一种功能化纤维素纳米纤维气凝胶及其制备方法

文档序号:887966 发布日期:2021-03-23 浏览:1次 >En<

阅读说明:本技术 一种功能化纤维素纳米纤维气凝胶及其制备方法 (Functionalized cellulose nanofiber aerogel and preparation method thereof ) 是由 周栋梁 秦玉娇 赵君 于 2019-09-20 设计创作,主要内容包括:本发明公开了一种功能化纤维素纳米纤维气凝胶及其制备方法。本发明所述功能化纤维素纳米纤维气凝胶通过采用醛基改性纤维素纳米纤维和接枝酰肼基团的纤维素纳米纤维之间发生化学反应引入腙键的方法制得。本发明所述纤维素纳米纤维气凝胶具有良好的机械稳定性和形状恢复性。(The invention discloses a functionalized cellulose nanofiber aerogel and a preparation method thereof. The functionalized cellulose nanofiber aerogel is prepared by adopting a method of introducing a hydrazone bond through chemical reaction between aldehyde group modified cellulose nanofiber and cellulose nanofiber grafted with a hydrazide group. The cellulose nanofiber aerogel disclosed by the invention has good mechanical stability and shape recovery.)

一种功能化纤维素纳米纤维气凝胶及其制备方法

技术领域

本发明涉及气凝胶领域,尤其涉及一种功能化纤维素纳米纤维气凝胶及其制备方法。

背景技术

随着环境污染、能源危机等问题的日趋严重,天然生物来源的纤维素纳米纤维(CNFs)由于其储量丰富、可再生以及良好的生物降解性,引起了越来越多的关注。以CNFs为原料制备得到的CNFs气凝胶毒性低、可生物降解,生物相容性好而且具有独特的孔结构,在电化学、生物医学、建筑学等领域有广阔的应用前景。此外,CNFs表面拥有大量的活性羟基,易实现化学改性,从而为CNFs气凝胶的实际应用研究提供了更多应用前景,包括污水净化材料、磁性材料及催化剂负载材料等。值得注意的是,大部分关于CNFs气凝胶的应用是需要在有水存在的环境中进行的。然而在水环境中水分子会与CNFs上的羟基形成氢键使得纤维素之间的氢键被纤维素和水分子之间的氢键取代,因此,由CNFs气凝胶在应用过程中极易被分解破坏,导致CNFs材料耐水性差及再循环性差。

CNFs气凝胶具有和SiO2气凝胶类似的较高的孔隙率和较大的比表面积的特点,但是相比SiO2气凝胶,CNFs气凝胶具有一定的压缩性能,不易碎,因此可适用于需要柔韧性以及一定机械强度的应用中。但是CNFs气凝胶在应用中也存在一定的限制,即CNFs气凝胶具有在水中分解的趋势,这主要是由于水分子可以和纤维素纳米纤维上的羟基形成氢键,在水环境中破坏了气凝胶的基本结构。为了克服CNFs气凝胶的这一不足,逐渐有三种方案被提了出来:(1)在CNFs悬浮液中引入聚合物,形成稳定的复合气凝胶;(2)在CNFs悬浮液中加入交联剂,增加CNFs之间的交联,形成稳定的CNFs气凝胶;(3)在CNFs中引入化学交联,取代部分氢键交联,增强CNFs气凝胶的机械性能。由于方案一和方案二会不可避免地覆盖部分纤维素纳米纤维表面的亲水位点,因此第三种方案成为了提高CNFs气凝胶耐水性能的最佳方案。

Yang等人在纤维素纳米晶(CNC)气凝胶中引入了化学交联,制备了具有一定耐水性能的纤维素气凝胶,该气凝胶在水环境中80%的压缩量下循环压缩20次后仍然达到了85%的形状恢复率。但是纤维素纳米晶长径比较小,硬度高,柔韧性差,因此物理交缠作用相对较弱,在形成纤维素气凝胶过程中带来了很多不足之处,并不是形成纤维素气凝胶的最佳材料。

Li等人通过高效的气固氟化反应在CNFs气凝胶中引入了酯交联,实现了在CNFs气凝胶中共价键和亲水基团共存的目标,提高了CNFs气凝胶机械性能和耐水性能。经过化学处理后,气凝胶的孔径由3.1nm增加到了5.6nm,孔径增加主要是由于共价键的键程比氢键的键程短,CNFs之间的距离减小,孔径增大。但是氟气是一种强氧化剂,腐蚀性极强且有剧毒性,容易对环境及人体造成危害,因此氟气氧化法不是一种常用的氧化方法。

