂,DG纳米粒和DG PEG2K纳米粒在含有20%乙醇和1%Tween80的PBS(pH 7.4)中有光照照射3分钟(808nm,3W/cm2)的情况下是否促进释放。如图5所示,GA溶液显示出初始的突释行为,超过50%的GA在2小时内释放。相比之下,DG PEG2K纳米粒表现出持续释放的行为,在相同条件下只有约20%的GA被释放。有趣的是,由于对DiR进行光漂白破坏时,共组装体被破坏,光照辐照进一步加速了GA从纳米组装体中的释放。光照辐照促进的GA从纳米粒中的释放必将有益于其抗肿瘤作用。

实施例5:纳米粒的光热转换效率

利用红外热像仪测量DG PEG2K纳米粒和DG PEG2K纳米粒的光热转换效率。将DiR溶液剂、DG PEG2K纳米粒和DG PEG2K纳米粒稀释至0.2mg/mL,与PBS分别光照10min(808nm,3.0W/cm2),记录照射过程中的温度变化。结果如图6所示,上述四种溶液的温度随照射时间的增加而升高,在7min左右达到55℃,此温度下可以杀灭肿瘤细胞,达到抗肿瘤的目的。

实施例6:纳米粒的细胞摄取

采用共聚焦显微镜测定实施例1中制备的DG纳米粒和DG PEG2K纳米粒在4T1细胞中的摄取情况。将4T1细胞以2×104cells mL-1的密度接种到24孔板上,置培养箱中孵育24h使其贴壁,待细胞贴壁后加入DiR溶液、DG纳米粒和DG PEG2K纳米粒,DiR的浓度均为2μg mL-1,在37℃孵化0.5小时和2小时后,清洗细胞,进行细胞固定,最后用共聚焦显微镜分析细胞对各种制剂的摄取情况。实验结果如图7,图8所示。

收集细胞并分散在PBS中,通过流式细胞术考察各种制剂对DiR的摄取情况。实验结果如图9所示。

上述实验结果表明,摄取2小时实验组纳米粒处理的细胞比游离DiR处理的细胞具有更高的细胞内荧光强度。因此,制备的DG PEG2K纳米粒具有比游离DiR更高的细胞摄取效率。

实施例7:纳米粒的细胞毒性

采用MTT法考察DG PEG2K纳米粒对小鼠乳腺癌(4T1)细胞的细胞毒性。将状态良好的细胞消化,用培养液稀释至3000个细胞/毫升的细胞密度,吹匀后于96孔板中每孔加入细胞悬液200μL,置培养箱中孵育24h使其贴壁。待细胞贴壁后用含有GA溶液剂、DG纳米粒和DGPEG2K纳米粒的培养基培养细胞,每孔200μL。对照组用不含药液的培养基培养。涉及激光照射实验组,于给药后4小时,激光照射(808nm,3W cm-2),44小时后,将96孔板取出,每孔加入5mg mL-1MTT溶液20μL,置培养箱中孵育4小时后甩板,将96孔板倒扣于滤纸上充分吸干残留液体后,每孔加入200μL DMSO于振荡器上振荡10min以溶解蓝紫色结晶物。使用酶标仪在570nm处测定各孔调零后的吸光度值。

细胞毒性结果如图10所示,避光时,DiR溶液剂和GA溶液剂毒性很弱。光照后的DiR溶液剂组细胞毒性依然不够理想。纳米粒在光照条件下能够显著提升DiR溶液剂和GA溶液剂毒性,表明良好的协同细胞毒性。且相比之下,DG PEG2K纳米粒细胞毒性更强,这一结果与细胞摄取结果保持一致。

实施例8:蛋白质印记法

利用蛋白质印记法考察细胞内热休克蛋白的表达。取长满4T1细胞的培养皿,用GA溶液,DiR溶液,DG纳米粒,DG PEG2K纳米粒处理细胞。用加热模拟相应的光照组。然后通过RIPA裂解缓冲液裂解细胞。利用(BCA)测定法(Invitrogen,CA)确定细胞中的蛋白质浓度。用SDS-PAGE电泳分离蛋白质,并转移至PVDF。加入一抗并在4℃与细胞孵育过夜。二抗孵育后,添加ECL Western Blotting底物使蛋白质条带可视化。

如图11所示,在GA溶液剂可显著下调HSP90的表达。此外,在相同同样给于加热预处理的条件下,DG PEG2K纳米粒比DiR溶液剂和DG纳米粒对HSP90有着更为明显的下调作用,证实其光热增敏的效果。

