一种双主相稀土永磁材料及其制备方法

文档序号:324735 发布日期:2021-11-30 浏览:8次 >En<

阅读说明:本技术 一种双主相稀土永磁材料及其制备方法 (Double-main-phase rare earth permanent magnetic material and preparation method thereof ) 是由 熊吉磊 陈敏 成丽春 刘星 周宏亮 于 2021-08-27 设计创作,主要内容包括:本发明提供一种双主相稀土永磁材料及其制备方法,属于钕铁硼永磁材料领域,将钕铁硼合金和所述Y2Fe14B型合金分别进行氢爆、气流粉碎制得合金细粉,取向成型后在磁场中进行第一次微波真空烧结,将所述Y2Fe14B合金坯料附着在所述钕铁硼坯料上后在磁场中进行第二次微波真空烧结,再在磁场中进行真空热处理制得;本发明以Nd2Fe14B为基体,通过工艺调整,让Y2Fe14B不进入到Nd2Fe14B主相中,只富集在主相周围,减弱了主相间磁性耦合作用,可大幅提高磁体的矫顽力,获得性能优异的新钕铁硼磁钢,实现稀土资源的高效、平衡利用,降低了生产成本。(The invention provides a double-main-phase rare earth permanent magnet material and a preparation method thereof, belonging to the field of neodymium iron boron permanent magnet materials, wherein neodymium iron boron alloy and the Y2Fe14B type alloy are respectively subjected to hydrogen explosion and airflow pulverization to prepare alloy fine powder, after orientation forming, first microwave vacuum sintering is carried out in a magnetic field, after Y2Fe14B alloy blank is attached to the neodymium iron boron blank, second microwave vacuum sintering is carried out in the magnetic field, and then vacuum heat treatment is carried out in the magnetic field to prepare the double-main-phase rare earth permanent magnet material; according to the invention, Nd2Fe14B is used as a substrate, and through process adjustment, Y2Fe14B does not enter the main phase of Nd2Fe14B and is only enriched around the main phase, so that the magnetic coupling effect between the main phases is weakened, the coercive force of the magnet can be greatly improved, new neodymium iron boron magnetic steel with excellent performance is obtained, the efficient and balanced utilization of rare earth resources is realized, and the production cost is reduced.)

一种双主相稀土永磁材料及其制备方法

技术领域

本发明涉及钕铁硼永磁材料领域,具体涉及一种双主相稀土永磁材料及其制备方法。

背景技术

磁性材料,特别是稀土NdFeB系永磁材料,是目前综合性能最好的一类永磁材料,已成为现代工业与科学技术中不可或缺的重要物质基础。其中烧结钕铁硼永磁材料由于具有优异的性价比而被迅速产业化,被广泛应用于计算机硬盘驱动器、硬盘音圈马达、电动机、发电机、核磁共振仪、音响、通讯设备等各个高新技术领域。

但是随着钕铁硼稀土永磁应用的不断扩大,在生产中消耗了大量的紧缺资源Pr、Nd、Dy、Tb等稀土元素,而高丰度稀土元素La、Ce、Y等大量闲置积压;同时,在原生矿中就包含La、Ce、Y稀土元素,稀土分离提纯也会造成大量能源的损耗和严重的生态环境污染。因此,稀土资源的高效、平衡利用成为我国稀土产业可持续发展亟需解决的问题。由于资源丰度的差异,高丰度稀土La、Ce、Y稀土元素的价格较为低廉,事实上近年来,为降低生产成本,高丰度稀土元素逐渐被用于生产稀土永磁材料。据统计,2016年我国烧结钕铁硼毛坯产品中有近20%不同程度的使用了Ce元素;国际最大的快淬磁粉供应商麦格昆兹也推出了高Ce含量的粘接磁体用商业磁粉。同时近年来国家有关部门也提出了发展高性能Ce磁体,实现高丰度稀土永磁材料在电机等高端领域的应用,但对于高丰度稀土Y的研究较少,对于2:14:1型稀土永磁的强磁性源于四方相化合物的内禀硬磁性。Ce2Fe14B饱和磁极化强度Js为1.17T,磁晶各向异性场Ha约26kOe左右,Y2Fe14B饱和磁极化强度Js为1.41T,磁晶各向异性场Ha约26kOe左右,理论上也可实现实现高丰度稀土Y在稀土永磁材料的领域的应用。但使用高丰度稀土元素Y代替Nd2Fe14B中的Nd会导致钕铁硼材料磁性能的降低,呈现出显著的磁稀释效应。这也是目前制约高丰度稀土永磁材料发展的关键问题。

