一种拼接生长金刚石单晶的方法

文档序号:63197 发布日期:2021-10-01 浏览:48次 >En<

阅读说明:本技术 一种拼接生长金刚石单晶的方法 (Method for splicing and growing diamond single crystal ) 是由 王启亮 李红东 邹广田 吕宪义 成绍恒 刘钧松 高楠 李柳暗 于 2021-07-02 设计创作,主要内容包括:本发明的一种拼接生长金刚石单晶的方法属于金刚石单晶制备技术领域。以金刚石单晶作为籽晶,将2~25片籽晶拼接在一起得到金刚石单晶衬底,在拼接缝处通过磁控溅射或者真空镀膜溅射一层铱膜;利用微波等离子体化学气相沉积(MPCVD)设备在溅射铱膜的金刚石单晶衬底的表面外延生长完整的金刚石单晶外延层,得到金刚石单晶材料,生长面为(100)晶面。本发明提出了一种拼接生长金刚石单晶的新方法,得到高质量的大面积金刚石单晶片。(The invention discloses a method for splicing and growing diamond single crystals, and belongs to the technical field of preparation of diamond single crystals. Splicing 2-25 seed crystals together by taking a diamond single crystal as a seed crystal to obtain a diamond single crystal substrate, and sputtering an iridium film at a splicing seam by magnetron sputtering or vacuum coating; and epitaxially growing a complete diamond single crystal epitaxial layer on the surface of the iridium-sputtered diamond single crystal substrate by using Microwave Plasma Chemical Vapor Deposition (MPCVD) equipment to obtain the diamond single crystal material, wherein the growing surface is a (100) crystal surface. The invention provides a novel method for splicing and growing diamond single crystals to obtain high-quality large-area diamond single crystal wafers.)

一种拼接生长金刚石单晶的方法

技术领域

本发明属于金刚石单晶制备

技术领域

,涉及一种拼接生长大面积金刚石单晶的新方法。

背景技术

金刚石被誉为“终极半导体”材料,具备多种优异的性能,比如大的禁带宽度、大的空穴和电子迁移率、有效的抗辐射能力等等,这些优异性能使得金刚石材料在很多应用领域潜力巨大。金刚石单晶由于具有无晶界、缺陷少等优点,成为了制备大功率电力电子器件、微波窗口、半导体器件、微波功率器件、强辐射探测器、量子通讯及光电子器件的绝佳材料。而这些应用的前提是生长出符合要求的高质量大面积金刚石单晶材料。随着半导体器件、微电子学、核能、航空航天、国防军工等领域的发展,大面积的金刚石单晶需求越来越迫切,天然金刚石远不能满足人们的需求,所以希望通过人工合成的方法来制备高质量大面积的金刚石单晶。

目前,有两种主要的合成金刚石晶体的方法:高压高温(HPHT)和化学气相沉积(CVD)。对于HPHT方法,很难生长大面积的金刚石单晶,其晶体尺寸通常小于10×10mm2,不能满足各领域对金刚石尺寸的需求;而CVD方法是生产大面积金刚石单晶的可行方法。目前,大部分是用微波等离子体化学气相沉积法(MPCVD)生长大面积金刚石单晶。

为了得到大面积的金刚石单晶,一般使用异质外延和拼接生长技术。金属铱由于其具有和金刚石相同的晶体结构、极为相近的晶格常数等特性,使其成为异质外延金刚石不可替代的过渡层材料。异质外延过程中,一般在氧化物衬底表面溅射金属铱纳米膜进行外延生长,这种方法制备的金刚石单晶面积大。但是,由于是异质外延,必然存在金刚石重新成核的情况,会在生长过程中产生大量的缺陷,并且该方法生长金刚石单晶由于氧化物与金刚石的热膨胀系数差别大,造成附着力差的问题,在改变条件或者停止生长时,由于内应力大,不能完全消除,导致金刚石单晶出现有裂纹或脱落,无法满足目前的应用需求。拼接生长技术是将两片或多片金刚石单晶拼接在一起,然后使用微波等离子化学气相沉积技术对这两片或多片金刚石单晶外延生长,最终使得这两片或多片金刚石单晶拼接成一体,并且可以继续生长成完整的大面积金刚石单晶材料。但是,该方法的缺点是两片或多片金刚石单晶在生长过程中,拼接缝处由于晶向、缺陷等因素在生长过程中晶格不能完全生长在一起,成为一个完整的金刚石单晶材料,而是挤在一起的,生长抛光之后,表面看不出任何拼接痕迹,但是在重新生长的时候在拼接缝处会出现台阶或者缺陷。近年来,日本科学家通过在同一片金刚石单晶上,经过离子注入-生长金刚石单晶-剥离金刚石单晶的方法,得到多片晶向几乎一致的多片金刚石单晶,然后用拼接的方法生长出大面积金刚石单晶,虽然拼接缝处的问题有所好转,然而,在接缝处的生长缺陷会不可避免地延伸至生长的金刚石单晶内部,影响最终生长的金刚石单晶质量。

目前金刚石单晶的同质外延生长已经成熟,要用拼接法得到大面积的金刚石单晶片,主要是需要解决拼接缝处金刚石单晶晶格的生长问题,通过异质外延的生长技术,我们可以借鉴过渡层的方法,在拼接的金刚石单晶表面溅射一层铱膜,但是由于整个表面都是铱,在生长过程中会出现大量的缺陷,导致金刚石单晶的质量大幅下降。

