一种导热纺织材料的制备方法

文档序号:803664 发布日期:2021-03-26 浏览:39次 >En<

阅读说明:本技术 一种导热纺织材料的制备方法 (Preparation method of heat-conducting textile material ) 是由 程晓敏 李林峰 李元元 于 2020-12-10 设计创作,主要内容包括:本发明涉及一种高导热纺织品的制备方法,包括如下步骤:(1)将纺织品置于多巴胺溶液中浸泡处理后,取出烘干;(2)在步骤(1)所得纺织品的表面采用原子层沉积设备生成均匀、致密的导热材料涂层,从而得到导热纺织材料。该方法对各种纺织材料的加工处理均适用,具有均匀、厚度可控、精度高的特点,也不会影响纺织品原有的手感、柔顺及光泽;且原料用量极少,沉积过程中不会产生水溶液,生产时对环境污染小,工艺流程少,操作过程方便易控。(The invention relates to a preparation method of a high-thermal-conductivity textile, which comprises the following steps: (1) soaking the textile in a dopamine solution, taking out and drying; (2) and (2) generating a uniform and compact heat conduction material coating on the surface of the textile obtained in the step (1) by adopting atomic layer deposition equipment, thereby obtaining the heat conduction textile material. The method is suitable for processing various textile materials, has the characteristics of uniformity, controllable thickness and high precision, and does not influence the original hand feeling, smoothness and luster of the textile; and the raw material consumption is very little, no aqueous solution is generated in the deposition process, the environmental pollution is little during the production, the process flow is few, and the operation process is convenient and easy to control.)

一种导热纺织材料的制备方法

技术领域

本发明涉及一种导热纺织材料的制备方法,属于纺织材料加工技术领域。

背景技术

凉爽纺织品作为一种可以在夏季提供冰爽体感的纺织材料一直以来是科研工作者的关注焦点,而赋予纺织材料高导热性可以实现凉爽的特性。此外,导热材料在电子产品中扮演者举足轻重的角色,它可以将电子器件在工作时产生的热量传输至外界,起到散热的作用,极大提升电子器件的工作效率,并可消除因升温导致的一系列安全隐患。电子科技的迅猛进步导致了对导热材料要求日益苛刻,在一些极为精密的电子仪器中,要求导热材料具有柔软、轻便、可弯曲、绝缘的特性,而纺织材料的种种特性,使其成为了最符合条件的基体材料。如果对纺织材料进行导热处理,将会应用于多方面领域,可以极大提升其应用价值。

目前,对于导热纺织材料的研究较少,且均具有局限性。在《印染》2015年第9期的文章《纯棉织物的石墨烯防紫外导电导热功能整理》中,描述了一种将石墨烯覆盖于棉纺织品上的处理方法,改性后的棉织物导热性能有极大提升。然而石墨烯的成本高昂,且需制备石墨烯水溶液;此外,这种方式是用浸轧的方式将石墨烯包覆在织物的表面,因此耐久性并不高。

另外,在《Nanoscale》2018年第10期的文章《High temperature thermallyconductive nanocomposite textile by“green”electrospinning》中,实验研究通过氮化硼(FBN)纳米片和聚酰亚胺(PI)纳米纤维构建了一种导热纳米复合纺织材料,该方法步骤繁琐、条件苛刻,不利于大规模产业化生产;且该法只能制备导热长丝,对于纱线和织物等纺织品的导热处理是不能实现的。

发明内容

本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种导热纺织材料的制备方法,具有广谱性,易于制备各种纺织品,导热系数高,且操作过程方便易控。

本发明为解决上述提出的问题所采用的技术方案为:

一种导热纺织材料的制备方法,包括如下步骤:

(1)将纺织品置于多巴胺溶液中浸泡处理后,取出烘干;

(2)在步骤(1)所得纺织品的表面采用原子层沉积设备生成均匀、致密的导热材料涂层,从而得到导热纺织材料。

按上述方案,步骤(1)中,多巴胺溶液为浓度2~10%的多巴胺水溶液。

按上述方案,步骤(1)中,纺织品与多巴胺溶液的浴比为1:1~10,即纺织品与多巴胺溶液的质量比为1:1~10。

按上述方案,步骤(1)中,浸泡处理的同时采用超声处理或者振荡处理或者搅拌处理等,以保持浸泡过程中多巴胺溶液的均匀性。

按上述方案,步骤(2)中,所述的导热材料涂层为氧化铝、氮化铝、氧化锌、氮化硼、碳化硅、氧化镍等导热材料中的一种或几种形成的涂层。原子层沉积时,根据所需导热材料涂层的不同,选择相应的前驱体通入原子沉积设备,控制反应温度和反应时间等,在纺织品表面沉积相应的导热材料并形成涂层。

