Production process and device of ultrapure isopropanol

文档序号:1947695 发布日期:2021-12-10 浏览:18次 中文

阅读说明:本技术 一种超纯异丙醇的生产工艺及装置 (Production process and device of ultrapure isopropanol ) 是由 王俊 陈华 韩海松 戚律 于 2021-08-31 设计创作,主要内容包括:本发明涉及化工分离技术领域,公开了一种超纯异丙醇的生产工艺及装置,包括依次连接的第一微滤装置、反应精馏塔、静置罐、第二微滤装置、加热器、汽-液分离罐、微波精馏塔、亚沸精馏塔及纳滤装置;所述反应精馏塔至少设有3个进料口,分别为离子络合剂的进料口,异丙醇原料的进料口,微波精馏塔塔顶产物的进料口;所述静置罐内设有挡板;所述的汽-液分离罐内设有填料捕沫网;所述微波精馏塔包括二次脱水精馏塔和微波发生器,所述二次脱水精馏塔的提馏段置于微波发生器中;所述亚沸精馏塔的加热装置为红外加热管。本发明的有益效果为:能够批量分离得到超纯异丙醇产品,且产品质量稳定、无固废排出。(The invention relates to the technical field of chemical separation, and discloses a production process and a device of ultrapure isopropanol, which comprises a first microfiltration device, a reaction rectifying tower, a standing tank, a second microfiltration device, a heater, a vapor-liquid separation tank, a microwave rectifying tower, a sub-boiling rectifying tower and a nanofiltration device which are sequentially connected; the reactive distillation tower is at least provided with 3 feed inlets, namely a feed inlet of an ion complexing agent, a feed inlet of an isopropanol raw material and a feed inlet of a microwave distillation tower top product; a baffle is arranged in the standing tank; a filler foam catching net is arranged in the vapor-liquid separation tank; the microwave rectifying tower comprises a secondary dehydration rectifying tower and a microwave generator, and the stripping section of the secondary dehydration rectifying tower is arranged in the microwave generator; the heating device of the sub-boiling rectifying tower is an infrared heating pipe. The invention has the beneficial effects that: the method can be used for separating ultrapure isopropanol products in batches, and the products have stable quality and are free from solid waste discharge.)

1. An apparatus for producing ultrapure isopropanol, characterized in that: comprises a first microfiltration device, a reaction rectifying tower, a standing tank, a second microfiltration device, a heater, a vapor-liquid separation tank, a microwave rectifying tower, a sub-boiling rectifying tower and a nanofiltration device which are connected in sequence; the reactive distillation tower is at least provided with 3 feed inlets, namely a feed inlet of an ion complexing agent, a feed inlet of an isopropanol raw material and a feed inlet of a microwave distillation tower top product; a baffle is arranged in the standing tank; a filler foam catching net is arranged in the vapor-liquid separation tank; the microwave rectifying tower comprises a secondary dehydration rectifying tower and a microwave generator, and the stripping section of the secondary dehydration rectifying tower is arranged in the microwave generator; the heating device of the sub-boiling rectifying tower is an infrared heating pipe; the production device also comprises an ion exchange device, and a feed inlet of the ion exchange device is connected with the bottom of the vapor-liquid separation tank; the discharge hole of the ion exchange device is connected with the feed inlet of the ion complexing agent of the reaction rectifying tower.

2. The apparatus for the production of ultrapure isopropanol according to claim 1, wherein: the number of the reaction rectifying tower plates is 35-40, the complexing solvent is fed from the 5 th to 10 th plates, the isopropanol raw material is fed from the 15-20 th plates, and the product at the top of the reaction rectifying tower is fed from the 25 th to 30 th plates.

3. The apparatus for the production of ultrapure isopropanol according to claim 1, wherein: the ion complexing agent is 18-crown-6-ether solvent and a compound thereof.

