组蛋白去乙酰酶抑制剂及其制备和应用

文档序号:657612 发布日期:2021-04-27 浏览:28次 >En<

阅读说明:本技术 组蛋白去乙酰酶抑制剂及其制备和应用 (Histone deacetylase inhibitor and preparation and application thereof ) 是由 徐莉英 吴斐斐 景永奎 张美慧 王林 包宇 董金华 于 2019-10-24 设计创作,主要内容包括:本发明涉及组蛋白去乙酰酶抑制剂及其制备和应用,具体涉及基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂及其制备方法,还涉及合成所述组蛋白去乙酰酶抑制剂的中间体及其制备方法,还涉及所述组蛋白去乙酰酶抑制剂在制备抗肿瘤药物中的应用,属于药物化学合成技术领域。本发明所述的锌离子结合型化合物及其盐或溶剂化物如通式(I)或(II)所示:其中R、X、n、i如权利要求书和说明书所述。(The invention relates to a histone deacetylase inhibitor, a preparation method and an application thereof, in particular to a novel histone deacetylase inhibitor based on a beta-elemene structure and a preparation method thereof, an intermediate for synthesizing the histone deacetylase inhibitor and a preparation method thereof, and an application of the histone deacetylase inhibitor in preparing antitumor drugs, belonging to the technical field of chemical synthesis of drugs. The zinc ion binding compound and the salt or solvate thereof are shown as the general formula (I) or (II): wherein R, X, n, i are as described in the claims and the description.)

组蛋白去乙酰酶抑制剂及其制备和应用

技术领域:

本发明属于药物化学合成技术领域,涉及组蛋白去乙酰酶抑制剂及其制备和应用,具体涉及基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂及其制备方法,还涉及合成所述组蛋白去乙酰酶抑制剂的中间体及其制备方法,还涉及所述组蛋白去乙酰酶抑制剂在制备抗肿瘤药物中的应用。

背景技术:

组蛋白去乙酰化酶抑制剂(HDACi)通过调节组蛋白N-端的赖氨酸残基的乙酰化和去乙酰化的水平,激活抑癌基因,抑制癌症基因,进一步来抑制肿瘤细胞生长,诱导肿瘤细胞的凋亡(Armeanu S,Pathil A,Venturelli S,et al.Apoptosis onhepatoma cells butnot on primary hepatocytes by histone deacetylase inhibitors valproate andITF2357[J].J Hepatol,2005,42:210-217.)。截止目前,以HDAC为靶点的药物,全球范围内有6个批准上市,5个处于临床三期,32个处于临床二期,22个处于临床一期。这些已经上市的以及正在临床试验的HDACi根据锌离子结合基团(Zinc-binding group,ZBG)的类型主要分为低毒性的脂肪酸类、强锌离子结合的异羟肟酸类、高选择性的酰胺类及其他类。HDAC抑制剂的结构通常由与N-乙酰化赖氨酸结合通道入口处的氨基酸相互作用的表面识别基团(a surface recognition zone,Cap group)、连接单元(connecting unit,CU)、锌离子结合基团(ZBG)以及适合狭窄的疏水口袋的linker四部分组成,linker将Cap 部分、CU部分、ZBG部分连接在一起(Marek L,Hamacher A,Hansen F K,et al. Histone deacetylase(HDAC)inhibitors with a novel connecting unit linker region reveal aselectivity profile for HDAC4 and HDAC5 with improved activity gainstchemoresistant cancer cells[J].J Med Chem,2013,56(2):427-436.)。已报道的CAP 疏水区主要为苯环和芳香杂环,可以和HDAC活性位点CAP区域空腔周围的氨基酸残基产生作用。Strebl M G等发现将HDACi的输水区的芳环换成具有一定空间结构的非芳香性疏水基团,可以增强对I类HDAC的选择性(Strebl M G, Wang C,Schroeder F A,etal.Development of a fluorinated class-I HDAC radiotracer reveals key chemicaldeterminants of brain penetrance[J].ACS Chem Neurosci,2015, 7(5):528-533.)。

β-榄香烯为疏水性的具有一定空间结构的倍半萜类化合物,含有三个π键,电子云密度较高,空间结构体积与已报道的CAP疏水区相近,并且β-榄香烯本身具有抗癌活性,是我国自行开发研制的一种Ⅱ类广谱非细胞毒性抗肿瘤药榄香烯乳的活性成分。为改善β-榄香烯水溶性和提高抗癌活性,本课题组曾设计合成了一系列β-榄香烯哌嗪衍生物,其中一些化合物对白血病K562、HL-60、宫颈癌 HeLa、胃癌SGC-7901、前列腺癌PC3、LNCap等细胞株的IC50值比β-榄香烯的IC50值低1~2个数量级(IC50值约为1~10μM);且无明显骨髓抑制作用,对正常骨髓细胞的抑制率低于肿瘤细胞5倍;对化疗药物耐受的乳腺癌MCF-7/Adr 细胞株具有同样的敏感性。进一步的体内抗癌活性试验结果表明β-榄香烯3-甲基哌嗪和3,5二甲基哌嗪衍生物在SPF级BALB/C裸鼠、昆明种小鼠、C57BL/6 小鼠及ICR小鼠体内可显著抑制移植性Lewis肺癌LL/2、肝癌H22、骨肉瘤S180肿瘤在小鼠体内的原位生长,抑制活性高于先导化合物β-榄香烯或与之相当,且其抗肿瘤作用可能与激活荷瘤动物的体内免疫系统有关。抗癌机制研究表明上述二个化合物可以抑制HL-60和HeLa细胞生长并诱导细胞凋亡,主要以下调 c-FLIP(FLICE-like inhibitory protein)蛋白的水平并且诱导活性氧的产生,进而激活Caspase-8来激活外源性途径诱导HL-60细胞发生凋亡。还可抑制AKT(下调p-mTOR)和mTOR(下调p-P70S6K)的活性,很可能是一类新的mTOR抑制剂(徐莉英,董金华,景永奎,王敏伟.β-榄香烯含氮衍生物及其制备方法和用途.专利号ZL200610081625.0;YuZhiying,Wang Rui,Xu Liying,et al. β-Elemene piperazine derivatives induceapoptosis in human leukemia cells through downregulation of c-FLIP andgeneration of ROS.PLoS ONE.2011,6(1):e15843; Ding Xiaofei,Shen Mao,Xu Liying,et al.

