一种提高无刷直流电机抗扰能力的复合控制方法

文档序号:738378 发布日期:2021-04-20 浏览:13次 >En<

阅读说明:本技术 一种提高无刷直流电机抗扰能力的复合控制方法 (Composite control method for improving anti-interference capability of brushless direct current motor ) 是由 周兰 姜福喜 张铸 于 2020-12-25 设计创作,主要内容包括:本发明公开了一种提高无刷直流电机抗扰能力的复合控制方法,其步骤包括:步骤S1:构建无刷直流电机状态方程,将参数摄动和外负载干扰归纳为总扰动,并建立无刷直流电机伺服系统状态空间模型;步骤S2:将所述总扰动作为扩展状态变量,通过分离系统可测状态与不可测状态,重建系统等价状态空间模型;步骤S3:构造降阶扩张状态观测器,在线估计总扰动和系统不可测状态;步骤S4:利用上述降阶扩张状态观测器的估计值和系统可测状态,设计基于扰动动态补偿的反步控制器,抑制扰动对系统输出的影响,提高系统的动态性能和鲁棒性,并保证系统输出对参考输入的准确跟踪。本发明具有实现简单、控制实时性强、跟踪精度高等优点。(The invention discloses a composite control method for improving the anti-interference capability of a brushless direct current motor, which comprises the following steps: step S1: constructing a brushless direct current motor state equation, summarizing parameter perturbation and external load interference into total disturbance, and establishing a brushless direct current motor servo system state space model; step S2: the total disturbance is used as an expansion state variable, and a system equivalent state space model is reconstructed by separating a measurable state and an undetectable state of a system; step S3: constructing a reduced order extended state observer, and estimating total disturbance and a system undetectable state on line; step S4: by utilizing the estimated value of the reduced order extended state observer and the measurable state of the system, a backstepping controller based on disturbance dynamic compensation is designed, the influence of disturbance on the system output is inhibited, the dynamic performance and the robustness of the system are improved, and the accurate tracking of the system output on the reference input is ensured. The invention has the advantages of simple realization, strong control real-time performance, high tracking precision and the like.)

一种提高无刷直流电机抗扰能力的复合控制方法

技术领域

本发明主要涉及到电机控制技术领域,特指一种提高无刷直流电机抗扰能力的复合控制方法。

背景技术

无刷直流电机不仅具有交流电机运行可靠、结构简单的优点,还具备直流电机运行效率高、调速性能好的特性,因此被广泛应用于航空航天、汽车电子、机器人等领域。在多数应用场合中,传统PID控制能够满足系统的性能要求,但是考虑到无刷直流电机本身是一个多变量、强耦合、非线性系统,当电机运行过程中受参数摄动和外部负载等较大不确定性干扰的影响时,传统控制方法的控制精度难以达到要求,严重时甚至损害系统的稳定性。因此,研究一种提高无刷直流电机抗扰能力的复合控制方法及系统具有重要的理论意义和应用价值。

为提高无刷直流电机伺服系统的扰动抑制性能和控制精度,近年来国内外学者进行了大量研究。

例如,文献(无刷直流电机转速伺服系统反步高阶滑模控制[J],控制与决策,2016,31(6):961-968)提出一种新型的多滑模反步高阶滑模非线性控制方法,通过在控制律设计的每一步都引入二阶滑模Super-Twisting算法,消除滑模抖振,抑制各级子系统的外部扰动及内部参数摄动对系统的不利影响,提高系统鲁棒性。

又例如,文献(无刷直流电机的分数阶滑模控制器设计[J],火力与指挥控制,2018,43(6):81-85)提出一种无刷直流电机调速系统分数阶滑模控制策略,分别从滑模面和趋近律两方面进行分数阶滑模控制器的设计,有效地削弱了滑模变结构控制带来的系统抖振并提高了系统鲁棒性和控制精度。