4. The apparatus for the production of ultrapure isopropanol according to claim 1, wherein: the baffle that sets up in the jar of stewing is equidistant staggered arrangement, and two adjacent baffles interval is 300 ~ 600mm, and every baffle end is equipped with the breach, and length is 100 ~ 300 mm.

5. The apparatus for the production of ultrapure isopropanol according to claim 1, wherein: the ion exchange device is internally provided with chelating resin, macroporous styrene ion exchange resin with iminodiacetic acid chelating groups and H-type strong acid cation resin RSO3 -1H+The liquid phases are sequentially passed through the liquid phase separator according to the sequence.

6. The apparatus for the production of ultrapure isopropanol according to claim 1, wherein: the microwave rectifying tower is made of ceramic or quartz, ceramic packing or quartz packing is filled in the microwave rectifying tower, the number of tower plates is 25-35, 10-15 rectifying sections and 15-20 stripping sections are arranged in the microwave rectifying tower, and a microwave generator is arranged in 5 tower sections at the bottom of each stripping section.

7. The apparatus for the production of ultrapure isopropanol according to claim 1, wherein: the material of the sub-boiling rectifying tower is high-purity quartz, high-purity quartz random packing is filled in the tower, and the separation theoretical level is 10.

8. A production process of ultrapure isopropanol is characterized in that: the method comprises the following steps: the industrial isopropanol raw material enters a first microfiltration device, enters a reaction rectifying tower after being filtered, isopropanol by-products are discharged from the top of the tower, tower bottom products are sent to a standing tank, the standing tower bottom products are sent to a second microfiltration device, the filtered products are sent to a heater to be heated until being partially vaporized, then the vaporized products are sent to a vapor-liquid separation tank, the products at the bottom of the tank are a mixture of ion complex salt and isopropanol and are sent to an ion exchange device to carry out ion exchange reaction, and reactants flowing out of the ion exchange device are circularly sent to the reaction rectifying tower; the gas-phase product at the top of the gas-liquid separation tank enters a microwave rectifying tower, the bottom of the microwave rectifying tower is heated by a microwave generator, the product at the top of the microwave rectifying tower is sent to a reaction rectifying tower, and the product at the bottom of the microwave rectifying tower is sent to a sub-boiling rectifying tower; the heating device of the sub-boiling rectifying tower is an infrared heating pipe, and a liquid-phase product flowing out of the bottom of the microwave rectifying tower is heated, vaporized and condensed and flows out of the top of the tower; and (3) filtering the liquid phase flowing out of the top of the sub-boiling rectification tower in a nanofiltration device to obtain an ultra-pure isopropanol product.

9. The process for the production of ultrapure isopropanol according to claim 8, wherein: the tower top pressure of the reactive distillation tower is 0.35-1.5 atm, the reflux ratio is 1-3, the operating temperature is 60-90 ℃, and the mass ratio of the metal complexing agent is 0.1-0.5% of the feeding amount of the isopropanol.

10. The process for the production of ultrapure isopropanol according to claim 8, wherein: the product at the bottom of the reactive distillation tower enters from the bottom of the standing tank and flows out from the top of the standing tank, the retention time in the standing tank is guaranteed to be 20-40 min, and the operating temperature is 60-90 ℃; the operating pressure of the vapor-liquid separation tank is 0.1MPa to 0.2MPa, and the operating temperature is 80 ℃ to 100 ℃.

11. The process for the production of ultrapure isopropanol according to claim 8, wherein: the operating pressure of the ion exchange device is 0.1-0.2 MPa, and the operating temperature is 60-90 ℃.

12. The process for the production of ultrapure isopropanol according to claim 8, wherein: the pressure of the microwave rectifying tower is 0.1-0.2 MPa, the operating temperature is 80-100 ℃, the microwave frequency is 2400-2500 MHz, the product at the top of the tower returns to the reactive rectifying tower, and the product at the bottom of the tower enters the sub-boiling rectifying tower.