13,14-bis(cis-3,5-dimethyl-1-piperazinyl)-β-elemene,a novelβ-elemenederivative, shows potent antitumor activities via inhibition of mTOR in humanbreast cancer cells. ONCOLOGY LETTERS.2013,5:1554-1558;陈光,丁晓飞,肖晋芳,等.榄香烯哌嗪对荷瘤小鼠免疫功能的影响[J].沈阳药科大学学报,2007,24(4):238-241;陈光,丁晓飞,肖晋芳.榄香烯衍生物诱导HeLa细胞凋亡的实验研究[J].中国药理学通报,2007,23(2):246-250)。但在体内试验中发现它们的毒性相对较大,因此2013年王敬敬采用成酰胺的修饰方法,在β-榄香烯取代哌嗪类衍生物的哌嗪基4位氮上引入取代苯甲酰基或取代苯丙烯酰基合成了β-榄香烯取代哌嗪酰胺类衍生物,并采用MTT法测试了所合成的化合物对人宫颈癌细胞、人肝癌细胞、人纤维肉瘤细胞等10种肿瘤细胞的体外抗肿瘤活性,初步体外实验表明,β-榄香烯取代哌嗪酰胺类衍生物的抗肿瘤作用大多强于β-榄香烯,并且目标化合物对人黑色素瘤细胞A375-S2的IC50值大多数小于10μM,这间接证明了β- 榄香烯哌嗪类衍生物中引入酰胺键可能会增强其对某一类肿瘤细胞的特异选择性。(徐莉英,王敬敬,董金华.β-榄香烯取代哌嗪酰胺类衍生物及其制备和应用. 中国发明专利号ZL201210502358.5;王敬敬,张美慧,夏明钰,等.β-榄香烯取代哌嗪酰胺类衍生物的合成及抗肿瘤活性研究.中国药物化学杂志,2013,23 (6):453-460)。

因此,在本发明中通过应用药效团药物设计方法,首次尝试以β-榄香烯结构替换HDAC抑制剂中的芳香性疏水结构;而ZBG部分则按已上市的HDACi的类型,分别采用脂肪酸类、异羟肟酸类、酰胺类的药效团作为锌离子络合结构,设计了四个系列具有β-榄香烯结构的新型HDAC抑制剂。

发明内容

本发明在组蛋白去乙酰化酶抑制剂(HDACi)中首次引入β-榄香烯结构作为 HDACi的CAP疏水区,ZBG部分则按已上市的HDACi的类型,分别采用脂肪酸类、异羟肟酸类、酰胺类的药效团作为锌离子络合结构,合成了一系列结构新颖的基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂,并经药理试验证明其具有较好的抗癌活性和HDAC抑制活性。

本发明的目的在于提供一种结构新颖的基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂及其盐类或它们的溶剂化物。

本发明的另一目的是提供该基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂的制备方法。

本发明的第三个目的是提供含有该基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂的药物组合物。

本发明的第四个目的是提供该基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂的用途,本发明所述基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂或组合物可以用于制备各种抗肿瘤的药物。

具体地说,本发明提供的新型基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂具有以下结构:

a.连接链Linker为脂肪链的锌离子结合型化合物及其盐或溶剂化物:

R为能和羰基共同络合锌离子的基团:羟基、羟氨基、C1-C4烷基氨基、 N-甲基羟氨基、取代或未取代的苯基氨基,所述取代基为氨基、卤素、硝基、 C1-C4烷基,其中环己烷骨架有三个手性中心。

进一步地,R为羟基、羟氨基、甲基氨基、N-甲基羟氨基、苯氨基、邻氨基苯氨基、邻氯苯氨基,其中环己烷骨架有三个手性中心。

本发明提供了连接链Linker为脂肪链的锌离子结合型化合物的的制备方法,其特征在于:a与中间体A1经N-烷基化反应得中间体A2,A2经水解、氨解得化合物LDX-A-1、LDX-A-2;LDX-A-1经草酰氯酰化后与芳胺反应得化合物 LDX-A-3、LDX-A-4、LDX-A-5′,LDX-A-5′经铁粉/氯化铵还原硝基得化合物 LDX-A-5。其中环己烷骨架有三个手性中心。

b.连接链Linker为芳香链的锌离子结合型化合物及其盐或溶剂化物:

其中n是0-1的整数;i是0-1的整数。

X为COO、CONH、COCH=CH;

R为能和羰基共同络合锌离子的基团:羟基、羟氨基、C1-C4烷基氨基、 N-甲基羟氨基、取代或未取代的苯基氨基,所述取代基为氨基、卤素、硝基、 C1-C4烷基,其中环己烷骨架有三个手性中心。

