磺酸化透明质酸类化合物、其制备方法及其应用

文档序号:1932056 发布日期:2021-12-07 浏览:9次 >En<

阅读说明:本技术 磺酸化透明质酸类化合物、其制备方法及其应用 (Sulfonated hyaluronic acid compound, preparation method and application thereof ) 是由 王春明 陈佳羲 谢达平 张哲� 于 2021-10-19 设计创作,主要内容包括:本发明涉及医学,材料化学,糖生物学等交叉技术领域,具体而言,涉及磺酸化透明质酸类化合物、其制备方法及其应用。磺酸化透明质酸类化合物的结构式如下所示:其中,R为碱金属阳离子或氢,R1、R2、R3和R4分别独立地选自氢或磺酸盐离子,且R1、R2、R3和R4不能同时为氢,10&lt;n&lt;4000且n为整数。其与LTBP蛋白具有更强的相互作用力,从而阻止LTBP和ECM结合,使得机械力不足从而无法活化TGF-β,从信号传导的源头抑制纤维化。(The invention relates to the crossed technical fields of medicine, material chemistry, glycobiology and the like, in particular to a sulfonated hyaluronic acid compound, a preparation method and application thereof. The sulfonated hyaluronic acid compound has the following structural formula: wherein R is an alkali metal cation or hydrogen, R1, R2, R3 and R4 are each independently selected from hydrogen or a sulfonate ion, and R1, R2, R3 and R4 cannot be hydrogen at the same time, 10&lt;n&lt;4000 and n is an integer. It has a stronger interaction with LTBP protein, preventing LTBP and ECM binding, rendering the mechanical force insufficient to activate TGF- β, inhibiting fibrosis from the source of signaling.)

磺酸化透明质酸类化合物、其制备方法及其应用

技术领域

本发明涉及医学,材料化学,糖生物学等交叉技术领域,具体而言,涉及磺酸化透明质酸类化合物、其制备方法及其应用。

背景技术

纤维化是许多疾病致残、致死的主要原因,可发生于多种器官,具体地,纤维化与肝硬化、肝炎、非酒精性脂肪性肝炎、慢性肾脏病、心肌梗塞、心脏衰竭、特发性肺纤维化、糖尿病,以及硬皮病等多种疾病有关,严重威胁人类健康和生命。

截至2020年,尚无得到监管机构批准的药物可以避免或逆转纤维化过程。目前临床主要使用以代谢过程为靶点的具有部分抑制或缓解纤维化的药物为主。其中以小分子药物为主的多数抗纤维化药物都具有抗纤维化,抗炎,抗氧化作用,能够延缓纤维化导致的脏器功能下降和疾病进展,但其具体药理基础并不清楚且效果较弱。还有一些药物主要作用靶点是TGF-β-smad通路下游的蛋白及受体,其药理作用机理明确,但临床使用仅能起到改善纤维化作用或只在早期有效,且具有一定不良反应。目前研究主要集中在开发小分子药物以及在信号通路下游抑制纤维化。

在纤维化发生、发展过程中,TGF-β具有活化HSC、促进胶原蛋白基因表达、促进ECM合成与沉积等作用,是纤维化最重要的始动因子之一。TGF-β可以通过TGF-β-smad信号通路调节生理过程并发挥作用,目前大多数研究集中在对TGF-β下游信号的调控。但是少有对TGF-β活化过程的调控,在信号通路源头抑制,从而实现抗纤维化作用的研究,更没有药物能够从信号通路源头抑制,从而实现抗纤维化。

鉴于此,特提出本发明。

发明内容

本发明的目的在于提供磺酸化透明质酸类化合物、其制备方法及其应用。该磺酸化透明质酸类化合物与LTBP蛋白具有更强的相互作用力,从而阻止LTBP和ECM结合,使得机械力不出从而无法活化TGF-β,从信号传导的源头抑制纤维化。

本发明是这样实现的:

第一方面,本发明提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R为碱金属阳离子或氢,R1、R2、R3和R4分别独立地选自氢或磺酸盐离子,且R1、R2、R3和R4不能同时为氢,10<n<4000且n为整数。

第二方面,本发明提供一种前述实施方式所述的磺酸化透明质酸类化合物的制备方法,参照下述合成路径合成所述磺酸化透明质酸类化合物:

第三方面,本发明提供一种透明质酸纳米粒子,其结构式如下所示:

其中,R1、R2、R3和R4为磺酸盐离子,10<n<4000且n为整数。

第四方面,本发明提供一种透明质酸纳米粒子的制备方法,参照下述合成路径合成透明质酸纳米粒子:

第五方面,本发明提供一种糖生物材料,其包括前述实施方式所述的磺酸化透明质酸类化合物或前述实施方式所述的透明质酸纳米粒子。

第六方面,本发明提供一种前述实施方式所述的磺酸化透明质酸类化合物或前述实施方式所述的透明质酸纳米粒子或前述实施方式所述的糖生物材料在制备抑制纤维化的药物中应用;

优选地,纤维化包括组织纤维化;

更优选地,纤维化包括肺纤维化、肝脏纤维化、心脏纤维化、胰腺纤维化和肾脏纤维化;

更优选地,药物为抑制TGF-β的活化的药物。

本发明具有以下有益效果:本发明实施例提供的磺酸化透明质酸类化合物可以与LTBP具有更高的亲和力,从而阻止LTBP和ECM结合,使得机械力不出从而无法活化TGF-β,从信号传导的源头抑制纤维化,继而改善或者治疗纤维化,继而治疗物质纤维化。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。

图1为本发明实施例1-9提供的磺酸化透明质酸类化合物的表征结果图;

图2为本发明实施例10提供的4-(1-芘基)丁酰胺的核磁表征结果图;

图3为本发明实施例10-12提供的透明质酸纳米粒子的核磁表征结果图;

图4为本发明实施例10-12提供的透明质酸纳米粒子的粒径和形貌表征图;

图5为本发明实验例1提供的检测图;

图6为本发明实验例2提供的检测图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

TGF-β发挥作用需要以活性TGF-β的形式,新合成的TGF-β以非共价键形式与潜在相关肽(LAP)形成没有活性的小休眠复合体,LAP再以二硫键与LTBP(潜在TGF-β结合蛋白)形成大的休眠复合物。TGF-β的活化需要LTBP与细胞外基质(ECM)相互作用并产生一定强度的机械力以牵引促进TGF-β掉“紧身衣”LAP从而成为活性TGF-β。因此,发明人研究通过调节使TGF活化过程中的机械力不足从而抑制其活化,可以减少活性TGF-β的形成,从而从根源处抑制纤维化,因此,本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R为碱金属阳离子或氢,R1、R2、R3和R4分别独立地选自氢或磺酸盐离子,且R1、R2、R3和R4不能同时为氢,10<n<4000且n为整数。本发明实施例提供的磺酸化的透明质酸与LTBP具有很强的亲和性,LTBP在正常生理情况下可以与ECM结合提供足够的机械力促进TGF-β活化,而磺酸化的透明质酸可以与LTBP具有更高的亲和力,从而阻止LTBP和ECM结合,使得机械力不出从而无法活化TGF-β,从信号传导的源头抑制纤维化。

具体地,R为钠离子或钾离子或氢,R1、R2、R3和R4分别独立地选自氢或磺酸盐离子,且R1、R2、R3和R4不能同时为氢。

第二方面,本发明提供一种前述实施方式所述的磺酸化透明质酸类化合物的制备方法,参照下述合成路径合成所述磺酸化透明质酸类化合物:

具体地,将原料透明质酸溶解后再与TBAOH混合进行反应,而后冻干形成透明质酸中间体粉末,接着,将透明质酸中间体粉末与磺化试剂混合,并将反应体系pH调至8~9,而后透析。上述原料透明质酸可以采用任意分子量的透明质酸,例如,原料透明质酸的分子量为1500Kd以下;优选地,原料透明质酸的分子量为<10Kd、100-200Kd和800Kd-1500Kd中的任意数值。采用的磺化试剂也可以采用现有的磺化试剂,例如,磺化试剂选自吡啶三氧化硫。

第三方面,本发明实施例提供透明质酸纳米粒子,其结构式如下所示:

其中,R1、R2、R3和R4为磺酸盐离子,10<n<4000且n为整数。本发明实施例采用4-(1-芘基)丁酰胺与磺酸化透明质酸共价结合形成亲疏水端,可以自主装成形成四周是透明质酸链的拂尘状纳米粒子,并且通过调节4-(1-芘基)丁酰胺的量可以调节不同的纳米粒子大小和紧实程度。透明质酸多糖链可以在组织中富集LLC大复合物,并阻止其ECM接触从而活化TGF-β,起到抑制TGF-β活化的作用。

第四方面,本发明实施例提供透明质酸纳米粒子的制备方法,参照下述合成路径合成透明质酸纳米粒子:

具体地,对上述磺酸化透明质酸类化合物进行离子交换形成磺酸化透明质酸中间体,而后,再与活化剂混合,接着,再与4-(1-芘基)丁酰胺混合并进行透析。

第五方面,本发明提供一种糖生物材料,其包括前述实施方式所述的磺酸化透明质酸类化合物或前述实施方式所述的透明质酸纳米粒子。

第六方面,本发明提供一种前述实施方式所述的磺酸化透明质酸类化合物或前述实施方式所述的透明质酸纳米粒子或前述实施方式所述的糖生物材料在制备抑制纤维化的药物中应用;其中,纤维化包括组织纤维化;