13. The process for the production of ultrapure isopropanol according to claim 8, wherein: the operating pressure of the sub-boiling rectifying tower is 0.06-0.09 MPa, the operating temperature is 35-50 ℃, the reflux ratio is 0.1-0.5, and the product at the top of the tower is sent to a nanofiltration device for filtration to obtain the ultra-pure isopropanol product.

Technical Field

The invention relates to a production process and a device of ultrapure isopropanol, in particular to a process and a device for producing high-purity isopropanol by removing metal ions and water through reactive distillation and microwave distillation, belonging to the technical field of chemical separation.

Background

Propylene hydration is currently the most common process for the commercial production of isopropanol worldwide. Isopropanol has intersolubility with water, fat compounds and many other organic matters, is an important organic chemical raw material and organic solvent, and has wide application in various fields. The ultrapure isopropanol is used as a chemical cleaning agent and is widely applied in the industrial field. With the leap forward of computer and mechatronic technologies, the information industry is the largest and most rapidly developing industry in world economy. The development of the information industry has driven a great demand for high purity reagents and other microelectronic chemicals. In the manufacturing process of the submicron ULSI silicon wafer, no matter the surface of the silicon wafer is treated after oxidation and etching, the film deposition and the high-temperature furnace diffusion are cleaned for many times by chemical cleaning agents prepared by a plurality of high-purity chemical reagents, and then cleaned by ultrapure water, and finally cleaned by an ultrapure isopropanol solvent in order to avoid leaving oil stains and water marks and achieve the purpose of quick drying.

Currently, ultrapure isopropanol is usually obtained by using industrial grade isopropanol as a raw material and performing dehydration, demetallization, purification and refining. Rectification is a main method for industrially purifying isopropanol and comprises azeotropic rectification, extractive rectification, salt-adding rectification and the like. However, the dehydration efficiency of the rectification cannot meet the water content requirement of the ultrapure isopropanol, and the metal ion and particle contents of the ultrapure isopropanol put forward very high requirements on the ultrapure isopropanol product, which cannot be met by the conventional rectification process.

In the prior art, dehydration (chemical or adsorption) and demetalization (metal complexing or ion exchange resin) are divided into two working sections, so that the process complexity is increased, the removal efficiency is reduced, a dehydrated solid waste product is formed, and the product quality can be unstable.

Disclosure of Invention

In order to overcome the defects of complex process flow, low removal efficiency, formation of dehydrated solid waste and unstable product quality in the prior art, the invention provides a process and a device for producing ultrapure isopropanol, integrates the process flow and the device for continuously and efficiently producing the ultrapure isopropanol product by strengthening demetallization and dehydration through reactive distillation and microwave distillation, can obtain the ultrapure isopropanol product through batch separation, and has stable product quality and no solid waste discharge.

In order to achieve the purpose, the invention provides the following technical scheme:

a production device of ultrapure isopropanol comprises a first microfiltration device, a reaction rectifying tower, a standing tank, a second microfiltration device, a heater, a vapor-liquid separation tank, a microwave rectifying tower, a sub-boiling rectifying tower and a nanofiltration device which are connected in sequence; the reactive distillation tower is at least provided with 3 feed inlets, namely a feed inlet of an ion complexing agent, a feed inlet of an isopropanol raw material and a feed inlet of a microwave distillation tower top product; a baffle is arranged in the standing tank; a filler foam catching net is arranged in the vapor-liquid separation tank; the microwave rectifying tower comprises a secondary dehydration rectifying tower and a microwave generator, and the stripping section of the secondary dehydration rectifying tower is arranged in the microwave generator; the heating device of the sub-boiling rectifying tower is an infrared heating pipe; the production device also comprises an ion exchange device, and a feed inlet of the ion exchange device is connected with the bottom of the vapor-liquid separation tank; the discharge hole of the ion exchange device is connected with the feed inlet of the ion complexing agent of the reaction rectifying tower.