进一步地,R为羟基、羟氨基、甲氨基、N-甲基羟氨基、苯氨基、邻氨基苯氨基、邻氯苯氨基等,其中环己烷骨架有三个手性中心。

本发明提供了连接链Linker为芳香链的锌离子结合型化合物的制备方法,其特征在于:a与无水哌嗪经亲核取代反应得D-10,对苯二甲醛经硼氢化钠还原得 B1。B1和D-10在N,N′-羰基二咪唑(CDI)存在下反应得中间体B2,B2和丙二酸经Knoevenagel-Doebner反应得化合物LDX-B-1。LDX-B-1在CDI存在下与盐酸羟胺、盐酸甲胺反应得化合物LDX-B-2、LDX-B-5;在DCC、DMAP存在下,LDX-B-1与苯胺反应得化合物LDX-B-3;LDX-B-1经草酰氯酰化后与邻氯苯胺反应得化合物LDX-B-4。

本发明提供了连接链Linker为芳香链的锌离子结合型化合物的制备方法,其特征在于:4-甲酰基苯甲酸甲酯经Knoevenagel-Doebner反应得C1,中间体C1经草酰氯酰化后与D-10反应得中间体C2,C2经水解得化合物LDX-C-1,LDX-C-1 在CDI存在下与盐酸羟胺、盐酸甲胺反应得化合物LDX-C-2、LDX-C-6;在DCC、 DMAP存在下,LDX-C-1与苯胺反应得化合物LDX-C-3;LDX-C-1经草酰氯酰化后与邻氯苯胺反应得化合物LDX-C-5;LDX-C-1经草酰氯酰化后与邻硝基苯胺反应得中间体LDX-C-4′,LDX-C-4′经铁粉/氯化铵还原硝基得化合物LDX-C-4。

本发明提供了连接链Linker为芳香链的锌离子结合型化合物的制备方法,其特征在于:以4-溴甲基苯丙烯酸甲酯和邻苯二甲酰亚胺钾盐为原料,经盖布瑞尔合成反应得中间体D1,D1在固体光气存在下与D-10反应得D2,D2经碱性水解得LDX-D-1,LDX-D-1在CDI存在下,与盐酸羟胺反应得LDX-D-2。

本发明中上述基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂制备过程中所用溶剂为常用溶剂,如冰醋酸、甲醇、乙醇、丙酮、二氯甲烷、DMF等。

本发明中上述基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂及其药用盐类中,所述的药用盐指与合适的非毒性有机酸或无机酸成的盐。

本发明提供了一种药物组合物,包括所述的基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂及其药用盐类或其溶剂化物和药学上可被接受的赋形剂。

进一步地,本发明提供了基于β-榄香烯结构的新型组蛋白去乙酰酶抑制剂及其药用盐类或其溶剂化物及其药物组合物在制备各种抗癌药物中的应用。

所述的癌症为白血病、多发性骨髓瘤、外周T细胞淋巴瘤、皮肤T细胞淋巴瘤、急性早幼粒淋巴瘤、乳腺癌、宫颈癌、黑色素瘤、肝癌、肺癌、卵巢癌或前列腺癌等。

具体实施方式

下面通过实施例来说明本发明的可实施性,本领域的技术人员应当理解,根据现有技术的教导,对相应的技术特征进行修改或替换,仍然属于本发明要求保护的范围。

实施例1单氯代β-榄香烯中间体的制备

在100mL三颈瓶中加入β-榄香烯5.0g(24.47mmol,1eq.)、冰醋酸3.5mL(61.17mmol,2.50eq.)和40mL二氯甲烷,冰水浴冷却至5℃,搅拌下缓慢滴加15mL(25.45mmol,1.04eq.)次氯酸钠溶液,15min滴完,继续反应4h。反应结束后,加入30mL水,用二氯甲烷萃取水层,合并有机相,饱和食盐水洗涤,保留有机层,无水硫酸钠干燥,过滤,减压蒸馏浓缩得粗品。柱层析得单氯代β-榄香烯油状物2.7g,收率46.2%。

实施例2β-榄香烯哌嗪的制备

将单氯代β-榄香烯混合物2.0g(8.38mmol,1eq.)、无水哌嗪1.8g(20.94 mmol,2.5eq.)溶于40mL无水乙醇,在20~80℃反应7h。反应结束后,减压蒸馏,向残留物中加水后用二氯甲烷萃取,保留有机层,饱和食盐水洗涤有机层三遍,无水硫酸钠干燥,过滤,减压蒸馏浓缩得1.2g浅黄色油状物,收率49.7%。

实施例3中间体6-氨基己酸甲酯盐酸盐的制备

向250mL三颈瓶中加入120mL无水甲醇,氮气保护条件下,将反应体系的温度降至-10℃,将二氯亚砜的10.9mL(152.47mmol,5eq.)缓慢滴加到反应液中,保持-10℃反应10min,随后向反应液中加入4g(30.49mmol,1eq.) 6-氨基己酸,最后反应液移至室温反应24h。反应结束后,减压蒸馏浓缩,然后向残余物中加入25mL的无水甲醇溶解,加入100mL无水乙醚析出产物然后过滤得3.2g 6-氨基己酸甲酯盐酸盐A1,收率57.8%,mp:118-121℃。ESI-MS,m/z 146.3[M+H-Cl]+

实施例4中间体羟甲基苯甲醛的制备

将2.0g(14.90mmol,1eq.)对苯二甲醛溶于25mL无水乙醇和35mL四氢呋喃中,在-10~-5℃搅拌下分四批加入140mg(3.72mmol,0.25eq.)硼氢化钠,1h加完后,将反应体系移至室温,继续反应5h。反应结束后,向反应液中加1mol/L的稀盐酸调节pH至5,减压蒸馏除去溶剂,向残留物中加水后用乙酸乙酯萃取,保留有机层,饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压蒸馏得粗品,柱层析得白色固体1.6g,收率83.0%,m.p.33-35℃。