发明内容

针对现有技术中以Y代替Nd2Fe14B中的Nd导致钕铁硼材料磁性能降低的问题,本发明提供一种双主相稀土永磁材料及其制备方法。

本发明的目的采用以下技术方案来实现:

一种双主相稀土永磁材料的制备方法,包括以下步骤:

(1)制备Y2Fe14B型合金;

(2)将钕铁硼合金和所述Y2Fe14B型合金分别进行氢爆,分别制得钕铁硼合金粗粉和Y2Fe14B型合金粗粉,再通过气流磨制粉分别制得钕铁硼合金细粉和Y2Fe14B型合金细粉;

(3)将所述钕铁硼合金细粉和Y2Fe14B型合金细粉在磁场中分别进行取向成型,制得钕铁硼合金生坯与Y2Fe14B合金生坯,在磁场中进行第一次微波真空烧结后分别制得钕铁硼坯料和Y2Fe14B合金坯料;

(4)将所述Y2Fe14B合金坯料附着在所述钕铁硼坯料上,在磁场中进行第二次微波真空烧结,再在磁场中进行真空热处理制得。

优选的,所述Y2Fe14B型合金具有如下式所示的组成:

Y12Fe82.4-x-y-zB5.6AgxGayMozZrm

其中,x、y、z、m代表原子百分数,0.5≤x≤0.8,0.5≤y≤1.2,0.4≤z≤1.0,0.5≤m≤1.5。

优选的,所述Y2Fe14B型合金的制备方法是:按设计组成的原子百分比进行配料,采用真空熔炼甩带炉熔炼并浇铸为厚度在0.1-0.2mm的片状合金。

优选的,所述气流磨制粉的工艺条件为:在保护气氛下研磨,氧含量控制在5ppm以下,研磨压力为0.60-0.62MPa,所述保护气的进气温度为5-10℃,外冷却循环水的温度为5-10℃。

优选的,所述取向成型的磁场强度为2.0T,成型的压坯密度为4.5±0.5g/cm3

优选的,所述第一次微波真空烧结的磁场强度为4.0-5.0T,烧结温度950-1050℃,烧结时间20-30min,微波功率3.5-5.5kW;所述第二次微波真空烧结的磁场强度为2.0-4.0T,烧结温度850-950℃,烧结时间20-30min,微波功率2.0-3.0kW。

优选的,所述真空热处理的磁场强度为3.5T,保温温度为580-600℃,保温时间3h。

优选的,步骤(4)中,所述Y2Fe14B合金坯料的附着量占附着产物总重的10-50%。

优选的,采用磁控溅射法将所述Y2Fe14B合金坯料镀在所述钕铁硼坯料上,通过调节溅射时间控制Y2Fe14B合金含量。

本发明的有益效果为:

针对现有技术中使用高丰度稀土元素Y改性Nd2Fe14B时,常规真空烧结和时效处理会导致钕铁硼材料磁性能降低,呈现出显著磁稀释效应的问题,本发明以Nd2Fe14B为基体,通过烧结工艺调整,减弱了主相间磁性耦合作用,大幅提高磁体的矫顽力,获得性能优异的新钕铁硼磁钢,实现稀土资源的高效、平衡利用,降低了生产成本。

具体实施方式

结合以下实施例对本发明作进一步描述。

本发明的实施例涉及一种Nd2Fe14B/Y2Fe14B型高性能磁体的制备工艺,所述磁体包括钕铁硼合金和Y2Fe14B型合金,实施例以牌号N50的商用钕铁硼为例进行举例说明,本发明也可以适用其它牌号的钕铁硼合金。

实施例1

一种Nd2Fe14B/Y2Fe14B型高性能磁体的制备工艺,所述Nd2Fe14B/Y2Fe14B型高性能磁体的制备工艺包括以下步骤:

(1)配料,Y2Fe14B型粉体按以下原子比配料,Y12Fe82.4-x-y-zB5.6AgxGayMozZrm,其中x=0.5,y=0.5,z=0.4,m=0.5;钕铁硼合金采用商用的N50钕铁硼合金片;

(2)采用真空熔炼炉进行熔炼,熔炼甩带炉抽成真空度为小于0.5Pa环境时开始进行熔炼,控制熔炼温度达到1600~1650℃时开始浇铸,然后调节水冷铜辊转速45rpm,控制进水温度在10-15℃开始浇铸获得片状合金,所制备的Y2Fe14B片状合金厚度控制在0.10-0.20mm之间;