Further, the first microfiltration device, the second microfiltration device and the nanofiltration device are commonly used filtering devices in the field of chemical separation, wherein the first microfiltration device and the second microfiltration device are used for filtering solid particles.

Furthermore, the number of reaction rectifying tower plates is 35-40, the complexing solvent is fed from the 5 th to 10 th plates, the isopropanol raw material is fed from the 15 th to 20 th plates, and the product at the top of the reaction rectifying tower is fed from the 25 th to 30 th plates.

Further, the ion complexing agent is 18-crown-6-ether solvent and a compound thereof.

Furthermore, the baffles arranged in the standing tank are arranged in a staggered mode at equal intervals, the interval between every two adjacent baffles is 300-600 mm, the tail end of each baffle is provided with a notch, and the length of each baffle is 100-300 mm.

Furthermore, chelating resin is filled in the ion exchange device, macroporous styrene ion exchange resin with iminodiacetic acid chelating groups and H-type strong acid cation resin RSO are filled in the order3 -1H+The liquid phases are sequentially passed in the above order, so that the divalent and higher metal ions and monovalent metal ions can be exchanged in a gradient manner with high efficiency.

Furthermore, the microwave rectifying tower is made of ceramic or quartz, ceramic packing or quartz packing is filled in the microwave rectifying tower, the number of tower plates is 25-35, 10-15 rectifying sections and 15-20 stripping sections are arranged in the microwave rectifying tower, and the microwave generator is arranged in 5 tower sections at the bottom of the stripping sections.

Furthermore, the material of the sub-boiling rectifying tower is high-purity quartz, the high-purity quartz random packing is filled in the tower, and the separation theoretical level is 10 blocks.

A production process of ultrapure isopropanol comprises the following specific steps: the industrial isopropanol raw material enters a first microfiltration device, enters a reaction rectifying tower after being filtered, isopropanol by-products are discharged from the top of the tower, tower bottom products are sent to a standing tank, the standing tower bottom products are sent to a second microfiltration device, the filtered products are sent to a heater to be heated until being partially vaporized, then the vaporized products are sent to a vapor-liquid separation tank, the products at the bottom of the tank are a mixture of ion complex salt and isopropanol and are sent to an ion exchange device to carry out ion exchange reaction, and reactants flowing out of the ion exchange device are circularly sent to the reaction rectifying tower; the gas-phase product at the top of the gas-liquid separation tank enters a microwave rectifying tower, the bottom of the microwave rectifying tower is heated by a microwave generator, the product at the top of the microwave rectifying tower is sent to a reaction rectifying tower, and the product at the bottom of the microwave rectifying tower is sent to a sub-boiling rectifying tower; the heating device of the sub-boiling rectifying tower is an infrared heating pipe, and a liquid-phase product flowing out of the bottom of the microwave rectifying tower is heated, vaporized and condensed and flows out of the top of the tower; and (3) filtering the liquid phase flowing out of the top of the sub-boiling rectification tower in a nanofiltration device to obtain an ultra-pure isopropanol product.

Further, the tower top pressure of the reactive distillation tower is 0.35-1.5 atm, the reflux ratio is 1-3, the operating temperature is 60-90 ℃, and the mass ratio of the dosage of the metal complexing agent which is sent into the reactive distillation tower and used for removing the metal ions in the isopropanol solution through the complexing reaction is 0.1-0.5% of the feeding quantity of the isopropanol.

Further, a product at the bottom of the reactive distillation tower enters from the bottom of a standing tank and flows out from the top of the standing tank, the retention time in the standing tank is guaranteed to be 20-40 min, and the operating temperature is 60-90 ℃; the operating pressure of the vapor-liquid separation tank is 0.1MPa to 0.2MPa, and the operating temperature is 80 ℃ to 100 ℃.