实施例5中间体对甲酸甲酯苯丙烯酸的制备

将2.0g(12.18mmol,1eq.)4-甲酰基苯甲酸甲酯、3.8g(36.55mmol,3eq.) 丙二酸溶于10mL吡啶中,随后将3.4mL(3.99mmol,3eq.)六氢吡啶加入反应液中,在80~100℃反应4h。反应结束后,用1mol/L的稀盐酸调节pH至不再有固体析出,过滤,干燥,得2.3g产物,收率91.6%,m.p.246-248℃。1H-NMR (600MHz,DMSO-d6)δ12.56(brs,1H),7.97(d,J=8.3Hz,1H),7.83(d,J=8.2Hz, 1H),7.64(d,J=16.1Hz,1H),6.66(d,J=16.0Hz,1H),3.87(s,2H)。

实施例6中间体(E)-3-[4-(氨基甲基)苯基]丙烯酸甲酯的制备

在50mL三颈瓶中加入4-溴甲基苯丙烯酸甲酯0.10g(0.39mmol),邻苯二甲酰亚胺钾盐0.0726g(0.39mmol),加入5mL丙酮作为溶剂,搅拌,在20-55℃反应约14h。反应完毕后,减压蒸馏除去溶剂,向反应液中加入适量水后用乙酸乙酯进行萃取,合并有机相,有机相用饱和食盐水洗涤,加入无水硫酸钠进行干燥,抽滤,浓缩得白色固体0.12g,收率96.0%。将上述步骤所得产物加入到50 mL反应瓶中,用4mL甲醇溶解,随后向反应液中加入80%水合肼0.1mL(1.56 mmol),于室温下搅拌反应4h,反应液开始变成澄清,TLC监测原料中间体2明显减少,继续反应2h,原料反应完全,加入8滴冰乙酸,搅拌5h。减压蒸馏除去溶剂,向反应液中加入适量二氯甲烷使其全部溶解后,向反应液中加入适量水进行萃取,保留水层,向水层加入无水碳酸钠固体调节溶液pH=9,再用二氯甲烷萃取,使产品转移至有机层。有机层用饱和食盐水洗后,加入无水硫酸钠干燥。抽滤,浓缩得白色固体0.05g,产率67.2%。

1H-NMR(600MHz,DMSO-d6)δ8.61(brs,2H),7.67(d,J=7.9Hz,2H),7.48(d, J=15.4Hz,1H),7.11(d,J=8.0Hz,2H),6.31(d,J=15.4Hz,1H),4.31(s,2H),3.6(s,3H);ESI-MS m/z:192.1[M+H]+.

实施例7中间体的制备

称取中间体a(1.5g,6.28mmol,1eq.)、中间体A1(1.71g,9.42mmol, 1.5eq.)、三乙胺2.6mL(18.84mmol,3eq.)于100mL茄形瓶中,加入10mL N,N- 二甲基甲酰胺(DMF),升温至70~150℃,反应5h。反应完毕后,冷却至室温,反应液中析出三乙胺盐酸盐晶体,过滤,向滤液中加入60mL水,乙酸乙酯萃取,合并有机层,饱和食盐水洗涤,保留有机层,加无水硫酸钠干燥,过滤,减压蒸馏得粗品,柱层析得黄色油状物0.7g,收率32.1%。1H-NMR(600MHz,DMSO-d6)δ5.83(dd,J=17.9,10.4Hz,1H),5.03–4.54(m,6H),4.09(br s,1H), 3.57(s,3H),3.14(m,2H),2.42(m,2H),2.39–1.17(m,19H),0.95(s,3H); ESI-MS,m/z 348.2[M+H]+

实施例8中间体的制备

将0.5g(3.67mmol,1eq.)中间体B1溶于4mL无水DMF,氮气保护下,向反应液中加入0.715g(4.41mmol,1.2eq.)CDI,室温反应2h。随后,将1.27 g(4.41mmol,1.2eq.)中间体D-10溶于6mL无水DMF后加入反应体系,室温反应12h。反应结束后,向反应液加入30mL饱和食盐水,用乙酸乙酯萃取,保留有机层,饱和食盐水洗涤有机层,无水硫酸钠干燥,过滤,减压蒸馏得粗品,柱层析得浅黄色油状物0.8g,收率48.3%。1H-NMR(600MHz,DMSO-d6)δ10.02(s,1H),7.92(d,J=8.2Hz,2H),7.57(d,J=8.1Hz,2H),5.83(dd,J=17.9,10.4Hz, 1H),5.19(s,2H),4.96–4.58(m,6H),3.42(m,4H),2.92(m,2H),2.32(m,4H),2.13 –1.97(m,2H),1.74–1.31(m,9H),0.98(s,3H);ESI-MS,m/z 451.1[M+H]+

实施例9中间体的制备

称取0.3g(1.45mmol,1eq.)溶于4mL无水二氯甲烷,氮气保护下,加入0.37mL(4.36mmol,3eq.)草酰氯,然后滴加2滴无水DMF,室温反应30min。随后减压蒸馏得残余物,加入4mL无水二氯甲烷溶解残余物,然后将0.5g(1.75 mmol,1.2eq.)中间体D-10溶于5mL无水二氯甲烷后加入反应体系,室温反应6h。反应结束后,缓慢加入水,用二氯甲烷萃取,合并保留有机层,饱和食盐水洗涤,保留有机层,无水硫酸钠干燥,过滤,减压蒸馏浓缩得粗品。柱层析得0.5g浅黄色固体,收率72.1%,m.p.137-139℃。1H-NMR(600MHz,DMSO-d6) δ7.96(d,J=8.5Hz,2H),7.86(d,J=8.5Hz,2H),7.52(d,J=15.4Hz,1H),7.40(d, J=15.5Hz,1H),5.83(dd,J=17.9,10.4Hz,1H),4.97–4.59(m,6H),3.86(s, 3H),3.64(m,4H),2.93(m,2H),2.38–2.31(m,4H),2.11–1.98(m,2H),1.68– 1.33(m,9H),0.98(s,3H);ESI-MS,m/z477.4[M+H]+