又例如,文献(Gain-adaptive robust backstepping position control of aBLDC motor system[J],IEEE/ASME Transactions on Mechatronics,2018,23(5):2470-2481)提出一种增益自适应鲁棒反步控制器,用于无刷直流电机的位置跟踪与干扰抑制,其中增益学习机制能够实现在不同工作状态下所有控制器增益的自动调节,具有较强的灵活性。

值得注意的是,上述几种控制方法都使用全状态反馈控制,需要保证系统所有状态都能准确测量。而对于实际无刷直流电机伺服系统,通常只有电机转速方便直接测量,若要准确测量其他状态无疑增加了控制成本和电机的机械结构复杂性。此外,大量的测量噪声也可能会降低全状态反馈控制实现的可能性。

又例如,文献(基于改进广义预测控制算法的无刷直流电机控制仿真[J],信息与控制,2017,46(3):350-357)针对无刷直流电机负载运行时稳态跟踪误差大、电机性能受负载不确定性影响的问题,提出了一种基于改进广义预测控制算法的调速方法。对于外部负载不为零引起的模型失配现象,采用负载反馈补偿来改善系统性能,但是这种补偿需要假设外部负载是完全可测的,而在实际控制系统中这样的假设通常难以实现。

发明内容

本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种实现简单、控制实时性强、跟踪精度高,同时鲁棒性能好的无刷直流电机伺服系统扰动抑制与转速跟踪控制方法。

为解决上述技术问题,本发明采用以下技术方案:

一种提高无刷直流电机抗扰能力的复合控制方法,其步骤包括:

步骤S1:构建无刷直流电机状态方程,将参数摄动和外负载干扰归纳为总扰动,并建立无刷直流电机伺服系统状态空间模型;

步骤S2:将所述总扰动作为扩展状态变量,通过分离系统可测状态与不可测状态,重建系统等价状态空间模型;

步骤S3:构造降阶扩张状态观测器,在线估计总扰动和系统不可测状态;

步骤S4:利用上述降阶扩张状态观测器的估计值和系统可测状态,设计基于扰动动态补偿的反步控制器,抑制扰动对系统输出的影响,提高系统的动态性能和鲁棒性,并保证系统输出对参考输入的准确跟踪。

作为本发明方法的进一步改进:所述步骤S1中,由电压平衡方程和转矩平衡方程推导出无刷直流电机状态空间模型。

作为本发明方法的进一步改进:所述步骤S4中,根据Lyapunov稳定性理论设计基于扰动动态补偿的反步控制器。

作为本发明方法的进一步改进:所述步骤S1中,所述无刷直流电机伺服系统状态空间模型的建立步骤如下:

步骤S101:假设反电动势波形为平顶宽度为120电角度的梯形波,驱动电路的功率器件为理想开关,三相绕组完全对称,则无刷直流电机三相绕组的电压平衡方程为:

其中,ua(t)、ub(t)、uc(t)为定子绕组相电压,ia(t)、ib(t)、ic(t)为定子绕组相电流,R为各相绕组电阻,Ls为各相绕组电感,ea(t)、eb(t)、ec(t)为各相绕组反电动势。

电磁转矩方程为:

式中,Te(t)为电磁转矩,ω(t)为电机转子的角速度。

转矩平衡方程为:

式中,Mc(t)为外负载转矩,J为电机转子和负载的总转动惯量。

步骤S102:电压平衡方程进一步表示为:

式中,u(t)为加在两相导通绕组上的电压,i(t)为电枢电流,ε(t)为导通相绕组的反电动势。

电磁转矩方程进一步表示为:

当反电动势为梯形波时,导通相绕组的反电动势计算公式为:

ε(t)=kepω(t)

式中,ke是反电动势系数,p是电机极对数。

由电压平衡方程和转矩平衡方程建立无刷直流电机伺服系统状态方程:

步骤S103:对转速子系统和电流子系统的微分方程表达式分别进行Laplace变换和Laplace反变换得到:

电机在实际运行过程中受摩擦、涡流影响,其内部温度会发生变化,由此导致电枢绕组的电阻R和电感Ls产生参数摄动现象。另一方面,外部负载的变化会引起转动惯量J的摄动。假设上式存在如下参数不确定性:

其中,R0、L0和J0分别表示相电阻、相电感和转动惯量的标称值,R0ΔR、L0Δ上和J0ΔJ分别表示相电阻、相电感和转动惯量的摄动量。

在考虑参数摄动后,将进一步表示为:

式中,控制输入增益ftotal(t)为包含参数不确定性和外负载干扰的“总扰动”,其具体表达式为:

步骤S104:首先取x1(t)=ω(t),然后定义状态变量xp(t)=[x1(t)x2(t)]T,控制输入为u(t),系统输出为yp(t)=ω(t),建立无刷直流电机伺服系统状态空间模型:

其中系数矩阵:

显然,(Ap,Bu)能控。

作为本发明方法的进一步改进:所述步骤S2中,所述系统等价状态空间模型的建立步骤如下:

步骤S201:取扩展状态变量x3(t)=ftotal(t),设建立增广系统状态空间模型:

其中:

步骤S202:在无刷直流电机伺服系统中,电机转速即状态x1(t)由霍尔传感器的位置信号计算得到,将增广系统中可测变量与不可测变量分离可得:

为系统状态变量,控制输入为u(t),系统输出为建立系统等价状态空间模型:

其中系数矩阵:

显然,能观。

作为本发明方法的进一步改进:所述步骤S3中,所述构造原直流电机伺服系统的降阶扩张状态观测器步骤如下

步骤S301:设计如下降阶扩张状态观测器,实现对不可测状态和总扰动ftotal(t)的实时估计:

其中,观测器状态分别是系统状态和总扰动ftotal(t)的估计值,L为待设计的观测器增益矩阵。

步骤S302:定义状态估计误差为:

其中结合系统等价状态空间模型和降阶扩张状态观测器的状态方程,得到状态估计误差动态方程为:

显然,通过设计观测器增益矩阵L使得的极点位于左复半平面,当h(t)有界时保证降阶扩张状态观测器的有界输入有界输出稳定。

采用带宽整定法求取观测器增益矩阵l,设l=[β1 β2]T,ωo为观测器带宽,使得:

(s+ωo)2=s21s+β2

求得β1=2ωo,β2=ωo 2.

步骤S303:为消除降阶扩张状态观测器中可测状态的导数项,将降阶扩张状态观测器的状态方程作等价变形得到:

记为:

其中,

作为本发明方法的进一步改进:所述步骤S4中,设计基于扰动动态补偿的反步控制器的步骤如下:

步骤S401:记为x1(t)-子系统,为x2(t)-子系统。针对x1(t)-子系统,设x1d(t)为状态x1(t)的期望值即参考输入轨迹,定义第一个状态误差和Lyapunov函数分别为:

引入虚拟控制输入α2(t),对上式V1(t)求导得:

负定时,状态误差S1(t)能够渐近收敛至零。为使x1(t)-子系统在虚拟控制输入α2(t)的作用下渐近稳定,不妨设具有如下形式:

其中k1∈R+为待设计的虚拟控制增益,引入的虚拟控制输入α2(t)为:

此时其中S1(t)[x2(t)-α2(t)]为残余项,影响负定的判定,将在下一步推导过程中通过选择合适的控制输入u(t)来消除。

为避免后续设计过程中对虚拟控制输入α2(t)直接求导而放大噪声并引起剧烈的控制和颤振响应,引入低通滤波器q(s)=1/(τs+1)对虚拟控制输入α2(t)进行滤波,滤波后的虚拟控制输入记为对应滤波后的状态方程:

其中τ为滤波器时间常数。

步骤S402:针对x2(t)-子系统,定义第二个状态误差和Lyapunov函数分别为:

对上式V2(t)求导得:

负定时,状态误差S2(t)能够渐近收敛至零。为使x2(t)-子系统在控制输入u(t)的作用下渐近稳定,不妨设具有如下形式:

其中k2∈R+为待设计的控制输入增益。求得系统的控制输入u(t)为:

其中,为步骤S3中降阶扩张状态观测器的状态变量,即系统状态和总扰动ftotal(t)的估计值。

与现有技术相比,本发明的优点在于:

1、本发明的一种提高无刷直流电机抗扰能力的复合控制方法,实现简单、控制实时性强、跟踪精度高。本发明在电机输出转速可由传感器直接测量的条件下,提出基于降阶扩张状态观测器的反步控制法,通过设计降阶扩张状态观测器实时估计总扰动和系统不可测状态。降阶扩张状态观测器的引入使得控制器设计只需利用被控对象的相对阶信息,弥补了常规反步控制器设计严重依赖精确模型的不足。且与常规全阶扩张状态观测器相比,本发明提出的降阶扩张状态观测器的相位滞后更小,在相同带宽条件下总扰动估计精度更高。

2、本发明的一种提高无刷直流电机抗扰能力的复合控制方法,能够消除扰动对系统输出的影响并保证系统具有良好的跟踪性能。本发明根据Lyapunov稳定性理论设计基于扰动动态补偿的反步控制器,引入一阶低通滤波器估计虚拟控制输入的一阶导数项,有效避免了对虚拟控制输入直接求导而引起“计算膨胀”和震颤响应问题。通过设计这种具有扰动估计与补偿机制的反步控制器,可有效提高无刷直流电机伺服系统的抗干扰能力和跟踪精度,满足其在高精度伺服领域的控制要求。

附图说明

图1是本发明的流程示意图。

图2是无刷直流电机等效电路图。

图3是本发明在具体应用实例中的控制系统结构框图。

图4是本发明提出的降阶扩张状态观测器(RESO)与常规全阶扩张状态观测器(CESO)中总扰动估计值到总扰动的频率响应。

图5是本发明在具体应用实例中实验平台硬件连接图。

图6是本发明具体实施例的实验1采用本发明所提控制方法时的系统输出响应曲线及总扰动估计曲线,其中,(A)是参考输入与系统输出曲线,(B)是系统跟踪误差曲线,(C)是系统控制输入曲线,(D)是扰动估计曲线。

图7是本发明具体实施例的实验1采用本发明所提控制方法(RESO-backstepping)与基于常规全阶扩张状态观测器的反步控制(CESO-backstepping)、线性自抗扰控制(LADRC)以及降阶线性自抗扰控制(RLADRC)系统跟踪误差对比。

图8是本发明具体实施例的实验2采用本发明所提控制方法时的系统输出响应曲线及总扰动估计曲线,其中,(A)是参考输入与系统输出曲线,(B)是系统跟踪误差曲线,(C)是系统控制输入曲线,(D)是扰动估计曲线。

图9是本发明具体实施例的实验2采用本发明所提控制方法(RESO-backstepping)与基于常规全阶扩张状态观测器的反步控制(CESO-backstepping)、线性自抗扰控制(LADRC)、降阶线性自抗扰控制(RLADRC)系统跟踪误差对比图,其中,(A)是本发明具体实施例的实验2的误差图,(B)是基于常规全阶扩张状态观测器的误差图。

图10是本发明在具体应用实例中的结构原理示意图。

具体实施方式

以下将结合说明书附图和具体实施例对本发明做进一步详细说明。

如图1和图10所示,本发明的一种提高无刷直流电机抗扰能力的复合控制方法,其步骤包括:

步骤S1:构建无刷直流电机状态方程,将参数摄动和外负载干扰归纳为总扰动,并建立无刷直流电机伺服系统状态空间模型;

步骤S2:将所述总扰动作为扩展状态变量,通过分离系统可测状态与不可测状态,重建系统等价状态空间模型;

步骤S3:构造降阶扩张状态观测器,在线估计总扰动和系统不可测状态;