Further, the operating pressure of the ion exchange device is 0.1-0.2 MPa, and the operating temperature is 60-90 ℃.

Further, the pressure of the microwave rectifying tower is 0.1-0.2 MPa, the operating temperature is 80-100 ℃, the microwave frequency is 2400-2500 MHz, the product at the top of the tower returns to the reaction rectifying tower, and the product at the bottom of the tower enters the sub-boiling rectifying tower.

Further, the operating pressure of the sub-boiling rectifying tower is 0.06-0.09 MPa, the operating temperature is 35-50 ℃, the reflux ratio is 0.1-0.5, and the product at the top of the tower is sent to a nanofiltration device for filtration to obtain the ultra-pure isopropanol product.

Compared with the prior art, the separation device and the separation process for the maleic anhydride hydrogenation product have the following beneficial effects:

(1) the production process and the device can separate the ultrapure isopropanol product in batches, and the product has stable quality and no solid waste discharge.

(2) The production process and the device of the invention use reactive distillation to simultaneously remove metal ions and water, thereby improving the separation efficiency and reducing the process complexity.

(3) The production process and the device adopt microwave rectification to strengthen dehydration, and because the polarity of water molecules is 10.2 which is 3.9 greater than that of isopropanol, the water molecules are easier to volatilize during microwave heating, thereby improving the volatilization performance of water. The production process and the device can further remove water to purify the isopropanol under the conditions of no introduction of an extracting agent to pollute the isopropanol, short time consumption and low cost, improve the stability of products, and enhance the dehydration efficiency and the dehydration quality, and the ultrapure isopropanol obtained by the production process has the isopropanol content of more than 99.99 percent, the water content of less than 50ppm, the cation content of less than 0.1ppb and the anion content of less than 50ppb and meets the SEMI C12 standard.

Drawings

FIG. 1 is a flow chart of the apparatus and process for producing ultrapure isopropanol of the present invention.

The reference numerals in the figures have the meaning: 1-a first microfiltration device; 2-a reactive distillation column; 3-standing the tank; 4-a second microfiltration device; 5-a heater; 6-vapor-liquid separation tank; 7-a secondary dehydration rectifying tower; 8-a microwave generator; 9-a sub-boiling rectification column; 10-a nanofiltration device; 11-ion exchange unit.

Detailed Description

The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

As shown in fig. 1, the apparatus for producing ultrapure isopropanol provided by the present invention comprises a first microfiltration device 1, a reactive distillation column 2, a standing tank 3, a second microfiltration device 4, a heater 5, a vapor-liquid separation tank 6, a microwave distillation column, a sub-boiling distillation column 9 and a nanofiltration device 10, which are connected in sequence; the reactive distillation tower 2 is at least provided with 3 feed inlets, namely a feed inlet of an ion complexing agent, a feed inlet of an isopropanol raw material and a feed inlet of a microwave distillation tower top product; a baffle is arranged in the standing tank 3; a filler foam catching net is arranged in the vapor-liquid separation tank 6; the microwave rectifying tower comprises a secondary dehydration rectifying tower 7 and a microwave generator 8, and the stripping section of the secondary dehydration rectifying tower 7 is arranged in the microwave generator 8; the heating device of the sub-boiling rectifying tower 9 is an infrared heating pipe; the production device also comprises an ion exchange device 11, and a feed inlet of the ion exchange device 11 is connected with the bottom of the vapor-liquid separation tank 6; the discharge hole of the ion exchange device 11 is connected with the feed inlet of the ion complexing agent of the reaction rectifying tower.

In a specific implementation manner of this embodiment, the number of plates of the reactive distillation column 2 is 35 to 40, the complexing solvent is fed from the 5 th to 10 th plates, the isopropyl alcohol raw material is fed from the 15 th to 20 th plates, and the overhead product of the reactive distillation column 2 is fed from the 25 th to 30 th plates.