(3)将所述N50合金片和所述Y2Fe14B片状合金分别装到旋转式氢爆炉反应釜中进行抽真空处理,当真空度达到0.5Pa以下时充氩至常压然后抽真空充入高纯工业氢气(纯度99.99%),饱和吸氢,当吸氢失压≤0.01Mpa/5min时结束吸氢,吸氢过程中使用水冷并使用红外测温仪测温保证吸氢过程温度控制在100℃以下,吸氢完成后合炉升温至600℃进行脱氢至真空度达到40Pa以下时结束脱氢,最后进行水冷处理,使温度降至30℃以下出炉至氩气保护的混料罐中,得氢爆粉;

(4)采用QLMR-400G型气流磨粉设备,把步骤(3)混好的氢爆粉分别放入气流磨粉机中,磨粉过程的氧含量控制在5ppm以下,整个气流磨在氮气保护下操作,研磨压力控制在0.60-0.62Mpa之间,控制氮气进气温度在5-10℃之间,研磨室外冷却循环水温度在5-10℃之间;获得细粉,其粒度分布为X10=0.40μm,X50=1.02μm,X90=2.52μm;

(5)磁场成型:将步骤(4)中细粉分别放入到氧含量小于10ppm的全密封的磁场成型压机中取向成型,其中磁场强度为2.0T,成型的压坯密度为4.5±0.5g/cm3

(6)磁场微波烧结:将步骤(5)的产品进行强磁场微波烧结,其中微波烧结温度在950℃,保温30min,微波频率为5.5kW,过程所加磁场强度为5.0T;保温完成后在氩气保护下风冷至30℃以下出炉,获得Y2Fe14B坯料和N50预烧坯料,对成型的Y2Fe14B坯料进行表面磨抛及外形加工,得到Y2Fe14B型靶材;

(7)采用磁控溅射将Y2Fe14B型靶材合金镀在所述N50预烧坯料上,通过控制溅射时间来控制Y2Fe14B合金的含量,使其重量占总重分别为5%、10%、15%、20%,25%,获得溅射后的混合钕铁硼磁体;

除磁控溅射的方式外,本领域技术人员还可以使用其它可行的附着方式,如涂覆、电泳等;

(8)二次磁场微波烧结:将步骤(7)的产品进行强磁场微波烧结,其中微波烧结温度在850℃,保温20min,微波频率为2.0kW,过程所加磁场强度为4.0T;

(9)磁场热处理:将步骤(8)的产品放入真空度小于0.7Pa的真空磁场热处理炉中进行磁场热处理,升温至600℃,保温3h,磁场强度3.5T,保温完成后在氩气保护下风冷至30℃以下出炉,制得所述Nd2Fe14B/Y2Fe14B型高性能磁体。

以Y2Fe14B型合金含量为0%的样品为对照,测定不同Y2Fe14B型合金含量的永磁体性能,测定结果见下表:

实施例2

一种Nd2Fe14B/Y2Fe14B型高性能磁体的制备工艺,所述Nd2Fe14B/Y2Fe14B型高性能磁体的制备工艺包括以下步骤:

(1)配料,Y2Fe14B型粉体按以下原子比配料,Y12Fe82.4-x-y-zB5.6AgxGayMozZrm,其中x=0.8,y=1.2,z=1.0,m=1.5;钕铁硼合金采用商用的N50钕铁硼合金片;

(2)采用真空熔炼炉进行熔炼,熔炼甩带炉抽成真空度为小于0.5Pa环境时开始进行熔炼,控制熔炼温度达到1600~1650℃时开始浇铸,然后调节水冷铜辊转速45rpm,控制进水温度在10-15℃开始浇铸获得片状合金,所制备的Y2Fe14B片状合金厚度控制在0.10-0.20mm之间;

(3)将所述N50合金片和所述Y2Fe14B片状合金装到旋转式氢爆炉反应釜中进行抽真空处理,当真空度达到0.5Pa以下时充氩至常压然后抽真空充入高纯工业氢气(纯度99.99%),饱和吸氢,当吸氢失压≤0.01Mpa/5min时结束吸氢,吸氢过程中使用水冷并使用红外测温仪测温保证吸氢过程温度控制在100℃以下,吸氢完成后合炉升温至600℃进行脱氢至真空度达到40Pa以下时结束脱氢,最后进行水冷处理,使温度降至30℃以下出炉至氩气保护的混料罐中,得氢爆粉;

