一种非接触式移动测量系统及方法

文档序号:499135 发布日期:2022-01-07 浏览:4次 >En<

阅读说明:本技术 一种非接触式移动测量系统及方法 (Non-contact mobile measurement system and method ) 是由 章迪 于 2021-09-17 设计创作,主要内容包括:本发明涉及一种非接触式移动测量系统及方法。非接触式移动测量系统包括主传感器、主载体、合作目标、辅载体四个部分,主传感器用于对目标进行非接触式测量,主载体用于搭载主传感器,合作目标用于辅助主传感器进行测量,辅载体用于搭载合作目标。本发明同时提供了一种效率高且成本低的方法,能提高非接触式移动测量的精度、效率和性价比。(The invention relates to a non-contact mobile measurement system and a non-contact mobile measurement method. The non-contact mobile measurement system comprises four parts, namely a main sensor, a main carrier, a cooperative target and an auxiliary carrier, wherein the main sensor is used for carrying out non-contact measurement on the target, the main carrier is used for carrying the main sensor, the cooperative target is used for assisting the main sensor to carry out measurement, and the auxiliary carrier is used for carrying the cooperative target. The invention also provides a method with high efficiency and low cost, which can improve the precision, efficiency and cost performance of the non-contact mobile measurement.)

一种非接触式移动测量系统及方法

技术领域

本发明属于测绘遥感与地理信息技术领域,特别是涉及一种非接触式移动测量系统及方法。

背景技术

目前为提高空间数据采集的效率,一般将非接触式传感器搭载于移动载体上对目标物进行测量,如卫星遥感、有人/无人机摄影测量、车载激光雷达、移动测量背包等。为获得目标物上各元素在地面测量坐标系中的准确坐标,须求得非接触式传感器在信号发射瞬间的精确位置和姿态,通常有两种方式:一是在目标物上选刺或人工布设一定数量的控制点,以进行反算;二是在载体上安装高精度的定位定姿系统(POS),直接测定其位置和姿态。

以航空摄影测量为例,地面控制点(像控点)的选刺或布设,以及其测量过程往往过于繁琐,工作效率低下,虽然其精度有保障,但时间和人力成本高,数量也通常较为稀少,在一些地形复杂、位置特殊或极端环境的区域,甚至无法进行控制点的布设和测量。POS虽然可以不依赖于控制点,但其造价随精度要求提高而呈指数攀升,要达到理想精度,必须面对高昂的硬件成本,对于无人机一类载体,还存在较大的硬件损毁风险,难以大规模普及。因此迫切需要一种效率高且成本低的方法,以提高非接触式移动测量的精度、效率和性价比。

发明内容

本发明针对现有技术的不足,提供一种非接触式移动测量系统及方法。利用辅载体搭载合作目标,不仅可以提高空间数据的位置精度,而且成本相比在载体上安装高精度的POS系统大幅降低。

为了达到上述目的,本发明提供的技术方案是一种非接触式移动测量系统,包括主传感器、主载体、合作目标、辅载体四个部分。

主传感器用于对目标进行非接触式测量,它可以是一种或多种非接触式传感器的组合,如相机、CCD、Lidar、SAR等。

主载体用于搭载主传感器,其包括但不限于卫星、无人机、有人机、热气球、飞艇、车辆、船舶、机器人、自然人、动物等。

合作目标用于辅助主传感器进行测量,当其出现在主传感器的测量范围中时,可使主传感器获得具有明显可识别特征的信号,例如与相机配套的、具有对比鲜明的颜色或纹理的光学靶标(像控点标志),与激光扫描头或Lidar配套的靶球、反射片等,以及与SAR配套的角反射器等。当主传感器有多种类型时,合作目标可为相应的一种或多种合作目标的组合。合作目标需附装一种或多种定位传感器,用于确定其在地面测量坐标系中的坐标,包括但不限于卫星导航定位系统(GNSS)、超宽带(UWB)、视觉传感器、棱镜等。

辅载体用于搭载合作目标,辅载体可以与主载体分离,也可以附着于主载体上,数量可以为多个,包括但不限于无人机、有人机、卫星、热气球、飞艇、车辆、船舶、机器人、自然人、动物等。

而且,所述主传感器还可以进一步附装一种或多种定位和/或定姿传感器,如卫星导航定位系统(GNSS)、超宽带(UWB)、视觉传感器、棱镜、惯导等,用于确定主传感器的空间坐标和/或姿态。

而且,所述合作目标也可进一步附装一种或多种定姿传感器,包括但不限于惯导、陀螺仪、IMU、加速度计、电子罗盘等,用于确定其加速度、速度和/或姿态。

而且,所述辅载体上还可进一步搭载辅传感器,以测定合作目标同目标物的相对几何关系,用于对主传感器的数据进行进一步的精化改正,搭载的辅传感器包括但不限于超声波、摄像头、激光测距仪、微波雷达等。

