柔性阻燃气凝胶、其制备方法与应用

文档序号:744417 发布日期:2021-04-23 浏览:46次 >En<

阅读说明:本技术 柔性阻燃气凝胶、其制备方法与应用 (Flexible flame-retardant aerogel, and preparation method and application thereof ) 是由 刘丽芳 降帅 张美玲 李萌萌 徐秋玉 于 2020-12-21 设计创作,主要内容包括:一种柔性阻燃气凝胶、其制备方法与应用,属于气凝胶技术领域。该柔性阻燃气凝胶采用以下原料制成:纳米纤维素、海藻酸钠、有机硅烷、硼酸、十水四硼酸钠、碳酸钙和D-(+)-葡萄糖酸δ-内酯,其中,纳米纤维素包括纤维素纳米线和表面富羧基的纤维素纳米微纤。本发明利用纤维素纳米线高长径比的形态结构特点提高单根纳米纤维素之间的关联度,以增加气凝胶的柔韧性,并利用了海藻酸钠本质阻燃性能以及硼系阻燃剂协同阻燃,在航空航天、建筑、异形件阻燃和隔热等领域具有广泛的应用前景。(A flexible flame-retardant aerogel, a preparation method and application thereof belong to the technical field of aerogels. The flexible flame-retardant aerogel is prepared from the following raw materials: the nano-crystalline cellulose comprises nano-cellulose, sodium alginate, organosilane, boric acid, sodium tetraborate decahydrate, calcium carbonate and D- (&#43;) -gluconic acid delta-lactone, wherein the nano-cellulose comprises cellulose nano-wires and cellulose nano-microfibers rich in carboxyl on the surface. The invention utilizes the morphological structure characteristics of the high length-diameter ratio of the cellulose nanowires to improve the degree of association between single nanocelluloses so as to increase the flexibility of the aerogel, utilizes the intrinsic flame retardant property of sodium alginate and the synergistic flame retardant property of boron flame retardants, and has wide application prospects in the fields of aerospace, buildings, flame retardance of special-shaped parts, heat insulation and the like.)

柔性阻燃气凝胶、其制备方法与应用

技术领域

本发明涉及的是一种气凝胶领域的技术,具体是一种柔性阻燃气凝胶、其制备方法与应用。

背景技术

气凝胶是一种孔隙率在90%以上的超轻多孔材料。以纤维素为骨架结构的气凝胶是继无机气凝胶和有机气凝胶后的第三代气凝胶。纤维素气凝胶通常由纳米纤维素前驱体经过超临界干燥或冷冻干燥得到。纳米纤维素可以分为纤维素纳米晶须、纤维素纳米微纤和纤维素纳米线,三者的长径比依次递增。纤维素纳米晶须长径比低,刚度大,制得的凝胶脆性大且易碎,而具有较高长径比的纤维素纳米线可以在气凝胶中形成缠结结构,从而提高气凝胶的弯曲柔韧性。气凝胶超高的孔隙率使其具有极低的导热系数,可用作建筑、管道及航天器等的保温隔热材料。纤维素气凝胶除具有超轻、高孔隙率和低热导率等特征外,还具有原料来源广泛,生物相容性好,环保可持续等优势,柔性良好的气凝胶更是可以在异形制件隔热等更广泛的领域得以应用。然而,纤维素固有的易燃性使其使用受限,由纯纤维素制备得到的气凝胶无法达到产品的使用标准。传统的磷系和含卤阻燃剂虽能有效提高材料的阻燃性能,但其燃烧后释放出的有害气体仍具有安全隐患。

为了解决现有技术存在的上述问题,本发明由此而来。

发明内容

本发明针对现有技术存在的上述不足,提出了一种柔性阻燃气凝胶、其制备方法与应用,以纤维素纳米微纤、纤维素纳米线和海藻酸钠为主要原料,加入添加剂交联改性,得到生态友好的,具有优异阻燃性能、弯曲柔性、良好隔热性能和疏水性能的气凝胶,在航空航天、建筑、异形制件阻燃和隔热等领域具有广泛的应用前景。

本发明涉及一种柔性阻燃气凝胶,包括纳米纤维素和海藻酸钠,其中,纳米纤维素包括纤维素纳米微纤和纤维素纳米线,纳米纤维素和海藻酸钠构成复合基体,复合基体具有孔径为数十至数百微米的一级气孔;

在复合基体中,纳米纤维素和海藻酸钠经硅醇、硼酸及钙离子交联改性,形成由海藻酸钠和纤维素纳米微纤构成的连续相以及由纤维素纳米线构成的分散相;连续相与分散相之间、分散相与分散相之间形成分散孔,孔径为数纳米至数十纳米;分散孔为二级气孔,一级气孔通过一部分二级气孔连通形成。