例如,纤维化包括肺纤维化、肝脏纤维化、心脏纤维化、胰腺纤维化和肾脏纤维化;药物为抑制TGF-β的活化的药物。

以下结合实施例对本发明的特征和性能作进一步的详细描述。

实施例1

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:其中,R1=SO3 -,R2=H,R3=H,R4=H;10<n<30。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法,包括:

将3g低分子量透明质酸(其分子量为<10Kd)溶于300ml去离子水中并与6ml 25%四丁基氢氧化钠铵常温搅拌反应2h,冻干得到可溶于有机试剂的透明质酸中间体粉末。取300mg透明质酸中间体粉末溶于无水二甲基甲酰胺中搅拌分散,取吡啶三氧化硫——低取代度(0.9g)溶于二甲基甲酰胺中后冰浴下加入透明质酸溶液,反应1h后加入水终止反应,用氢氧化钠调节pH8.5,在水中透析2天,冻干得到磺酸化透明质酸类化合物,记为S-HA-1。

需要说明的是,低取代度磺酸化透明质酸:R1=SO3 -,R2=H,R3=H,R4=H;中取代度磺酸化透明质酸:R1=SO3 -,R2=SO3 -,R3=H,R4=H;高取代度磺酸化透明质酸:R1=SO3 -,R2=SO3 -,R3=SO3 -,R4=SO3 -

低分子量透明质酸:(<10Kd):10<n<30;中分子量透明质酸:(100Kd~200Kd):260<n<530;高分子量透明质酸:(800Kd~1500Kd):2100<n<4000。

实施例2

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:其中,R1=SO3 -,R2=SO3 -,R3=H,R4=H;10<n<30。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,吡啶三氧化硫——中取代度(2.28g)透明质酸原料为:低分子量透明质酸,记为S-HA-2。

实施例3

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=SO3 -,R3=SO3 -,R4=SO3 -;10<n<30。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,吡啶三氧化硫——高取代度(3.66g)透明质酸原料为:低分子量透明质酸,记为S-HA-3。

实施例4

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=H,R3=H,R4=H;260<n<530。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,采用的透明质酸的分子量为100Kd~200Kd,吡啶三氧化硫——低取代度,记为S-HA-4。

实施例5

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=SO3 -,R3=H,R4=H;260<n<530。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,采用的透明质酸的分子量为100Kd~200Kd,吡啶三氧化硫——中取代度(2.28g),记为S-HA-5。

实施例6

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=SO3 -,R3=SO3 -,R4=SO3 -;260<n<530。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,采用的透明质酸的分子量为100Kd~200Kd,吡啶三氧化硫——中取代度(2.28g),记为S-HA-6。

实施例7

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=H,R3=H,R4=H;2100<n<4000。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,采用的透明质酸的分子量为高分子量透明质酸800Kd~1500Kd,吡啶三氧化硫——低取代度,记为S-HA-7。

实施例8

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=SO3 -,R3=H,R4=H;2100<n<4000。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,采用的透明质酸的分子量为高分子量透明质酸800Kd~1500Kd,吡啶三氧化硫——中取代度,记为S-HA-8。

实施例9

本发明实施例提供一种磺酸化透明质酸类化合物,其结构式如下所示:

其中,R1=SO3 -,R2=SO3 -,R3=SO3 -,R4=SO3 -;2100<n<4000。

本发明实施例提供一种磺酸化透明质酸类化合物的制备方法与实施例1提供的制备方法基本相同,区别在于,采用的透明质酸的分子量为高分子量透明质酸800Kd~1500Kd,吡啶三氧化硫——高取代度,记为S-HA-9。

利用核磁共振技术对实施例1-实施例9合成得到的磺酸化透明质酸类化合物,即对S-HA-1至S-HA-9进行表征,结果参见图1,具体分析如下:箭头标注表示C-6中亚甲基质子的峰移,三角形表示相邻羟基的峰移,表明S-HA-1,S-HA-2和S-HA-3比分子量<10Kd的HA-1的磺酸化取代程度逐渐增加;表明S-HA-4,S-HA-5和S-HA-6比分子量100Kd-200Kd的HA-2的磺酸化取代程度逐渐增加;表明S-HA-7,S-HA-8和S-HA-9比分子量800Kd-1500Kd的HA-3的磺酸化取代程度逐渐增加。

利用电位仪对实施例1-实施例9合成得到的磺酸化透明质酸类化合物,即对S-HA-1至S-HA-9进行磺酸化取代程度进行表征。检测结果参加图1。具体分析可知,各组电位逐渐减少表明磺酸化取代程度越来越高。