而且,上述非接触式移动测量系统还可以进一步包括用于传输数据的通讯模块和用于协调辅载体与主载体之间的运行的控制系统。

本发明还提供一种非接触式移动测量方法,包括以下步骤:

步骤1,在目标区域,控制主载体按照某一路径S运行,启动主传感器采集空间数据;

步骤2,控制辅载体沿某一路径L与主载体同步运行,使其搭载的合作目标处于主传感器的测量范围之内,并启动合作目标的定位传感器,对合作目标的位置进行测量和记录;

步骤3,在测量过程中或测量结束后,对主传感器获取的、包含合作目标反馈信号的数据,与合作目标的位置测量数据进行匹配,获得各合作目标反馈信号的精确位置信息;

步骤4,利用各合作目标反馈信号的精确位置信息,对主传感器采集的空间数据进行反算和校正。

而且,所述步骤2中辅载体应尽可能贴近目标区域运行,辅载体可以与主载体在时间和空间上进行同步运动,路径可以相同或不同;必要时主、辅载体均可以在某些空间位置做适当停留,而后继续运动。主传感器的测量数据、合作目标的位置姿态信息,可以实时传输进行处理,也可以进行事后处理。可进一步对合作目标的一种或多种状态进行测量和记录,包括但不限于合作目标的速度、加速度、姿态,以及合作目标到目标物的相对几何关系。

而且,所述步骤3中可以基于时间、几何、色彩、纹理等一种或多种特征进行匹配。合作目标的位置测量数据和精确位置信息可进一步包含合作目标到目标物的相对几何关系。

与现有技术相比,本发明具有如下优点:1)利用辅载体搭载合作目标,克服了传统方法中控制点数量稀少、布设困难、测量繁琐的缺点,测量精度、工作效率大为提升;2)本发明中合作目标的位置确定无须使用昂贵的高精度POS,硬件成本和损毁风险能得到大幅降低,而测量的精度和可靠性却可大大增加。

附图说明

图1是本发明实施例的系统构成示意图,其中A为主传感器,B为主载体,C为合作目标,D为辅载体,E合作目标的定位定姿传感器。

图2是本发明实施例提供的一种以无人机为主、辅载体的航空摄影测量系统构成示意图,其中11为相机,12为无人机,21为像控点标志,22为GNSS,23为无人机,24为激光测距仪。

图3是本发明实施例提供的一种以无人机为主、辅载体的航空激光雷达测量系统构成示意图,其中11为激光雷达,12为无人机,21为激光反射片,22为GNSS,23为无人机。

具体实施方式

本发明提供一种非接触式移动测量系统及方法,利用辅载体搭载合作目标,克服了传统方法中控制点数量稀少、布设困难、测量繁琐的缺点,不仅提高了求解精度,而且成本相比在载体上安装高精度的POS系统大幅降低。

下面结合附图和实施例对本发明的技术方案作进一步说明。

如图1所示,本发明提供一种非接触式移动测量系统,包括主传感器、主载体、合作目标、辅载体四个部分。

主传感器用于对目标进行非接触式测量,它可以是一种或多种非接触式传感器的组合,如相机、CCD、Lidar、SAR等。主传感器还可以进一步附装一种或多种定位和/或定姿传感器,如卫星导航定位系统(GNSS)、超宽带(UWB)、视觉传感器、棱镜、惯导等,用于确定主传感器的空间坐标和/或姿态。

主载体用于搭载主传感器,其包括但不限于卫星、无人机、有人机、热气球、飞艇、车辆、船舶、机器人、自然人、动物等。

合作目标用于辅助主传感器进行测量,当其出现在主传感器的测量范围中时,可使主传感器获得具有明显可识别特征的信号,例如与相机配套的、具有对比鲜明的颜色或纹理的光学靶标(像控点标志),与激光扫描头或Lidar配套的靶球、反射片等,以及与SAR配套的角反射器等。当主传感器有多种类型时,合作目标可为相应的一种或多种合作目标的组合。合作目标需附装一种或多种定位传感器,用于确定其在地面测量坐标系中的坐标,包括但不限于卫星导航定位系统(GNSS)、超宽带(UWB)、视觉传感器、棱镜等;也可进一步附装一种或多种定姿传感器,包括但不限于惯导、陀螺仪、IMU、加速度计、电子罗盘等,用于确定其加速度、速度和/或姿态。

辅载体用于搭载合作目标,辅载体可以与主载体分离,也可以附着于主载体上,数量可以为多个,包括但不限于无人机、有人机、卫星、热气球、飞艇、车辆、船舶、机器人、自然人、动物等。辅载体上还可进一步搭载辅传感器,以测定合作目标同目标物的相对几何关系,用于对主传感器的数据进行进一步的精化改正,搭载的辅传感器包括但不限于超声波、摄像头、激光测距仪、微波雷达等。