步骤S4:利用上述降阶扩张状态观测器的估计值和系统可测状态,设计基于扰动动态补偿的反步控制器,抑制扰动对系统输出的影响,提高系统的动态性能和鲁棒性,并保证系统输出对参考输入的准确跟踪。

在具体应用实例中,所述步骤S1中,所述无刷直流电机伺服系统状态空间模型的建立步骤如下:

步骤S101:以三相桥式Y接无刷直流电机为例,假设反电动势波形为平顶宽度为120电角度的梯形波,驱动电路的功率器件为理想开关,三相绕组完全对称,忽略续流二极管的电流,不计磁滞损耗和涡流损耗,忽略绕组间互感,则电机三相绕组的电压平衡方程为:

其中,ua(t)、ub(t)、uc(t)为定子绕组相电压,ia(t)、ib(t)、ic(t)为定子绕组相电流,R为各相绕组电阻,Ls为各相绕组电感,ea(t)、eb(t)、ec(t)为各相绕组反电动势。

电磁转矩方程:

式中,Te(t)为电磁转矩,ω(t)为电机转子的角速度。

转矩平衡方程:

式中,Mc(t)为外负载转矩,J为电机转子和负载的总转动惯量。

步骤S102:由于三相桥式Y接无刷直流电机工作在两两导通六状态模式下,考虑理想换向情况,任意时刻只有两相导通,电流从一相流入,从另一相流出,第三相悬空。则电压平衡方程可以进一步表示为:

式中,u(t)为加在两相导通绕组上的电压,i(t)为电枢电流,ε(t)为导通相绕组的反电动势。

电磁转矩方程可以进一步表示为:

当反电动势为梯形波时,导通相绕组的反电动势计算公式为:

ε(t)=kepω(t)

式中,ke是反电动势系数,p是电机极对数。

由电压平衡方程和转矩平衡方程建立无刷直流电机伺服系统状态方程:

步骤S103:对转速子系统和电流子系统的微分方程表达式分别进行Laplace变换和Laplace反变换得到:

电机在实际运行过程中受摩擦、涡流影响,其内部温度会发生变化,由此导致电枢绕组的电阻R和电感Ls产生参数摄动现象。另一方面,外部负载的变化会引起转动惯量J的摄动。假设上式存在如下参数不确定性:

其中,R0、L0和J0分别表示相电阻、相电感和转动惯量的标称值,R0ΔR、L0ΔL和J0ΔJ分别表示相电阻、相电感和转动惯量的摄动量。

在考虑参数摄动后,将进一步表示为:

式中,控制输入增益ftotal(t)为包含参数不确定性和外负载干扰的“总扰动”,其具体表达式为:

步骤S104:这里首先取x1(t)=ω(t),然后定义状态变量xp(t)=[x1(t) x2(t)]T,控制输入为u(t),系统输出为yp(t)=ω(t),建立无刷直流电机伺服系统状态空间模型:

其中系数矩阵:

显然,(Ap,Bu)能控。

在具体应用实例中,所述步骤S2中,所述系统等价状态空间模型的建立步骤如下:

步骤S201:取扩展状态变量x3(t)=ftotal(t),设建立增广系统状态空间模型:

其中:

步骤S202:在无刷直流电机伺服系统中,电机转速即状态x1(t)可由霍尔传感器的位置信号精确计算得到,将增广系统中可测变量与不可测变量分离可得:

为系统状态变量,控制输入为u(t),系统输出为建立系统等价状态空间模型:

其中系数矩阵:

显然,能观。

在具体应用实例中,所述步骤S3中,所述构造降阶扩张状态观测器的详细步骤如下:

步骤S301:在线性自抗扰控制中,利用常规全阶扩张状态观测器(Conventionalextended state observer,CESO)在线估计所有状态。需要说明的是在无刷直流电机伺服系统中电机转速可测,无需估计。因此,本发明通过设计一种降阶扩张状态观测器(Reduced-order extended state observer,RESO),实现对不可测状态和总扰动ftotal(t)的实时估计。观测器阶数由三阶降为二阶,可减小CESO引起的相位滞后,并简化系统结构。RESO设计如下:

其中,观测器状态分别是系统状态和总扰动ftotal(t)的估计值,l为待设计的观测器增益矩阵。

步骤S302:定义状态估计误差为:

其中结合系统等价状态空间模型和RESO的状态方程,得到观测器估计误差动态方程为:

显然,通过设计观测器增益矩阵l使得的极点位于左复半平面,当h(t)有界时保证扩张状态观测器的有界输入有界输出稳定。

采用带宽整定法求取观测器增益矩阵L,设L=[β1 β2]T,ωo为观测器带宽,使得

(s+ωo)2=s21s+β2

求得β1=2ωo,β2=ωo 2.

步骤S303:为消除RESO中可测状态的导数项,将RESO的状态方程作等价变形得到:

记为

其中,

在具体应用实例中,所述步骤S4中,设计基于扰动动态补偿的反步控制器的步骤如下:

步骤S401:记为x1(t)-子系统,为x2(t)-子系统。针对x1(t)-子系统,设x1d(t)为状态x1(t)的期望值即参考输入轨迹,定义第一个状态误差和Lyapunov函数分别为:

引入虚拟控制输入α2(t),对上式V1(t)求导得:

负定时,状态误差S1(t)能够渐近收敛至零。为使x1(t)-子系统在虚拟控制输入α2(t)的作用下渐近稳定,不妨设具有如下形式:

其中k1∈R+为待设计的虚拟控制增益,引入的虚拟控制输入α2(t)为:

此时其中S1(t)[x2(t)-α2(t)]为残余项,影响负定的判定,将在下一步推导过程中通过选择合适的控制输入u(t)来消除。

为避免后续设计过程中对虚拟控制输入α2(t)直接求导而放大噪声并引起剧烈的控制和颤振响应,引入低通滤波器q(s)=1/(τs+1)对虚拟控制输入α2(t)进行滤波,滤波后的变量记为所以有滤波后的状态方程:

其中τ为滤波器时间常数。

步骤S402:针对x2(t)-子系统,定义第二个状态误差和Lyapunov函数分别为:

对上式V2(t)求导得:

负定时,状态误差S2(t)能够渐近收敛至零。为使x2(t)-子系统在控制输入u(t)的作用下渐近稳定,不妨设具有如下形式:

其中k2∈R+为待设计的控制输入增益。求得系统控制输入u(t)为:

其中,为步骤S3中降阶扩张状态观测器的状态变量,即系统状态和总扰动ftotal(t)的估计值。

以下本发明用无刷直流电转速控制实验来对本发明做进一步阐述。

为了检验本发明一种提高无刷直流电机抗扰能力的复合控制方法在实际工况下的可行性与优越性,本实例搭建无刷直流电机扰动抑制与转速跟踪控制实验平台,并进行电机控制实验与对比实验。

图3为控制系统结构框图。无刷直流电机内部以120°为间隔嵌有三个霍尔位置传感器,当永磁体磁极经过时,霍尔传感器会产生一组三位二进制数位置信号,利用此位置信号可实现电子换向和电机实时转速的测量。磁粉刹车器通过联轴器和无刷直流电机的转动轴相连,其作用是接收RTLAB OP5600实时数字仿真器的模拟量输出端口输出的电压并产生相应的转矩,作为外部负载加到电机的转动轴。RTLAB OP5600作为控制器接收来自上位机的控制程序,运行处理后产生PWM控制信号。电机驱动板接收PWM控制信号,控制三相桥式电路中功率器件的导通和关断以实现电机转速调节。

本实例采用型号为S60BL-430的无刷直流电机进行实验研究,具体电机参数列于表1。

表1 S60BL-430型无刷直流电机参数表

为比较本发明提出的RESO和常规全阶ESO的扰动估计性能,计算得到RESO和CESO中总扰动估计值到总扰动ftotal(t)的传递函数分别为:

图4为本发明提出的RESO与常规全阶ESO在观测器带宽取为ωo=50时,GRESO和GCEsO的频率响应曲线。由图可知,RESO在低频段的相位滞后更小,总扰动估计的更加准确。但是也注意到相比于CESO,RESO在高频段的增益更大,这意味着RESO对高频噪声更加敏感,而本发明通过在反步控制器设计过程中引入低通滤波器可以很好地弥补RESO的这一不足之处。

实验1:无外负载干扰下的三角波参考输入转速跟踪控制实验;

图5为实验平台硬件连接图。不加外负载干扰,此时伺服系统受参数摄动和未建模非线性扰动的影响。设置参考输入转速为周期为6s,最大幅值为800r/min,最小幅值为500r/min的三角波信号,系统采样步长设为0.00002s。

采用本发明所提控制方法进行实验时,RESO带宽取ωo=50,反步控制器控制增益k1=150,k2=11。对比实验中,基于CESO的反步控制器中的CESO带宽取ωo=50,反步控制器控制增益k1=150,k2=11;线性自抗扰控制器和降阶线性自抗扰控制器的观测器带宽均取为ωo=50,状态反馈控制器带宽均取为ωc=23。

图6为本发明具体实施例的实验1采用本发明所提控制方法时的系统输出响应曲线及总扰动估计曲线,其中,(A)是参考输入与系统输出曲线,(B)是系统跟踪误差曲线,(C)是系统控制输入曲线,(D)是扰动估计曲线。由图可知,采用本发明提出的基于降阶扩张状态观测器的反步控制法时,无刷直流电机伺服系统能有效抑制内部干扰,电机转速能快速、准确跟踪给定的三角波参考输入转速。

图7为发明实例分别采用本发明所提控制方法(RESO-backstepping)与基于常规全阶扩张状态观测器的反步控制(CESO-backstepping)、线性自抗扰控制(LADRC)以及降阶线性自抗扰控制(RLADRC)系统跟踪误差对比图,可以看出,采用本发明所提方法时,系统响应速度更快,对参考输入转速的跟踪精度更高。

实验2:时变外负载干扰下的转速跟踪控制实验;

该实验中,参考输入转速设置为r(t)=1000r/min,外负载转矩设置为:

该实验与对比实验中所有控制器参数设置与实验1一致.

图8为本发明具体实施例的实验2采用本发明所提控制方法时的系统输出响应曲线及总扰动估计曲线,其中,(A)是参考输入与系统输出曲线,(B)是系统跟踪误差曲线,(C)是系统控制输入曲线,(D)是扰动估计曲线。由图可知,采用本发明提出的基于降阶扩张状态观测器的反步控制法时,无刷直流电机可以快速、准确跟踪给定的参考输入转速。在第20s和第30s发生负载突变时,转速跟踪误差波动较小,约1s后即恢复稳态。40s后在正弦时变外负载干扰下,最大稳态跟踪误差约为4.2r/min,即参考输入的0.042%,因此,本发明提出的控制系统具有较强的扰动抑制性能和跟踪性能。

图9为本发明具体实施例的实验2采用本发明所提控制方法(RESO-backstepping)与基于常规全阶扩张状态观测器的反步控制(CESO-backstepping)、线性自抗扰控制(LADRC)、降阶线性自抗扰控制(RLADRC)系统跟踪误差对比图,其中,(A)是本发明具体实施例的实验2的误差图,(B)是基于常规全阶扩张状态观测器的误差图。可以看出,采用本发明所提方法时,系统响应速度更快,负载突变时跟踪误差偏离稳态程度更小,恢复稳态的时间更短,正弦时变负载下的稳态跟踪误差更小。因此,采用本发明专利所提出的基于降阶扩张状态观测器的反步控制法时,系统的鲁棒性和跟踪性能更佳。

以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

30页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于五相永磁容错电机无位置传感器控制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!