(4)采用QLMR-400G型气流磨粉设备,把步骤(3)混好的氢爆粉分别放入气流磨粉机中,磨粉过程的氧含量控制在5ppm以下,整个气流磨在氮气保护下操作,研磨压力控制在0.60-0.62Mpa之间,控制氮气进气温度在5-10℃之间,研磨室外冷却循环水温度在5-10℃之间;获得细粉,其粒度分布为X10=0.50μm,X50=1.1μm,X90=2.7μm;

(5)磁场成型:将步骤(4)中细粉分别放入到氧含量小于10ppm的全密封的磁场成型压机中取向成型,其中磁场强度为2.0T,成型的压坯密度为4.5±0.5g/cm3

(6)磁场微波烧结:将步骤(5)的产品进行强磁场微波烧结,其中微波烧结温度在1050℃,保温20min,微波频率为3.5kW,过程所加磁场强度为4.0T;保温完成后在氩气保护下风冷至30℃以下出炉,获得Y2Fe14B坯料和N50预烧坯料,对成型的Y2Fe14B坯料进行表面磨抛及外形加工,得到Y2Fe14B型靶材;

(7)采用磁控溅射将Y2Fe14B型靶材合金镀在所述N50预烧坯料上,通过控制溅射时间来控制Y2Fe14B合金的含量,使其重量占总重分别为5%、10%、15%、20%,25%,获得溅射后的混合钕铁硼磁体;

(8)二次磁场微波烧结:将步骤(7)的产品进行强磁场微波烧结,其中微波烧结温度在950℃,保温30min,微波频率为3.0kW,过程所加磁场强度为2.0T;

(9)磁场热处理:将步骤(8)的产品放入真空度小于0.7Pa的真空磁场热处理炉中进行磁场热处理,升温至580℃,保温3h,磁场强度3.5T,保温完成后在氩气保护下风冷至30℃以下出炉,制得所述Nd2Fe14B/Y2Fe14B型高性能磁体。

以Y2Fe14B型合金含量为0%的样品为对照,测定不同Y2Fe14B型合金含量的永磁体性能,测定结果见下表:

对比例1

一种Nd2Fe14B/Y2Fe14B型永磁体的制备工艺,包括以下步骤:

步骤(1)-(4)与实施例1相同;

(5)混粉:往N50甩片细粉罐中分别添加0~25%的Y2Fe14B型合金细粉,然后在氩气保护下混粉60min,混粉完成后冷却2h,在氩气保护下将混合细粉用100目筛网过筛;

(6)磁场成型:将步骤(5)的混合细粉放入到氧含量小于10ppm的全密封的磁场成型压机中磁场取向成型,其中磁场取向优选采用正负脉冲磁场多次取向,磁场强度4.0T,成型的压坯密度为4.2-4.3g/cm3

(7)冷等静压:将步骤(6)的压坯放入冷等静压设备中进一步压制成型提高密度,等静压力250Mpa,得到生坯;

(8)真空烧结:将步骤(7)的生坯在氩气的保护下放入正常真空烧结炉中进行高温烧结,具体过程为将生坯装入烧结炉抽真空至0.5Pa时以7℃/min升温至450℃,保温30min,然后再由450℃以6℃/min升温至870℃,保温60min,最后以5℃/min升温至烧结温度1070℃,保温时间180min;保温完成后在氩气保护下风冷至30℃以下出炉;

(9)时效热处理:将步骤(8)的产品以7℃/min升温至热处理温度为895℃,保温2.5h;保温完成后风冷至200℃以下后升温至第二步热处理温度495℃,保温5h,保温完成后在氩气保护下风冷至30℃以下出炉,制得所述Nd2Fe14B/Y2Fe14B型永磁体。

以Y2Fe14B型合金含量为0%的样品为对照,测定不同Y2Fe14B型合金含量的永磁体性能,测定结果见下表:

对比例2

一种Nd2Fe14B/Y2Fe14B型永磁体的制备工艺,包括以下步骤:

步骤(1)-(4)与实施例2相同;步骤(5)-(9)与对比例1相同。

以Y2Fe14B型合金含量为0%的样品为对照,测定不同Y2Fe14B型合金含量的永磁体性能,测定结果见下表:

最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种软磁复合粉末、软磁粉芯及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!