实施例9:纳米粒的药代动力学研究

取体重在200-250g之间的SD大鼠,随机分组,给药前禁食12h,自由饮水。分别静脉注射DiR溶液剂以及实施例1制备的DG纳米粒和DG PEG2K纳米粒(均以DiR计1mg/kg),于规定的时间点眼眶取血,分离获得血浆。之后通过超声破碎、离心和沉淀蛋白法提取DiR,最后用酶标仪(激发748nm,发射780nm)检测各制剂的药动学行为。实验结果如图12所示,由于半衰期短,DiR溶液剂很快就被代谢清除。相比于溶液剂,DG PEG2K纳米粒的循环时间明显延长,明显提高了DiR的AUC,为药物在体内肿瘤的蓄积提高了很好基础。

实施例10:纳米粒的组织分布实验

将4T1细胞悬液接种于BALB/c小鼠,当肿瘤体积达到400mm3时,尾静脉注射给药:DiR溶液剂和DG纳米粒和DG PEG2K纳米粒(给药剂量均为5mg kg-1DiR)。于给药后0小时、2小时、4小时、8小时、12小时和24小时,将小鼠麻醉,进行活体成像分析。结果如图13所示。

选出各组中体内蓄积量最高的时间点,进行离体组织器官的荧光强度分析。结果如图14所示。

上述结果表明,与DiR溶液剂相比,DG PEG2K纳米粒组在肿瘤组织的荧光强度显著增加。且在12小时达到最大蓄积。这一结果与其药代动力学行为完全一致,DG PEG2K纳米粒稳定性最好,体内循环时间最长,因此表现出最好的肿瘤蓄积能力。

实施例11:纳米粒的体内光热转换效率

将4T1细胞悬液(107cells/100μL)接种于雌性小鼠腹侧皮下。待肿瘤体积生长至100mm3时,将小鼠随机分组,每组3只,分别给与PBS、DiR溶液剂、实施例1制备的DG纳米粒和DG PEG2K纳米粒,给药剂量为5mg kg-1。于各组在活体成像中“最高蓄积”时间点对小鼠肿瘤部位进行激光照射(808nm,3W cm-2,5min),记录照射过程中的温度变化。结果如图15和16所示,DG PEG2K纳米粒在肿瘤部位的温度升高(超过50℃)高于DiR溶液剂,DG纳米粒(43℃左右),表现出优异的光热转换活性。这一结果归因于制剂本身的良好的光热转换性能、药代动力学行为和体内肿瘤积累能力。

实施例12:纳米粒的体内抗肿瘤实验

将4T1细胞悬液(107cells/100μL)接种于雌性小鼠腹侧皮下。待肿瘤体积生长至100mm3时,将小鼠随机分组,每组5只,分别给与PBS、DiR溶液剂、DiR溶液剂+光照、GA溶液剂、DG溶液剂、DG溶液剂+光照、实施例1制备的DG纳米粒和DG纳米粒+光照,DG PEG2K纳米粒和DG PEG2K纳米粒+光照。每隔1天给药1次,连续给药5次,按DiR计,给药剂量为5mg kg-1。光照组在给药4小时后给予光照治疗,每天观察小鼠的存活状态,称体重,测量肿瘤体积。最后一次给药后,间隔1天后将小鼠处死,获取器官和肿瘤,进一步分析评价。收集主要器官(心脏,肝脏,脾脏,肺,肾脏)并用4%组织固定液固定用于H&E染色。

肿瘤生长曲线及荷瘤率如图17,18所示,PBS、DiR溶液剂和GA溶液剂组肿瘤体积迅速增加。DiR溶液剂在光照下可在一定程度上抑制肿瘤生长,但其性能十分有限。DG溶液剂组在光照下的抗肿瘤活性高于GA溶液剂或DiR溶液剂+光照组,表明DiR和GA对HSP90的抑制能够对PTT具有良好的增敏作用。

肿瘤组织蛋白分析如图19所示,结果表明,与单独光热处理(DiR溶液剂+光照)相比,激光照射下DG溶液剂和DG PEG2K纳米粒对肿瘤HSP90有明显的抑制作用,表明其能有效抑制光热治疗中HSP90的代偿性高表达。这一结果与体外蛋白分析结果高度一致,为体内协同抗肿瘤疗效提供了有力的解释。

如图20,21所示的Ki67和TUNEL染色显示,DG PEG2K纳米粒组肿瘤细胞增殖降低,凋亡水平上升。佐证了其抗肿瘤能力。

如图22所示,各实验组小鼠体重没有明显变化。从图23,24可知,各组小鼠的主要脏器功能无明显异常,这些结果说明DG PEG2K纳米粒在具有明显的抗肿瘤效果的同时,没有对机体造成显著的非特异性毒性,是安全有效的抗癌药物传递系统。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种智能响应性壳-核式聚电解质纳米凝胶的制备方法与应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类