实施例10中间体的制备

在50mL单颈瓶中加入170mg(888.98μmol)中间体D1,用3.0mL无水二氯甲烷溶解,称取固体光气263mg(888.98μmol),用3mL二氯甲烷溶解后滴加到反应液中,最后滴加用3.0mL二氯甲烷稀释的三乙胺溶液0.12mL(888.98 μmol)至反应液中。在氮气保护,常温搅拌反应1h。减压蒸馏除去溶剂得到黄色油状物。将上述黄色油状物用2.0mL二氯甲烷溶解,加入β-榄香烯哌嗪(D-10) 256.45mg(888.98μmol),室温搅拌反应4h,TLC监测跟踪反应进程。反应完全后,蒸出溶剂,加入适量水后用二氯甲烷萃取,保留有机层,有机层用饱和食盐水洗,并用1mol/L盐酸洗3次,最后用2%NaHCO3溶液洗至有机相溶液呈中性,加入无水硫酸钠干燥。抽滤,浓缩得白色固体0.31g,产率68.9%。ESI-MS m/z:506.2[M+H]+

实施例11甲酯的水解通法

将1.44mmol甲酯、1.5mL甲醇加入到50mL茄形瓶中,加入4.4mL 1mol/L(4.32mmol,3eq.)氢氧化钠溶液,随后再加入2mL四氢呋喃,室温反应24h。反应完毕后加1mol/L的稀盐酸调pH至7,减压蒸馏得残留物,残留物中加水后用二氯甲烷萃取,合并保留有机层,饱和食盐水洗涤,保留有机层,无水硫酸钠干燥,过滤,减压蒸馏浓缩得粗品,粗品柱层析得纯品。

实施例12含邻氯苯胺结构的化合物合成通法

将0.15mmol的取代羧酸溶于1.5mL无水二氯甲烷中,氮气保护下,将0.04 mL(0.45mmol,3eq.)草酰氯滴加到反应液中,滴加一滴无水DMF,反应30min。随后减压蒸馏得残余物,加入1.5mL无水二氯甲烷溶解残余物,然后加入(0.22 mmol,1.5eq.)邻氯苯胺,室温反应5h。反应完毕后,缓慢加入水,二氯甲烷萃取,合并保留有机层,饱和食盐水洗涤,保留有机层,无水硫酸钠干燥,过滤,减压蒸馏浓缩得粗品,经柱层析分离,得目标化合物。

实施例13含异羟肟酸、N-甲基甲酰胺结构的化合物合成通法

将0.20mmol取代羧酸溶于2mL无水DMF,氮气保护下,将49.4mg(0.30 mmol,1.5eq.)CDI加入反应液,室温反应2h。随后向反应体系中加入0.41mmol (2eq.)盐酸羟胺或盐酸甲胺,继续反应12h。反应结束后,向反应液加入30mL 饱和食盐水,用乙酸乙酯萃取,保留有机层,饱和食盐水洗涤有机层,无水硫酸钠干燥,过滤,减压蒸馏得粗品,柱层析得纯品。

实施例14的制备

以中间体A2、氢氧化钠为原料,按照酯的水解通法得0.45g浅黄色固体(化合物LDX-A-1),收率93.8%,m.p.79-82℃。1H-NMR(600MHz,CDCl3)δ8.95(s, 1H),5.75(dd,J=17.9,10.4Hz,1H),5.43–4.48(m,6H),3.34(br s,1H),2.84(m, 2H),2.16–1.99(m,2H),1.66–1.28(m,19H),0.92(s,3H);ESI-MS, m/z334.2[M+H]+

实施例15的制备

将中间体A2(0.2g,0.575mmol)、2mL 50%羟胺水溶液、2mL甲醇加入 50mL茄形瓶中,室温反应72h。反应完毕后,加饱和食盐水40mL,乙酸乙酯萃取,合并保留有机层,饱和食盐水洗涤,保留有机层,无水硫酸钠干燥,过滤,减压蒸馏浓缩得浅黄色粗品,粗品用柱层析得0.1g白色固体(化合物LDX-A-2),收率49.9%,m.p.70-74℃。1H-NMR(600MHz,DMSO-d6)δ10.51(s,1H),7.79(s, 1H),5.82(dd,J=17.9,10.4Hz,1H),5.28–4.56(m,6H),3.81(br s,1H),2.87– 2.80(m,2H),2.36–2.02(m,2H),2.00–1.22(m,19H),0.97(s,3H);ESI-MS,m/z349.4[M+H]+

实施例16的制备

以化合物LDX-A-1、草酰氯、苯胺为原料,按照含邻氯苯胺结构的化合物合成通法得无色固体,收率37.5%,m.p.103-107℃。1H-NMR(600MHz,DMSO-d6) δ9.96(s,1H),7.63–6.99(m,5H),5.82(dd,J=17.9,10.4Hz,1H),5.19–4.59(m, 6H),3.40(s,1H),2.90–2.85(m,2H),2.11–2.00(m,2H),1.74–1.22(m,19H), 0.97(s,3H);ESI-MS,m/z 409.3[M+H]+