按上述方案,步骤(2)中,原子层沉积的参数为:反应温度70~150℃,单次循环反应时间10~70s,吹扫气体为高纯氮气或氦气或氩气等保护气氛,总反应时间至涂层厚度达到1~100nm。

优选地,所述的导热材料涂层为氧化铝、氮化铝、氧化锌、氮化硼、碳化硅、氧化镍等导热材料中的一种或几种形成的涂层。

优选地,原子层沉积的前驱体一般为两种,例如导热材料氧化铝、氮化铝、氧化锌、氮化硼、碳化硅、氧化镍的前驱体分别对应三甲基铝和水、三氯化铝和氨、二乙基锌和水、三甲基硼和氨、四氯化硅和乙炔、二茂镍和臭氧。

本发明中,所述纺织品为纤维、纱线、织物和非织造布等中的一种或几种,纺织品的原料可以为棉、毛、麻、丝(蚕丝等)、人造纤维和合成纤维等中的一种或几种。人造纤维包括粘胶纤维、醋酸纤维、铜氨纤维等,合成纤维包括涤纶、锦纶、丙纶或尼伦、腈纶等等。尤其适用于富含羟基、氨基等活性基团的纺织材料,如棉、麻、粘胶等纤维素纤维、羊毛、蚕丝及其制成的纱线、织物等。

与现有技术相比,本发明的有益效果是:

1、本发明在多巴胺溶液预处理后,直接将纺织品置于原子层沉积设备中进行涂层沉积,即可得到导热纺织材料。该方法对各种纺织材料的加工处理均适用,具有均匀、厚度可控、精度高的特点,也不会影响纺织品原有的手感、柔顺及光泽;且原料用量极少,沉积过程中不会产生水溶液,生产时对环境污染小,工艺流程少,操作过程方便易控。

2、本发明需要预先采用多巴胺对纺织品本体进行预处理,增加其表面活性,也利于增强纺织材料与原子层沉积的导热材料涂层的牢固性和结合力。

3、本发明采用原子层沉积技术对纺织品本体进行导热材料涂层,具体是通过将导热涂层材料所需要的两种前驱体交替通入到反应室中,在纺织品本体上发生化学吸附反应而形成导热涂层材料,通过调整反应的循环次数,实现对涂层材料厚度的控制。原子层沉积是一种广泛应用于电子半导体领域的技术,但鲜少被涉及到纺织品加工领域。本发明采用这种精确调控的原子层沉积技术,并开创性地结合多巴胺这种可以有效提升材料界面间结合力的材料,使涂层材料均匀、牢固地结合在纺织品本体的表面,因此,可以实现即使微量的涂层材料也能让本体具备更高的导热性能,且拥有较高的耐磨性能。此外,由于涂层材料的附着,使纺织品本体的力学性能有所强化;还可以有效改善纺织品的耐腐蚀性等。

附图说明

图1为实施例1和对比例1所制备的导热纺织材料-导热棉织物的扫描电镜图;其中,(1)实施例1;(2)对比例1。

具体实施方式

为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。

实施例1

一种导热纺织材料的制备方法,具体包括如下步骤:

A.棉织物预处理:将多巴胺溶解于去离子水中配置成2%的多巴胺溶液,然后将洁净的棉织物置于该多巴胺溶液中,并控制棉织物与多巴胺溶液的浴比为1:10,在常温下超声振荡24h后取出并烘干;

B.棉织物导热处理:在步骤A所得棉织物的表面上,利用原子层沉积设备生成均匀、致密的氧化铝导热材料涂层;沉积过程具体如下:

开启原子层沉积设备,交替通入气相三甲基铝前驱体和水前驱体脉冲,其中,三甲基铝和水的曝光时间分别为0.2s和0.8s,反应时间均为9.5s,吹扫气体均为高纯氮气,吹扫时间均为25s,反应温度为70℃,经过6个ALD循环(单次循环反应时间为70s),在棉织物的表面形成厚度为1nm致密、均匀的氧化铝涂层(氧化铝的生长速率为0.16nm/循环),即得到导热纺织材料-导热棉织物。