In a specific embodiment of this example, the ion complexing agent is 18-crown-6-ether solvent and its complex.

In a specific embodiment of this embodiment, the baffles arranged in the standing tank 3 are arranged in an equidistant staggered manner, the distance between two adjacent baffles is 300-600 mm, the end of each baffle is provided with a notch, and the length of each baffle is 100-300 mm.

In a specific embodiment of this embodiment, the ion exchange device 11 is filled with chelating resin, macroporous styrene ion exchange resin with iminodiacetic acid chelating group, H-type strong acid cation resin RSO3 -1H+The liquid phases are sequentially passed in the above order, so that the divalent and higher metal ions and monovalent metal ions can be exchanged in a gradient manner with high efficiency.

In a specific embodiment of this embodiment, the microwave rectification tower is made of ceramic or quartz, and the microwave rectification tower is filled with ceramic packing or quartz packing, and has 25 to 35 tower plates, wherein the rectification section comprises 10 to 15 rectifying sections, the stripping section comprises 15 to 20 stripping sections, and the microwave generator 8 is disposed in the 5 tower sections at the bottom of the stripping section.

In a specific embodiment of this embodiment, the material of the sub-boiling rectification column 9 is high-purity quartz, the column contains high-purity quartz random packing, and the separation theoretical stage is 10 blocks.

As shown in fig. 1, the invention also provides a production process of the ultrapure isopropanol, which comprises the following specific steps: the industrial isopropanol raw material enters a first microfiltration device 1, enters a reaction rectifying tower 2 after being filtered, isopropanol by-products are discharged from the top of the tower, tower bottom products are sent to a standing tank 3, the standing tower bottom products are sent to a second microfiltration device 4, the filtered products are sent to a heater 5 to be heated until being partially vaporized, then the vaporized products are sent to a vapor-liquid separation tank 6, the products at the bottom of the tank are a mixture of ion complex salt and isopropanol and are sent to an ion exchange device 11 to carry out ion exchange reaction, and reactants flowing out of the ion exchange device 11 are circularly sent to the reaction rectifying tower 2; the gas-phase product at the top of the gas-liquid separation tank 6 enters a microwave rectifying tower, the bottom of the microwave rectifying tower is heated by a microwave generator 8, the product at the top of the microwave rectifying tower is sent to a reaction rectifying tower 2, and the product at the bottom of the microwave rectifying tower is sent to a sub-boiling rectifying tower 9; the heating device of the sub-boiling rectifying tower 9 is an infrared heating pipe, and a liquid-phase product flowing out of the bottom of the microwave rectifying tower is condensed and flows out of the top of the tower after being heated and vaporized; and (3) filtering the liquid phase flowing out of the top of the sub-boiling rectifying tower 9 in a nano-filtration device 10 to obtain an ultra-pure isopropanol product.

In a specific embodiment of this embodiment, the top pressure of the reactive distillation column 2 is 0.35 to 1.5atm, the reflux ratio is 1 to 3, the operating temperature is 60 to 90 ℃, and the mass ratio of the amount of the metal complexing agent fed into the reactive distillation column 2 for removing metal ions in the isopropanol solution by a complexation reaction is 0.1 to 0.5% of the feeding amount of the isopropanol.

In a specific implementation manner of the embodiment, a product at the bottom of the reactive distillation column 2 enters from the bottom of the standing tank 3 and flows out from the top of the standing tank, so that the standing time in the standing tank 3 is ensured to be 20-40 min, and the operating temperature is 60-90 ℃; the operation pressure of the vapor-liquid separation tank 6 is 0.1MPa to 0.2MPa, and the operation temperature is 80 ℃ to 100 ℃.

In a specific embodiment of this embodiment, the operating pressure of the ion exchange device 11 is 0.1MPa to 0.2MPa, and the operating temperature is 60 ℃ to 90 ℃.