实施例17的制备

以化合物LDX-A-1、草酰氯、邻氯苯胺为原料,按照含邻氯苯胺结构的化合物合成通法得白色固体,收率38.5%,m.p.91-95℃。1H-NMR(600MHz, DMSO-d6)δ9.45(s,1H),7.69–7.14(m,4H),5.82(dd,J=17.9,10.4Hz,1H),5.00 –4.57(m,6H),4.11(br s,1H),2.61(m,2H),2.12–1.89(m,2H),1.68–1.35(m, 19H),0.97(s,3H);ESI-MS,m/z 443.4[M+H]+,441.3[M-H]-

实施例18硝基的还原通法

将48mg(0.86mmol,10eq.)铁粉、4.6mg(0.086mmol,1eq.)氯化铵、 0.01mL(0.17mmol,2eq.)冰乙酸加到50mL三颈瓶中,再加入2mL水和1mL DMF,将反应体系于在30~85℃反应20min。随后将50mg(0.086mmol,1eq.) 含硝基的中间体LDX-A-5′、LDX-C-4′溶于1mL DMF后加入反应体系,55℃继续反应4h。反应结束后,硅藻土过滤不溶物,向滤液中加入10mL水,乙酸乙酯萃取,并保留有机层,饱和食盐水洗涤有机层,无水硫酸钠干燥有机层,过滤,减压蒸馏浓缩得粗品,柱层析得纯品。

实施例19的制备

以化合物LDX-A-1、草酰氯、邻硝基苯胺为原料,按照含邻氯苯胺结构的化合物合成通法得黄色固体LDX-A-5′,收率38.5%。LDX-A-5′用硝基的还原通法得浅黄色LDX-A-5,m.p.80-84℃。1H-NMR(600MHz,DMSO-d6)δ10.02(s, 1H),7.66–6.85(m,4H),5.82(dd,J=17.9,10.4Hz,1H),5.5(brs,2H),5.19–4.59(m, 6H),3.40(s,1H),2.90–2.85(m,2H),2.11–2.00(m,2H),1.74–1.22(m,19H), 0.97(s,3H);ESI-MS,m/z 424.3[M+H]+

实施例20的制备

将0.6g(1.33mmol,1eq.)中间体B2、0.42g(3.99mmol,3eq.)丙二酸溶于5mL吡啶中,随后将0.4mL(3.99mmol,3eq.)六氢吡啶加入反应液中,在70~110℃反应4h。反应结束后,用1mol/L的稀盐酸调节pH至中性,用乙酸乙酯萃取,保留有机层,饱和食盐水洗涤有机层,无水硫酸钠干燥,过滤,减压蒸馏得粗品,粗品用柱层析得6.4g白色固体(化合物LDX-B-1),收率97.6%, m.p.55-59℃。1H-NMR(600MHz,DMSO-d6)δ12.47(s,1H),7.68(d,J=7.9Hz,2H),7.58(d,J=16.0Hz,1H),7.38(d,J=8.1Hz,2H),6.53(d,J=16.0Hz,1H), 5.82(dd,J=17.9,10.4Hz,1H),5.10(s,2H),4.95–4.56(m,6H),3.40(d,J=14.1 Hz,4H),2.90(m,2H),2.29(m,4H),2.11–1.96(m,2H),1.69–1.30(m,9H),0.96(s, 3H);ESI-MS,m/z 493.4[M+H]+,491.4[M-H]-

实施例21的制备

以化合物LDX-B-1、CDI、盐酸羟胺为原料,按照含异羟肟酸、N-甲基甲酰胺结构的化合物合成通法得60mg白色固体,收率58.2%,m.p.59-63℃。1H-NMR (600MHz,DMSO-d6)δ10.77(s,1H),9.05(s,1H),7.56(d,J=8.3Hz,2H),7.45(d, J=15.8Hz,1H),7.38(d,J=8.0Hz,2H),6.46(d,J=15.8Hz,1H),5.82(dd,J=17.9,10.5Hz,1H),5.08(s,2H),4.98–4.54(m,6H),3.43-3.39(m,4H),2.91(m, 2H),2.29(m,4H),2.02–1.96(m,2H),1.69–1.33(m,9H),0.97(s,3H);ESI-MS, m/z 508.4[M+H]+

实施例22含苯胺结构的化合物合成通法

称取0.20mmol取代羧酸、50.26mg(0.24mmol,1.2eq.)N,N-二环己基碳二亚胺(DCC)、2.5mg(0.02mmol,0.1eq.)4-二甲氨基吡啶(DMAP)于茄形瓶中,加入3mL二氯甲烷溶解,随后向反应体系中滴加0.02mL(0.20mmol, 1eq.)苯胺,室温反应8h。反应结束后,向反应液中加水,二氯甲烷萃取,合并保留有机层,饱和食盐水洗涤,保留有机层,无水硫酸钠干燥,过滤,减压蒸馏浓缩得粗品,经柱层析分离,得目标化合物。

实施例23的制备

以化合物LDX-B-1、DCC、DMAP、苯胺为原料,按照含苯胺结构的化合物合成通法得95mg白色固体(化合物LDX-B-3),收率82.4%,m.p.184-188℃。1H-NMR(600MHz,DMSO-d6)δ10.21(s,1H),7.75–7.64(m,5H),7.63(d,J=8.0 Hz,2H),7.58(d,J=15.7Hz,1H),7.42(d,J=8.1Hz,2H),6.84(d,J=15.7Hz,1H), 5.82(dd,J=17.9,10.4Hz,1H),5.11(s,2H),5.00–4.53(m,6H),3.44-3.38(m, 4H),2.91(m,2H),2.30(m,4H),2.10–1.96(m,2H),1.68–1.22(m,9H),0.97(s, 3H);ESI-MS,m/z 568.3[M+H]+