测试结果表明,实施例1所制备的导热棉织物导热系数可达0.11W/m*K,相比于初始棉织物升高20%以上。

对比例1

与实施例1的区别在于:省略步骤A。

与实施例1相比,对比例1没有采用多巴胺溶液处理,在相同原子层沉积条件下制备得到的导热棉织物,其导热系数为0.102W/m*K。

如图1所示,与对比例1相比,实施例1制备得到的导热棉织物表面涂层更为均匀、平整,且牢固性更好。说明本发明制备导热纺织材料的方法中,预先需要采用多巴胺对纺织品本体进行预处理,有利于增强纺织材料与原子层沉积的导热材料涂层的牢固性和结合力,并且织物表面更加均匀平整。

实施例2

一种导热纺织材料的制备方法,具体包括如下步骤:

A.涤纶纱线预处理:将多巴胺溶解于去离子水中配置成10%的多巴胺溶液,然后将洁净的涤纶纱线置于该多巴胺溶液中,并控制涤纶纱线与多巴胺溶液的浴比为1:1,在常温下超声振荡12h后取出并烘干;

B.涤纶纱线导热处理:在步骤A所得涤纶纱线的表面上,利用原子层沉积设备生成均匀、致密的氧化锌导热材料涂层;沉积过程具体如下:

开启原子层沉积设备,交替通入气相二乙基锌前驱体和水前驱体脉冲,其中,二乙基锌和水的曝光时间分别为0.05s和0.15s,反应时间均为0.9s,吹扫气体均为高纯氦气,吹扫时间均为4s,反应温度为150℃,经过1500个ALD循环(单次循环反应时间为10s),在涤纶纱线的表面形成厚度为100nm致密、均匀的氧化锌涂层(氧化锌的生长速率为0.066nm/循环),即得到导热纺织材料-导热涤纶纱线。

测试结果表明,实施例2所制备的导热涤纶纱线热扩散系数达1.42*10-7m2/s,相比于初始涤纶纱线升高20%以上。

对比例2

与实施例2的区别在于:省略步骤A。

与实施例2相比,对比例2没有采用多巴胺溶液处理,在相同原子层沉积条件下制备得到的导热涤纶纱线,其热扩散系数为1.33*10-7m2/s。

实施例3

一种导热纺织材料的制备方法,具体包括如下步骤:

A.涤纶长丝预处理:将多巴胺溶解于去离子水中配置成6%的多巴胺溶液,然后将洁净的涤纶长丝置于该多巴胺溶液中,并控制涤纶长丝与多巴胺溶液的浴比为1:5,在常温下超声振荡18h后取出并烘干;

B.涤纶长丝导热处理:在步骤A所得涤纶长丝的表面上,利用原子层沉积设备生成均匀、致密的氮化铝导热材料涂层;沉积过程具体如下:

开启原子层沉积设备,交替通入气相三氯化铝前驱体和氨前驱体脉冲,其中,三氯化铝和氨的曝光时间分别为0.1s和0.5s,反应时间分别3.4s和6s,反应温度均为110℃,吹扫气体为高纯氮气,吹扫时间均为15s,经过600个ALD循环(单次循环反应时间为40s),在涤纶长丝的表面形成厚度为50nm致密、均匀的氮化铝涂层(氮化铝的生长速率为0.083nm/循环),得到导热纺织材料-导热涤纶长丝,随后置于10%浓度的KH580硅烷偶联剂中浸泡进行防水解处理,然后烘干即可。

测试结果表明,实施例3所得导热涤纶长丝的轴向导热系数可达1.27W/m*K,相比于初始涤纶长丝升高35%以上。

对比例3

与实施例3的区别在于:省略步骤A。

与实施例3相比,对比例3没有采用多巴胺溶液处理,在相同原子层沉积条件下制备得到的导热纺织材料-导热涤纶长丝,其轴向导热系数为1.25W/m*K。

实施例4

一种导热纺织材料的制备方法,具体包括如下步骤:

A.锦纶无纺布预处理:将多巴胺溶解于去离子水中配置成4%的多巴胺溶液,然后将洁净的锦纶无纺布置于该多巴胺溶液中,并控制锦纶无纺布与多巴胺溶液的浴比为1:8,在常温下超声振荡20h后取出并烘干;

B.锦纶无纺布导热处理:在步骤A所得锦纶无纺布的表面上,利用原子层沉积设备生成均匀、致密的氮化硼导热材料涂层;沉积过程具体如下:

开启原子层沉积设备,交替通入气相三甲基硼前驱体和氨前驱体脉冲,其中,三甲基硼和氨的曝光时间均为0.25s,反应时间均为4.75s,反应温度为130℃,吹扫气体为高纯氦气,吹扫时间均为10s,经过1000个ALD循环(单次循环反应时间为30s),在锦纶无纺布的表面形成厚度为70nm致密、均匀的氮化硼涂层(氮化硼的生长速率为0.07nm/循环),得到导热纺织材料-导热锦纶无纺布。

测试结果表明,实施例4所得导热锦纶无纺布的导热系数可达0.33W/m*K,相比于初始锦纶无纺布升高35%以上。

对比例4

与实施例4的区别在于:省略步骤A。

与实施例4相比,对比例4没有采用多巴胺溶液处理,在相同原子层沉积条件下制备得到的导热锦纶无纺布,其导热系数为0.31W/m*K。

实施例5

一种导热纺织材料的制备方法,具体包括如下步骤:

A.丙纶织物预处理:将多巴胺溶解于去离子水中配置成8%的多巴胺溶液,然后将洁净的丙纶织物置于该多巴胺溶液中,并控制丙纶织物与多巴胺溶液的浴比为1:4,在常温下超声振荡16h后取出并烘干;

B.丙纶织物导热处理:在步骤A所得丙纶织物的表面上,利用原子层沉积设备生成均匀、致密的碳化硅导热材料涂层;沉积过程具体如下:

开启原子层沉积设备,交替通入气相四氯化硅前驱体和乙炔前驱体脉冲,其中,四氯化硅和乙炔的曝光时间均为0.15s,反应温度均为80℃,反应时间均为6s,吹扫气体为高纯氮气,吹扫时间均为24s,经过250个ALD循环(单次循环反应时间为60.3s),在丙纶织物的表面形成厚度为20nm致密、均匀的碳化硅涂层(碳化硅的生长速率为0.08nm/循环),得到导热纺织材料-导热丙纶织物。

测试结果表明,实施例5所制备的导热丙纶织物的导热系数可达0.32W/m*K,相比于初始丙纶织物升高29%以上。

对比例5

与实施例5的区别在于:省略步骤A。

与实施例5相比,对比例5没有采用多巴胺溶液处理,在相同原子层沉积条件下制备得到的导热丙纶织物,其导热系数为0.30W/m*K。

实施例6

一种导热纺织材料的制备方法,具体包括如下步骤:

A.黏胶纤维预处理:将多巴胺溶解于去离子水中配置成5%的多巴胺溶液,然后将洁净的黏胶纤维置于该多巴胺溶液中,并控制黏胶纤维与多巴胺溶液的浴比为1:6,在常温下超声振荡19h后取出并烘干;

B.黏胶纤维导热处理:在步骤A所得黏胶纤维的表面上,利用原子层沉积设备生成均匀、致密的氧化镍导热材料涂层;沉积过程具体如下:

开启原子层沉积设备,交替通入气相二茂镍前驱体和臭氧前驱体脉冲,其中,二茂镍和臭氧的曝光时间均为0.05s,反应时间均为4s,反应温度为90℃,吹扫气体为高纯氮气,吹扫时间均为20s,经过500个ALD循环(单次循环反应时间为48.1s),在黏胶纤维的表面形成厚度为60nm致密、均匀的氧化镍涂层(氧化镍的生长速率为0.12nm/循环),得到导热纺织材料-导热黏胶纤维。

测试结果表明,实施例6所得导热黏胶纤维的导热系数可达0.075W/m*K,相比于初始黏胶纤维升高24%以上。

对比例6

与实施例6的区别在于:省略步骤A。

与实施例6相比,对比例6没有采用多巴胺溶液处理,在相同原子层沉积条件下制备得到的导热黏胶纤维,其导热系数为0.067W/m*K。

以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高弹吸湿功能面料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类