In a specific embodiment of this embodiment, the microwave rectification tower has a pressure of 0.1MPa to 0.2MPa, an operating temperature of 80 to 100 ℃, a microwave frequency of 2400 to 2500MHz, the tower top product returns to the reactive rectification tower 2, and the tower bottom product enters the sub-boiling rectification tower 9.

In a specific embodiment of this embodiment, the operating pressure of the sub-boiling distillation column 9 is 0.06-0.09 MPa, the operating temperature is 35-50 ℃, the reflux ratio is 0.1-0.5, and the product at the top of the column is sent to the nanofiltration device 10 for filtration to obtain the ultrapure isopropanol product.

Example 1

Firstly, filtering industrial grade isopropanol (98%) raw material by a grade-1 microfilter, then feeding the raw material into a reaction rectifying tower with 36 theoretical plates, feeding a metal ion complexing agent which is 0.15% (mass ratio) of the feeding amount of the isopropanol into the reaction rectifying tower, wherein the metal ion complexing agent is 18-crown-6-ether solvent and a compound thereof, the operating pressure of the reaction rectifying tower is 0.5atm, the reflux ratio is 1.5, carrying out reaction rectification to obtain an isopropanol byproduct with the tower top of 90%, the tower top is an isopropanol metal complex salt reaction liquid with the water content of 99.5%, the reaction liquid is fed into a standing tank to stand for 25min, the operating temperature is 63.5 ℃, the reaction liquid is filtered by a grade-2 microfilter and then is fed into a heater to be heated, the heating material flow is fed into a steam-liquid separation tank, the operating temperature is 0.1MPa, the operating temperature is 85 ℃, wherein the liquid phase flowing out of the bottom of the steam-liquid separation tank is fed into macroporous styrene ion exchange resin sequentially filled with an imine diacetic acid group, h type strong acid cation resin RSO3 -1H+The ion exchange device regenerates the metal complexing agent, the operating pressure is 0.1MPa, the operating temperature is 65 ℃, and the exchanged metal complexing agent subjected to ion exchange returns to the reactive rectifying tower to form circulation; and (2) feeding the product at the top of the vapor-liquid separation tank into a rectifying tower with a theoretical plate number of 26 microwaves, wherein the operating pressure is 0.12MPa, the reflux ratio is 4, the microwave frequency is 2400MHz, 99% of isopropanol solution is extracted from the top of the tower and returned to the reactive rectifying tower, 99.99% of isopropanol is extracted from the bottom of the tower, the product at the bottom of the tower is fed into a sub-boiling rectifying tower with a theoretical plate number of 10, the pressure is 0.065MPa, the operating temperature is 50 ℃, the reflux ratio is 0.12, and the material flow extracted from the top of the tower is filtered by a nano-filtration device to obtain an ultra-pure isopropanol product. The samples were analyzed and the analytical data are shown in Table 1.