实施例24的制备

以化合物LDX-B-1、草酰氯、邻氯苯胺为原料,按照含苯胺结构的化合物合成通法得85mg白色固体,收率69.5%,m.p.58-62℃。1H-NMR(600MHz, DMSO-d6)δ9.69 (s,1H),7.92(d,J=8.1Hz,1H),7.64(d,J=8.0Hz,2H),7.61(d,J=15.7Hz,1H), 7.52(dd,J=8.0,1.5Hz,1H),7.43(d,J=8.2Hz,2H),7.36(ddd,J=8.6,7.5,1.5Hz, 1H),7.20(td,J=7.7,1.6Hz,1H),7.10(d,J=15.8Hz,1H),5.82(dd,J=17.9,10.4 Hz,1H),5.11(s,2H),4.97–4.55(m,6H),3.40(m,4H),2.91(m,2H),2.30(m,4H), 2.09–1.99(m,2H),1.68–1.22(m,9H),0.97(s,3H);ESI-MS,m/z 602.4[M+H]+, 600.2[M-H]-

实施例25的制备

以化合物LDX-B-1、CDI、盐酸甲胺为原料,按照含异羟肟酸、N-甲基甲酰胺结构的化合物合成通法得65mg白色固体,收率63.3%,m.p.70-74℃。1H-NMR (600MHz,DMSO-d6)δ8.06(d,J=5.0Hz,1H),7.55(d,J=8.0Hz,2H),7.40(d,J =16.0Hz,1H),7.38(d,J=8.1Hz,2H),6.59(d,J=15.8Hz,1H),5.82(dd,J=17.9, 10.5Hz,1H),5.08(s,2H),4.96–4.57(m,6H),3.38(s,6H),2.70(d,J=4.7Hz,3H), 2.29(t,J=5.2Hz,4H),2.08–1.98(m,2H),1.67–1.38(m,4H),0.96(s,3H); ESI-MS,m/z 506.4[M+H]+

实施例26的制备

以中间体C2、氢氧化钠为原料,按照酯的水解通法得0.44g白色固体(化合物LDX-C-1),收率90.7%,m.p.90-94℃。1H-NMR(600MHz,DMSO-d6)δ13.04 (s,1H),7.97(d,J=8.2Hz,2H),7.85(d,J=8.0Hz,2H),7.54(d,J=15.4Hz,1H), 7.40(d,J=15.4Hz,1H),5.87(dd,J=17.8,10.6Hz,1H),5.09–4.58(m,6H),3.64 (m,4H),3.05–2.88(m,2H),2.43–2.17(m,4H),2.36(d,J=24.6Hz,4H),2.15– 1.88(m,2H),2.12–1.98(m,2H),1.68–1.23(m,9H),0.91(s,3H);ESI-MS,m/z 463.5[M+H]+,461.4[M-H]-

实施例27的制备

以化合物LDX-C-1、CDI、盐酸羟胺为原料,按照含异羟肟酸、N-甲基甲酰胺结构的化合物合成通法得70mg白色固体,收率67.8%,m.p.115-119℃。1H-NMR(600MHz,DMSO-d6)δ11.27(s,1H),9.07(s,1H),7.79(d,J=8.3Hz,2H), 7.77(d,J=8.5Hz,2H),7.50(d,J=15.4Hz,1H),7.34(d,J=15.4Hz,1H),5.84(dd, J=17.8,10.6Hz,1H),5.09–4.58(m,6H),3.63(m,4H),2.94(m,2H),2.34(m,4H), 2.13–1.89(m,2H),1.69–1.39(m,9H),,0.97(s,3H);ESI-MS,m/z 478.3[M+H]+

实施例28的制备

以化合物LDX-C-1、DCC、DMAP、苯胺为原料,按照含苯胺结构的化合物合成通法得85mg白色固体(化合物LDX-C-3),收率73.1%,m.p.192-196℃。1H-NMR(600MHz,DMSO-d6)δ10.28(s,1H),7.98(d,J=8.2Hz,2H),7.87(d,J= 8.0Hz,2H),7.73–7.66(m,5H),7.55(d,J=15.4Hz,1H),7.38(d,J=15.4Hz,1H), 5.83(dd,J=17.8,10.6Hz,1H),5.12–4.45(m,6H),3.65(m,4H)2.94(m,2H),2.36 (m,4H),2.12–1.98(m,2H),1.69–1.19(m,9H),0.91(s,3H);ESI-MS,m/z 538.6[M+H]+,536.7[M-H]-

实施例29的制备

以化合物LDX-C-1、草酰氯、邻硝基苯胺为原料,按照含邻氯苯胺结构的化合物合成通法得70mg黄色油状物LDX-C-4′,收率55.6%。用硝基的还原通法得浅黄色LDX-C-4,m.p.70-73℃。1H-NMR(600MHz,DMSO-d6)δ9.70(s,1H), 8.00(d,J=8.0Hz,2H),7.85(d,J=7.9Hz,2H),7.54(d,J=15.5Hz,1H),7.41(d,J =15.5Hz,1H),7.16(d,J=7.8Hz,1H),6.98(t,J=7.6Hz,1H),6.78(d,J=8.0Hz, 1H),6.60(t,J=7.6Hz,1H),5.84(dd,J=17.7,10.8Hz,1H),5.32(t,J=4.9Hz,2H), 4.98–4.59(m,6H),3.72(s,2H),3.57(s,2H),2.94(m,2H),2.39–1.96(m,6H), 1.73–1.27(m,9H),0.98(s,3H);ESI-MS,m/z 553.3[M+H]+