因此需要一种新的拼接缝处理方法,使得两片或多片金刚石单晶拼接更好、缺陷更少,最后生长为完整的高质量大面积金刚石单晶片。

发明内容

本发明提出了一种拼接生长大面积金刚石单晶的新方法,拼接生长之前,在拼接缝处通过磁控溅射或者真空镀膜溅射一层铱膜,用微波等离子体化学沉积设备生长金刚石单晶外延膜。

本发明具体的技术方案如下:

一种拼接生长金刚石单晶的方法,以金刚石单晶作为籽晶,将2~25片籽晶拼接在一起得到金刚石单晶衬底,在拼接缝处通过磁控溅射或者真空镀膜溅射一层铱膜,如图1所示;利用微波等离子体化学气相沉积(MPCVD)设备在溅射铱膜的金刚石单晶衬底的表面外延生长完整的金刚石单晶外延层,得到金刚石单晶材料,生长面为(100)晶面,如图2所示。

本发明的一种拼接生长金刚石单晶的方法,具体步骤如下:溅射铱膜之前,先将籽晶表面抛光清洁处理,方法如下:使用机械抛光和化学抛光相结合的方法,将所有金刚石籽晶处理到相同的厚度,并将生长面及侧面的非金刚石相去除,使籽晶表面光滑平整,生长面与相邻的各侧面夹角都是90度,使用体积比3∶1的硫酸和硝酸溶液进行高温(优选300℃)处理,去除抛光过程中产生的杂质,降温至室温后取出,用丙酮、酒精和去离子水分别超声清洗干净,晾干,将处理后的籽晶固定好放入磁控溅射或者真空镀膜腔体的样品托中,在氩气保护下在拼接缝处溅射铱膜,铱膜厚度为50~100nm;

将溅射铱膜后的拼接衬底放入MPCVD设备样品台的样品托中,抽真空后通入反应气体,生长过程分为三个阶段:一是低速生长阶段,功率2~3kW、压强80~120torr,温度900~1050℃,氢气流量200-500sccm,甲烷流量20-50sccm,生长时间10~30min;二是刻蚀阶段,功率2~3kW、压强70~90torr,温度800~900℃,氢气流量200-500sccm,氧气流量2-5sccm,刻蚀时间5~10min;三是高速生长阶段,功率3~6kW、压强100~150torr,温度1000~1150℃,氢气流量200-1000sccm,甲烷流量20-100sccm,生长时间1~50h,得到高质量大面积的金刚石单晶外延层。

有益效果:

本发明提出了一种拼接生长金刚石单晶的新方法,得到高质量的大面积金刚石单晶片。

附图说明

图1是溅射铱膜前后的金刚石籽晶示意图。

图2是拼接生长之后的金刚石单晶外延层示意图。

具体实施方式

以下实施例对本申请作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本申请的理解,而对其不起任何限定作用。

实施例1

本发明中金刚石单晶材料生长是在微波等离子CVD系统里制备的。

以2片尺寸为7×7mm2天然金刚石单晶(可以是金刚石单晶,也可以是高温高压和化学气相沉积法人工合成的金刚石单晶)作为籽晶,将2块金刚石籽晶处理到相同的厚度,并将生长面及侧面的非金刚石相去除,使籽晶表面光滑平整,生长面与相邻的各侧面夹角都是90度,使用体积比3∶1的硫酸和硝酸溶液进行高温(300度)处理,去除抛光过程中产生的杂质,降温至室温后取出,用丙酮、酒精和去离子水分别超声清洗干净,晾干,将处理后的籽晶固定好放入磁控溅射或者真空镀膜腔体的样品托中,在氩气保护下在拼接缝处溅射铱膜,铱膜厚度为80nm,得到金刚石单晶衬底;

将上述拼接缝溅射铱膜的金刚石单晶衬底放入MPCVD设备样品台的样品托中,用机械泵及分子泵抽真空后通入反应气体分三个阶段生长。具体在条件为:一是低速生长阶段,目的是让铱膜与金刚石单晶同时低速生长一层金刚石单晶外延层,微波功率2.5kW、压强100torr,温度950℃,氢气流量400sccm,甲烷流量20sccm,生长20min;二是刻蚀阶段,目的是去除生长过程中铱表面生长的少量非金刚石相等杂质,微波功率2.5kW、压强80torr,温度850℃,氢气流量400sccm,氧气流量2sccm,刻蚀6min;三是高速生长阶段,微波功率5kW、压强130torr,温度1130℃,氢气流量600sccm,甲烷流量40sccm,生长30h。得到高质量大面积(14×7mm2)的金刚石单晶外延层。

实施例2

以25片尺寸为7×7mm2人工合成(如高温高压和化学气相沉积法)金刚石单晶作为籽晶,按实施例1的步骤处理、拼接、溅射铱膜。

将上述拼接缝溅射铱膜的金刚石单晶衬底放入MPCVD设备样品台的样品托中,用机械泵及分子泵抽真空后通入反应气体分三个阶段生长。具体在条件为:一是低速生长阶段,目的是让铱膜与金刚石单晶同时低速生长一层金刚石单晶外延层,微波功率3kW、压强120torr,温度950℃,氢气流量400sccm,甲烷流量20sccm,生长20min;二是刻蚀阶段,目的是去除生长过程中铱表面生长的少量非金刚石相等杂质,微波功率3.5kW、压强100torr,温度850℃,氢气流量400sccm,氧气流量2sccm,刻蚀6min;三是高速生长阶段,微波功率6kW、压强140torr,温度1130℃,氢气流量600sccm,甲烷流量40sccm,生长30h。得到高质量大面积(35×35mm2)的金刚石单晶外延层。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种金属单晶制备装置及工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!