整个非接触式移动测量系统还可以进一步包括用于传输数据的通讯模块和用于协调辅载体与主载体之间的运行的控制系统。

本发明实施例还提供一种非接触式移动测量方法,包括以下步骤:

步骤1,在目标区域,控制主载体按照某一路径S运行,启动主传感器采集空间数据。

步骤2,控制辅载体沿某一路径L与主载体同步运行,使其搭载的合作目标处于主传感器的测量范围之内,并启动合作目标的定位传感器,对合作目标的位置进行测量和记录。

辅载体应尽可能贴近目标区域运行。辅载体可以与主载体在时间和空间上进行同步运动,路径可以相同或不同;必要时主、辅载体均可以在某些空间位置做适当停留,而后继续运动。主传感器的测量数据、合作目标的位置姿态信息,可以实时传输进行处理,也可以进行事后处理。可进一步对合作目标的一种或多种状态进行测量和记录,包括但不限于合作目标的速度、加速度、姿态,以及合作目标到目标物的相对几何关系。

步骤3,在测量过程中或测量结束后,对主传感器获取的、包含合作目标反馈信号的数据,与合作目标的位置测量数据进行匹配,获得各合作目标反馈信号的精确位置信息。

可以基于时间、几何、色彩、纹理等一种或多种特征进行匹配。合作目标的位置测量数据和精确位置信息可进一步包含合作目标到目标物的相对几何关系。

步骤4,利用各合作目标反馈信号的精确位置信息,对主传感器采集的空间数据进行反算和校正。

实施例一

如图2所示,目标物为地面,主载体采用无人机12,主传感器采用数码相机11,辅载体采用无人机23,合作目标采用像控点标志21,无人机23上加装有GNSS RTK定位器22、激光测距仪24,其中GNSS RTK定位器22用于测定像控点标志21的空间坐标,激光测距仪24用于测定像控点标志21到地面的相对高度。

步骤1,在目标区域,根据测图比例尺、相机参数、航向和旁向重叠度要求,计算航高H、设计航线S,控制主无人机12按照航线S飞行,启动数码相机11拍摄相片,记录各相片的拍摄时间精确到毫秒。

步骤2,控制辅无人机23沿与主无人机12航线S平行、航高为h的航线L飞行,使其搭载的像控点标志21始终处于主无人机12所搭载数码相机11的拍摄范围之内,且h应尽可能小以便贴近地面,同时应避开障碍物,h可动态调整;启动GNSS RTK定位器22,对像控点标志21的位置进行测量和记录,同时启动激光测距仪24,记录其测量值;所有测量值中均包含有精确到毫秒的时间信息。

步骤3,在测量结束后,对数码相机11获取的、包含像控点标志21影像的相片,与像控点标志21的位置数据进行时间匹配,必要时进行内插,获得各相片中像控点标志21影像的精确坐标;

步骤4,利用各相片中像控点标志21所成影像的精确坐标和相对于地面的高度,对数码相机11获取的所有相片进行校正,通过空中三角测量等方法,反算出各相片精确的外方位元素。

实施例二

如图3所示,目标物为地面,主载体采用无人机12,主传感器采用激光雷达11,辅载体采用无人机23,合作目标采用激光反射片21,无人机23上加装有GNSS RTK定位器22,其中GNSS RTK定位器22用于测定激光反射片21的空间坐标。

步骤1,在目标区域,根据航向和旁向重叠度要求,设计航高为H的航线S,控制主无人机12按照S飞行,启动激光雷达11进行扫描,点云的记录时间精确到毫秒。

步骤2,控制辅无人机23沿与主无人机12航线S平行、航高为h的航线L飞行,使其搭载的激光反射标志21始终处于主无人机12所搭载激光雷达11的扫描范围之内,且h应尽可能小以便贴近地面,同时应避开障碍物,h可动态调整;启动GNSS RTK定位器22,对激光反射标志21的位置进行测量和记录;所有测量值中均包含有精确到毫秒的时间信息。

步骤3,在测量结束后,对激光雷达11获取的、包含激光反射标志21的点云的扫描数据,与激光反射标志21的位置数据进行时间匹配,必要时进行内插,获得各站扫描数据中激光反射标志21所成点云在地面测量坐标系中的精确坐标。

步骤4,利用各测站扫描数据中激光反射标志21所成点云的精确坐标,通过点云配准等方法对激光雷达11获取的所有点云进行处理和校正,将其坐标系转换至地面测量坐标系。

具体实施时,以上流程可采用计算机软件技术实现自动运行流程。

本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:视觉SLAM的增量建图方法、装置、机器人及可读存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!