本发明涉及一种柔性阻燃气凝胶,按重量份数,包括以下原料:

纳米纤维素,配制成纳米纤维素悬浮液10份,纳米纤维素悬浮液中纤维素纳米微纤和纤维素纳米线的质量分数分别为0.3%~1%;优选地,纤维素纳米微纤和纤维素纳米线的重量比为1:2~5:1;

海藻酸钠,配制成海藻酸钠溶液5~20份,海藻酸钠溶液中海藻酸钠质量分数为0.1%~1%;海藻酸钠溶液与纳米纤维素悬浮液的重量比为1:2~2:1;

有机硅烷3.75~60份,有机硅烷重量与纳米纤维素加海藻酸钠的总重量之比为1:4~2:1;

硼系阻燃剂1.5~15份,硼系阻燃剂包括硼酸和十水四硼酸钠,硼系阻燃剂重量与纳米纤维素加海藻酸钠的总重量之比为1:10~1:2;优选地,硼酸与十水四硼酸钠重量比为1:2~2:1;

碳酸钙3.75~15份,碳酸钙重量与纳米纤维素加海藻酸钠的总重量之比为1:4~1:2;

D-(+)-葡萄糖酸δ-内酯1.875~15份;优选地,D-(+)-葡萄糖酸δ-内酯与碳酸钙的重量比为1:2~1:1。

在一些技术方案中,纤维素纳米微纤和纤维素纳米线均从含纤维素生物质材料中提取得到,其中,纤维素纳米微纤由含纤维素生物质材料经纯化后通过催化氧化结合机械法得到,其直径为2~30nm,长度为300nm~10μm,表面富羧基;纤维素纳米线由含纤维素生物质材料经纯化后通过机械法得到,其直径为5~80nm,长度为20μm~2mm。

在一些技术方案中,有机硅烷为甲基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷中的至少一种。

本发明涉及一种柔性阻燃气凝胶的制备方法,包括以下步骤:

S1,分别配制纳米纤维素悬浮液和海藻酸钠溶液,然后共混,搅拌,得到生物聚合物混合液;

S2,将有机硅烷加入步骤S1制得的生物聚合物混合液中,再加入酸性pH调节剂调节pH至4~5,搅拌,得到交联液;

S3,将硼酸和十水四硼酸钠加入步骤S2制得的交联液中,再加入无机碱溶液调节pH至10~11,搅拌,得到混合液;

S4,向步骤S3制得的混合液中加入酸性pH调节剂,调节pH至7~8,再加入碳酸钙,高速搅拌至分散均匀,之后加入D-(+)-葡萄糖酸δ-内酯并继续搅拌,倒入模具,2~8h后完成凝胶,得到复合水凝胶;

S5,将步骤S4制得的复合水凝胶置于4~12℃环境中预冷10~30min,接着用液氮冷冻10~50min,之后在真空冷冻干燥机中进行冷冻干燥,时间为24~72h,取出后于温度为20~30℃,相对湿度为40%~80%的室温条件下静置6~24h,得到气凝胶。

优选地,步骤S2和步骤S4中酸性pH调节剂包括盐酸和/或醋酸溶液,溶液摩尔浓度为0.3~0.5mol/L。

优选地,步骤S3中碱性pH调节剂为氢氧化钠溶液,溶液摩尔浓度为0.3~0.5mol/L。

优选地,步骤S3中搅拌转速为150~400r/min。

本发明涉及上述柔性阻燃气凝胶在阻燃材料、隔热材料、阻燃隔热材料中的应用。

技术效果

与现有技术相比,本发明具有如下技术效果:

1)制得的气凝胶胶基于生物聚合物具有优异的弯曲柔性,超低密度和良好的隔热效果,且能够有效阻燃;

2)在体系中,利用高长径比的纤维素纳米线增加单根纳米纤维素之间的关联度,得到具有良好柔性的气凝胶;

3)利用羧基化纤维素纳米微纤上的羧基增强与海藻酸钠的相容性,并在钙离子交联时形成更稳定的复合结构;

4)基于本质阻燃的海藻酸钠与不同阻燃机理的硼系阻燃剂实现对纤维素气凝胶的协同阻燃作用,保证气凝胶具有优异的阻燃性能;

5)利用有机硅烷水解为硅醇后与纤维素分子链上的羟基产生交联反应,增强气凝胶的机械强度,并利用有机硅烷上的疏水基团对气凝胶进行疏水改性。

附图说明

图1为实施例2制备的柔性阻燃气凝胶扫描电镜图(分辨率1mm);

图2为实施例2制备的柔性阻燃气凝胶高倍扫描电镜图(分辨率1μm);

图3为实施例2制备的柔性阻燃气凝胶弯曲状态实物图;

图4为实施例1制备的柔性阻燃气凝胶的锥形燃烧热释放速率图;