实施例30的制备

以化合物LDX-C-1、草酰氯、邻氯苯胺为原料,按照含邻氯苯胺结构的化合物合成通法得70mg白色固体,收率72.8%,m.p.91-95℃。1H-NMR(600MHz, DMSO-d6)δ10.11(s,1H),8.01(d,J=8.0Hz,2H),7.88(d,J=7.9Hz,2H),7.60(d, J=7.9Hz,1H),7.55(d,J=15.8Hz,2H),7.43–7.38(m,2H),7.31(td,J=7.7,1.7 Hz,1H),5.84(dd,J=17.6,10.7Hz,1H),5.12–4.59(m,6H),3.72(m,4H),2.92(m, 2H),2.39–2.07(m,6H),1.85–1.26(m,9H),0.98(m,3H);ESI-MS,m/z 572.3[M+H]+

实施例31的制备

以化合物LDX-C-1、CDI、盐酸甲胺为原料,按照含异羟肟酸、N-甲基甲酰胺结构的化合物合成通法得80mg白色固体,收率77.8%,m.p.60-64℃。1H-NMR (600MHz,DMSO-d6)δ8.48(d,J=4.6Hz,1H),7.84(d,J=8.5Hz,2H),7.79(d,J =8.4Hz,2H),7.50(d,J=15.4Hz,1H),7.34(d,J=15.4Hz,1H),5.83(dd,J=18.0, 10.4Hz,1H),4.97–4.58(m,6H),3.63(m,4H),2.94(m,2H),2.79(d,J=4.5Hz, 3H),2.34(m,4H),2.13–1.99(m,2H),1.73–1.22(m,9H),0.96(s,3H);ESI-MS, m/z 476.4[M+H]+

实施例32的制备

以中间体D2、氢氧化钠为原料,按照酯的水解通法得0.45g浅黄色固体(化合物LDX-D-1),得白色固体0.04g,产率69.2%。m.p.110-113℃,1H-NMR(600 MHz,DMSO-d6)δ12.05(s,1H),7.67(d,J=7.9Hz,2H),7.45(d,J=16.0Hz,1H), 7.11(d,J=8.1Hz,2H),6.5(brs,1H),6.27(d,J=16.0Hz,1H),5.82(dd,J=17.9, 10.4Hz,1H),5.10(s,2H),4.95–4.56(m,6H),3.40(d,J=14.1Hz,4H),2.90(m, 2H),2.29(m,4H),2.11–1.96(m,2H),1.69–1.30(m,9H),0.96(s,3H);ESI-MS m/z:492.2[M+H]+.

实施例33的制备

以化合物LDX-D-1、CDI、盐酸甲胺为原料,按照含异羟肟酸、N-甲基甲酰胺结构的化合物合成通法得80mg白色固体,收率77.8%,m.p.70-74℃,1H-NMR (600MHz,DMSO-d6)δ10.5(s,1H),9.0(s,1H),7.56(d,J=8.3Hz,2H),7.37(d,J =15.8Hz,1H),7.38(d,J=8.0Hz,2H),6.89(d,J=15.8Hz,1H),6.46(brs,1H),5.82 (dd,J=17.9,10.5Hz,1H),5.08(s,2H),4.98–4.54(m,6H),3.43-3.39(m,4H), 2.91(m,2H),2.29(m,4H),2.02–1.96(m,2H),1.69–1.33(m,9H),0.97(s, 3H);ESI-MS m/z:507.4[M+H]+

实施例34

a.目标化合物对细胞生长抑制活性测定

实验所用肿瘤细胞株:人急性髓系白血病细胞株HL-60由本实验室冻存。 HL-60细胞培养于10%胎牛血清RMPI1640完全培养液中,在37℃,5%CO2培养箱中培养。

贴壁细胞:取对数生长期的人白血病细胞HL-60细胞用含10%新生牛血清的RPMI-1640完全培养液调整细胞浓度为4.5×104/mL的单个细胞悬液接种于 24孔板内,每孔2mL。加不同浓度药物37℃、5%CO2培养箱孵育72h后,取适量细胞悬液加入等量台盼蓝工作液混合,取适量体积与血球计数板计数。记录对照孔和加药孔细胞总数。细胞生长抑制率计算公式:1-(加药孔细胞数/对照孔细胞数)×100%,计算半数生长抑制浓度(GI50)。

b.目标化合物对HDAC酶抑制活性的测试

实验所用酶系:HDACs,HDAC1。用缓冲液分别将HDACs、HDAC1酶稀释至0.5μg/μL、0.05μg/μL,于96孔板空白孔加入25μL缓冲液去除背景,对照孔加入15μL缓冲液、加样孔加入10μL缓冲液,除空白孔外每孔加入5μL酶, 5μL不同浓度的药物混匀,待药物与酶充分作用后,分别加入5μL0.5mM/L、 0.25mM/LBoc-Lys(AC)-AMC底物,混匀后在培养箱37℃,5%CO2下反应 60min,加入25μL stop buffer混匀反应15min。应用酶标仪在激发波长355nm、发射波长460nm下检测荧光强度。根据加药孔与对照孔荧光强度的比值计算抑制率。

目标化合物对人早幼粒白血病细胞HL-60的生长增殖抑制活性以及对 HDAC1以及HDACs的抑制活性,结果见表1。

表1目标化合物对HL-60细胞的生长抑制活性以及对HDACs, HDAC1的抑制活性

aNot tested.

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种酯类化合物及其制备方法、用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类