TABLE 1

Example 2

Firstly, filtering industrial grade isopropanol (98%) raw material by a 1-grade microfilter, then feeding the raw material into a reaction rectifying tower with 38 theoretical plates, feeding a metal ion complexing agent which is 0.35% (mass ratio) of the feeding amount of the isopropanol into the reaction rectifying tower, wherein the metal ion complexing agent is 18-crown-6-ether solvent and a compound thereof, the operating pressure of the reaction rectifying tower is 1atm, the reflux ratio is 2, carrying out reactive rectification to obtain an isopropanol byproduct with the tower top of 90%, the tower top is an isopropanol metal complex salt reaction solution with the water content of 99.5%, feeding the reaction solution into a standing tank, standing for 30min, the operating temperature is 83.5 ℃, filtering the reaction solution by a 2-grade microfilter, then feeding the heated material flow into a steam-liquid separation tank, the operating temperature is 0.15MPa, the operating temperature is 90 ℃, feeding a liquid phase flowing out of the bottom of the steam-liquid separation tank into a macroporous styrene ion exchange resin sequentially filled with an iminodiacetic acid base, h type strong acid cation resin RSO3 -1H+The ion exchange device regenerates the metal complexing agent, the operating pressure is 0.15, the operating temperature is 90 ℃, and the exchanged metal complexing agent after ion exchange returns to the reactive rectifying tower to form circulation; the product at the top of the vapor-liquid separation tank is sent into a rectifying tower with a theoretical plate number of 30 microwaves, the operating pressure is 0.12MPa, the reflux ratio is 5, the microwave frequency is 2450MHz, 99% of isopropanol solution is extracted from the top of the tower and returned to the reactive rectifying tower, 99.99% of isopropanol is extracted from the bottom of the tower, the product at the bottom of the tower is sent into a sub-boiling rectifying tower with a theoretical plate number of 10, the pressure is 0.075MPa, the operating temperature is 60 ℃, the reflux ratio is 0.3, and the material flow extracted from the top of the tower is filtered by a nano-filtration device to obtain an ultra-pure isopropanol product. The samples were analyzed and the analytical data are shown in Table 1.

Example 3

Firstly, filtering industrial isopropanol (98%) raw material by using 1-grade microfilter, then feeding the filtered raw material into 40 reaction rectifying towers whose theoretical plate number is 40, feeding metal ion complexing agent which is 18-crown-6-ether solvent and its composite solvent into the reaction rectifying tower, and feeding the metal ion complexing agent into the reaction rectifying tower, and making the metal ion complexing agent be 0.5% of isopropanol feeding quantityThe method comprises the steps of feeding reaction liquid into a standing tank for standing for 40min at an operating temperature of 90 ℃, filtering the reaction liquid by a 2-stage microfilter, heating the reaction liquid by a heater, feeding the heated material flow into a vapor-liquid separation tank at an operating pressure of 0.15MPa and an operating temperature of 100 ℃, feeding liquid phase flowing out of the bottom of the vapor-liquid separation tank into macroporous styrene ion exchange resin and H-type strong acid cation resin RSO, wherein the operating pressure of the reaction distillation column is 1.5atm, the reflux ratio is 3, the reaction distillation column obtains an isopropanol byproduct with a content of 90% at the top of the column, the isopropanol metal complex salt reaction liquid with a water content of 99.5% at the top of the column is fed into the standing tank, the operating temperature is 90 ℃, the heated material flow is fed into the heater for heating after being filtered by the 2-stage microfilter, the heated material flow is fed into the vapor-liquid separation tank, the operating pressure is 0.15MPa, and the operating temperature is 100 ℃, and the liquid phase flowing out of the bottom of the vapor-liquid phase from the bottom of the vapor-liquid separation tank is fed into macroporous styrene ion exchange resin and the H-type strong acid cation resin RSO3 -1H+The ion exchange device regenerates the metal complexing agent, the operating pressure is 0.2, the operating temperature is 90 ℃, and the exchanged metal complexing agent after ion exchange returns to the reactive rectifying tower to form circulation; and (2) feeding the product at the top of the vapor-liquid separation tank into a rectifying tower with the theoretical plate number of 35 microwaves, wherein the operating pressure is 0.2MPa, the reflux ratio is 15, the microwave frequency is 2500MHz, 99% of isopropanol solution is extracted from the top of the tower and returned to the reactive rectifying tower, 99.99% of isopropanol is extracted from the bottom of the tower, the product at the bottom of the tower is fed into a sub-boiling rectifying tower with the theoretical plate number of 10, the pressure is 0.09MPa, the operating temperature is 70 ℃, the reflux ratio is 0.5, and the material flow extracted from the top of the tower is filtered by a nano-filtration device to obtain an ultra-pure isopropanol product. The samples were analyzed and the analytical data are shown in Table 1.

It is noted that, herein, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.

Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种从微生物发酵液中同时提取二元醇和有机酸酯的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!