实施例10

本发明实施例提供一种透明质酸纳米粒子,其结构式如下所示:

2100<n<4000。

本发明实施例提供一种透明质酸纳米粒子,包括:

S1、制备4-(1-芘基)丁酰胺;

将500mg芘丁酸(1.73eq)溶于10ml无水二甲基甲酰胺中,加入1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶鎓3-氧化物六氟磷酸盐(HATU)1970mg(3eq)和丙二胺903mg(5.19eq)和二异丙基乙基胺(DIPEA)669mg(5.19eq)常温搅拌反应16h,得到羧基连接乙二胺的酯。并用乙酸乙酯和二氯甲烷1:1萃取除去副反应产物和未反应完全的原料,并用反相硅胶色谱柱得到纯4-(1-芘基)丁酰胺。

利用核磁共振技术4-(1-芘基)丁酰胺其进行表征。结果参见图2,具体分析如下:化学位移8-8.5表现出明显的九个苯环氢,化学位移3.5处的两个氢表示乙二胺成功共价连接,表明PBA成功合成。

S2、合成透明质酸纳米粒子;

将实施例9制备得到的磺酸化透明质酸类化合物过离子交换树脂,将透明质酸钠置换成磺酸化透明质酸,冻干,得到磺酸化透明质酸中间体,100mg溶于10ml二甲基亚砜,溶解后加入50mg碳二亚胺和30mgN-羟基琥珀酰亚胺,活化30min后加入4-(1-芘基)丁酰胺60mg,超声溶解,常温搅拌16h,在水中透析2天,冻干得到透明质酸纳米粒子,记为S-HA-PBA-1。

实施例11

参照实施例10提供的制备方法制备该透明质酸纳米粒子,区别在于,采用4-(1-芘基)丁酰胺用量为50mg,得到的透明质酸纳米粒子记为S-HA-PBA-2。

实施例12

参照实施例10提供的制备方法制备该透明质酸纳米粒子,区别在于,采用4-(1-芘基)丁酰胺用量为90,得到的透明质酸纳米粒子记为S-HA-PBA-3。

利用通过核磁共振,红外光谱技术对实施例10-13制备得到的透明质酸纳米粒子,即S-HA-PBA-1至S-HA-PBA-3进行表征。参见图3,具体分析如下:化学位移8-8.5ppm说明苯环氢的位置,证明S-HA-PBA-1,S-HA-PBA-2和S-HA-PBA-3的成功共价连接,其结合率由芘环的氢与氨基氢的比例计算得到,S-HA-PBA-1的接枝率为17.5%,S-HA-PBA-2的接枝率为53.2%,S-HA-PBA-3的接枝率为86.2%。

通过粒度仪和透射电子显微镜对实施例10-13制备得到的透明质酸纳米粒子粒径和形貌表征。参见图4,具体分析如下:粒径仪和透射电子显微镜都显示纳米粒子成功合成且粒径约为100nm-200nm。

实验例1亲和力测试

方法:制备生物素化的LTBP及分别利用实施例1-9的磺酸化透明质酸类化合物配制五个不同浓度(0.5mol/L,1mol/L,2mol/L,5mol/L,7mol/L)的待测样品,分别在生物膜干涉仪上以缓冲液60s,装载蛋白60s,缓冲液60s结合180s,解离180s的程序得到结合解离曲线,并根据分子量计算解离常数KD值,解离常数越小,亲和力越强。

结果参见图5。根据图5可知,实施例1-9的九种磺酸化程度的磺酸化透明质酸类化合物亲和力最强的是S-HA-9。

实验例2TGF-β活性报告细胞检测

方法:将CAGA-TGF-β活性报告细胞进行铺板(12孔板)至融合度达到65%,分别在不同孔加入PBS、S-HA-9和S-HA-PBA-1刺激过夜,TGF-β(50ng/ml);pro-TGF-β1(200ng/ml);LLC合适浓度(200ng/ml)。收取样品:获得细胞裂解液,进行luciferase检测。

检测结果参见图6。根据图6可知,磺酸化透明质酸纳米粒子可以抑制TGF-β的释放,由图可知,TGF-β刺激产生活性TGF-β,proTGF-β刺激产生很少量活性TGF-β,表明报告细胞可用,该细胞可以从生物实验层面证明活性TGF-β释放行为,结果可信;LLC+S-HA-9组比LLC+PBS组释放更少的活性TGF-β,说明S-HA-9调节导致LLC释放TGF-β机械力不足,即抑制TGFβ从LLC中激活。LLC+S-HA-PBA-1组比LLC+S-HA-9组活性TGF-β量更低,说明做成纳米粒子更有利于抑制活性TGF-β释放。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种萘修饰交联的β-环糊精凝胶、制备方法及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!