图5为实施例1制备的柔性阻燃气凝胶的锥形燃烧总释热量图;

图6为实施例2制备的柔性阻燃气凝胶的锥形燃烧热释放速率图;

图7为实施例2制备的柔性阻燃气凝胶的锥形燃烧总释热量图;

图8为实施例1制备的柔性阻燃气凝胶的水接触角图;

图9为实施例2制备的柔性阻燃气凝胶的水接触角图。

具体实施方式

下面结合附图及具体实施方式对本发明进行详细描述。实施例中未注明具体条件的实验方法,按照常规方法和条件进行。

实施例中所使用的水稻秸秆购于江苏一农场;氢氧化钠,亚氯酸钠,溴化钠,次氯酸钠,盐酸在国药集团化学试剂有限公司购买;甲苯,乙酸,氢氧化钾在上海凌峰化学试剂有限公司购买;乙醇在常熟市宏升精细化工有限公司购买;二甲基亚砜及2,2,6,6-四甲基哌啶氧化物,海藻酸钠,甲基三甲氧基硅烷,硼酸,十水四硼酸钠,碳酸钙及D-(+)-葡萄糖酸δ-内酯在阿拉丁试剂(上海)有限公司购买。

实施例中所使用的数显恒温水浴箱为上海玺源科学仪器有限公司生产,型号为DK-S28;多功能粉碎机为江西赣云食品机械有限公司生产,型号为GY-FS-06;电子调温电热套为浙江力凡仪器科技有限公司生产,型号为DZTW;磁力搅拌器为上海梅颖浦仪器仪表制造有限公司生产,型号为84-1;pH计为上海精科雷磁仪器厂生产,型号为PHS-3C;匀质分散机为IKA仪科实验室技术有限公司生产,型号为T25Ultra-turrax;离心机为湖南湘仪实验室仪器开发有限公司生产,型号为H650;超声波细胞粉碎机为宁波新芝生物科技股份有限公司生产,型号为JY92-IIN;真空冷冻干燥机为宁波新芝生物科技股份有限公司生产,型号为SCIENTZ-18N;冰箱为青岛海尔股份有限公司生产,型号为BCD-160TMPO。

首先,本发明实施例从水稻秸秆中提取得到水稻秸秆纯化纤维素粉末,具体过程如下:

于烧杯中配制质量分数为5%的氢氧化钠溶液后放入温度为90℃的水浴箱中,将水稻秸秆浸入上述氢氧化钠溶液加热2h后洗涤并干燥;用多功能粉碎机将上述干燥后的水稻秸秆粉碎并通过80目筛,得到预处理的水稻秸秆粉末;

将上述粉末以1:20的浴比在索氏抽提器中用体积比为2:1的甲苯/乙醇混合液进行抽提,反应在温度为90℃的电热套中进行6h;配制质量分数为2%的亚氯酸钠溶液并用乙酸调节pH至4,将上述经抽提后的粉末洗涤干燥后以1:50的浴比浸入该溶液并放入温度为70℃的水浴箱中反应5h;配制质量分数为2%的氢氧化钾溶液,将上述经亚氯酸钠处理的粉末洗涤干燥后以1:50的浴比浸入该溶液并放入温度为90℃的水浴箱中反应2h后洗涤干燥;上述亚氯酸钠和氢氧化钾处理过程依次重复3次,其中最后一次氢氧化钾处理时溶液的质量分数为5%;

最终得到水稻秸秆纯化纤维素粉末。

然后,基于水稻秸秆纯化纤维素粉末制取纤维素纳米微纤,具体过程如下:

将纯化纤维素粉末以1:30的浴比浸入二甲基亚砜中,在水浴箱中加热至60℃,处理5h后洗涤并干燥;

将干燥后的纤维素粉末以浴比1:100分散于去离子水中,在转速为800r/min的磁力搅拌下分别加入与纤维素粉末质量比为1:0.636和1:0.032的溴化钠和2,2,6,6-四甲基哌啶氧化物并搅拌均匀;

在上述混合液中逐滴加入与纤维素粉末质量-体积比为1g:40mL的次氯酸钠溶液并用0.5mol/L的盐酸调节pH值至11;当体系pH值自行将至10.5后,继续反应4h,反应在温度为10℃的冷水浴中进行;加入与纤维素粉末质量-体积比为1g:10mL的乙醇终止反应;将反应后的混合液在转速为5000r/min的离心机中离心洗涤10min,共6次;

之后重新分散,于去离子水中并在室温下静置24h;静置后出现分层,将下层沉淀用功率为450W的超声波细胞粉碎机处理5min后得到纤维素纳米微纤。

以及,基于水稻秸秆纯化纤维素粉末制取纤维素纳米线,具体过程如下:

一种纤维素纳米线的制备方法,具体步骤如下:

将纯化纤维素粉末分散于去离子水中,得到质量分数为0.5%的分散液;将上述分散液用功率为800W的超声波细胞粉碎机处理30min;将上述超声处理后的分散液用转速为10000r/min的匀质分散机分散10min后得到纤维素纳米线。

实施例1

一种柔性阻燃气凝胶的制备方法,具体步骤如下:

S1,将上述纤维素纳米微纤和纤维素纳米线分别用去离子水配制得到质量分数为0.5%的悬浮液,将两种悬浮液以质量比3:1的比例混合,并称取150g混合悬浮液;配制质量分数为0.25%的海藻酸钠溶液并称取150g,将上述混合悬浮液和海藻酸钠溶液混合,置于500ml烧杯中,在25℃中以转速为1000r/min进行磁力搅拌,得到生物聚合物混合液;

S2,称取0.5625g甲基三甲氧基硅烷,逐滴加入步骤S1所得生物聚合物混合液中,用0.5mol/L的醋酸调节pH至4;在25℃条件下,以转速为1000r/min磁力搅拌2h进行交联,得到交联液;

S3,称取0.1125g硼酸和0.1125g十水四硼酸钠加入步骤S2所得交联液中,用0.5mol/L的氢氧化钠调节pH至10;在25℃条件下,以转速为200r/min磁力搅拌24h,得到混合液。

S4,将步骤S3所得混合液用0.5mol/L的醋酸调节pH至7,加入碳酸钙0.5625g,用匀质分散机以6000r/min的转速搅拌5min,然后用磁力搅拌器以1000r/min的转速继续搅拌,并加入0.5625gD-(+)-葡萄糖酸δ-内酯,在pH下降至7.5时倒入聚丙烯模具,在25℃中凝胶6h,得到复合水凝胶;

S5,将步骤S4所得复合水凝胶在4℃冰箱中预冷20min,用液氮冷冻30min后,在真空冷冻干燥机中进行冷冻干燥,时间为72h;取出后于温度为25℃,相对湿度为60%的室温条件静置12h,得到柔性阻燃气凝胶。

经测试,所制备的柔性阻燃气凝胶的极限氧指数为34.3%,锥形燃烧最大热释放速率为17.3kW/m2(如图4所示),总释热量为1.0MJ/m2(如图5所示),密度为12.4kg/m3,25℃时的导热系数为0.028Wm-1K-1,水接触角为131°(如图8所示)。

实施例2

一种柔性阻燃气凝胶的制备方法,具体步骤如下:

S1,将上述纤维素纳米微纤和纤维素纳米线分别用去离子水配制得到质量分数为0.5%的悬浮液,将两种悬浮液以质量比3:1的比例混合,并称取150g混合悬浮液;配制质量分数为0.5%的海藻酸钠溶液并称取150g,将上述混合悬浮液和海藻酸钠溶液混合,置于500ml烧杯中,在25℃中以转速为1000r/min进行磁力搅拌,得到生物聚合物混合液;

S2,称取0.75g甲基三甲氧基硅烷,逐滴加入步骤S1所得生物聚合物混合液中,用0.5mol/L的醋酸调节pH至4;在25℃条件下,以转速为1000r/min磁力搅拌2h进行交联,得到交联液;

S3,称取0.15g硼酸和0.15g十水四硼酸钠加入步骤S2所得交联液,用0.5mol/L的氢氧化钠调节pH至10;在25℃条件下,以转速为200r/min磁力搅拌24h,得到混合液。

S4,将步骤S3所得混合液用0.5mol/L的醋酸调节pH至7,加入碳酸钙0.75g,用匀质分散机以6000r/min的转速搅拌5min,然后用磁力搅拌器以1000r/min的转速继续搅拌,并加入0.75gD-(+)-葡萄糖酸δ-内酯,在pH下降至7.5时倒入聚丙烯模具,在25℃中凝胶6h,得到复合水凝胶。

S5,将步骤(4)所得复合水凝胶在4℃冰箱中预冷20min,用液氮冷冻30min后,在真空冷冻干燥机中进行冷冻干燥,时间为72h,取出后于温度为25℃,相对湿度为60%的室温条件静置12h,得到如图3所示柔性阻燃气凝胶,扫描电镜如图1和图2所示。

如图3所示,制得的柔性阻燃气凝胶及时在对折弯曲的情况下依然能保持完整性,具有优异的柔性。

经测试,所制备的柔性阻燃气凝胶的极限氧指数为38.5%,锥形燃烧最大热释放速率为31.1kW/m2(如图6所示),锥形燃烧总释热量为1.9MJ/m2(如图7所示),密度为16.6kg/m3,25℃时的导热系数为0.030Wm-1K-1,水接触角为127°(如图9所示)。

需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:EVOH生产过程中聚合液净化的方法和装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!