发明内容

为了克服现有技术的不足,本发明提出了一种功能化纤维素纳米纤维气凝胶及其制备方法,通过合适的方法提高CNFs气凝胶的机械稳定性能和耐水性并同时确保其亲水性。

本发明通过采用醛基改性纤维素纳米纤维和接枝酰肼基团的纤维素纳米纤维之间发生化学反应引入腙键的手段制备具有良好的机械稳定性和形状恢复性的纤维素纳米纤维气凝胶;所述醛基改性纤维素纳米纤维与接枝酰肼基团的纤维素纳米纤维质量比1:1。

本发明所述一种功能化纤维素纳米纤维气凝胶的制备方法,具体包括如下步骤:

(1)酰肼基团功能化的纤维素纳米纤维的制备:取5g粉碎后的滤纸分散于500mL去离子水中,向其中加入0.06gTEMPO、1.0gNaBr后逐滴加入次氯酸钠水溶液30mL,滴加过程中用氢氧化钠溶液调节pH在10.0-11.0范围内,直到pH不再变化,以上混合物反应24小时后对产物进行离心并透析;将透析后的纤维素纳米纤维分散体系在300W功率下超声30min,得到均一分散的纤维素纳米纤维悬浮液;纤维素纳米纤维通过酰肼反应接枝带有游离酰肼基团的3,3'-二硫代二丙酸二酰肼,制备得到酰肼功能化的纤维素纳米纤维;

本发明选择3,3'-二硫代二丙酸二酰肼作为功能基团来实现纤维素纳米纤维气凝胶的交联主要是由于两个原因:(1)3,3'-二硫代二丙酸二酰肼和羧基反应后纤维素表面存在一个游离的酰肼基团,为后续的反应提供了可能;(2)3,3'-二硫代二丙酸二酰肼分子中含有二硫键及酰肼基团,为后续钛前驱体在气凝胶表面的吸附提供了可能的吸附位点。

(2)带有醛基的纤维素纳米纤维的制备:将1.5gNaIO4溶于200mL1wt%纤维素纳米纤维悬浮液中,混合物在黑暗环境中搅拌2小时后对所得产物进行透析得到带有醛基的纤维素纳米纤维;

(3)功能化纤维素纳米纤维气凝胶的制备:将步骤(1)及步骤(2)制得的两种不同改性的纤维素纳米纤维悬浮液按质量比1:1进行混合,磁力搅拌5至10min,使其混合均匀,停止搅拌后静置形成水凝胶,形成水凝胶的时间因悬浮液浓度的不同而不同;之后,将水凝胶在室温下放置5h以使其老化;将纤维素纳米纤维水凝胶放入无水乙醇溶液中,在室温下进行溶剂置换,溶剂置换充分的纤维素纳米纤维水凝胶经冷冻干燥后,即可得到本发明所述功能化纤维素纳米纤维气凝胶。

步骤(2)中所述纤维素纳米纤维悬浮液的制备方法为:采用64wt%硫酸水解滤纸,通过控制反应温度和反应时间保证纤维素的非结晶区水解且结晶区不被破坏,将反应结束后的纸浆离心并透析,直到pH不再变化,得到所述纤维素纳米纤维悬浮液。

为了克服纤维素纳米纤维气凝胶机械性能差以及在水环境中易分散的问题,本发明在纤维素纳米纤维气凝胶中引入了化学交联,主要是通过酰肼基团功能化的纤维素纳米纤维上的酰肼基团和带有醛基的纤维素纳米纤维上的醛基发生反应生成腙键。

本发明制得的功能化纤维素纳米纤维气凝胶呈现为大孔及介孔共存的多级孔结构,在水环境中具有良好的机械性能及形状恢复性能;且因为功能化纤维素纳米纤维气凝胶独特的孔结构、较大的比表面积及表面负电荷等特点使得功能化纤维素纳米纤维气凝胶对RhB有机污染物有较大的吸附量。

具体实施方式

下面结合具体实施例对本发明进行详细说明。

一种功能化纤维素纳米纤维气凝胶的制备方法,具体包括如下步骤:

(1)酰肼基团功能化的纤维素纳米纤维的制备:取5g粉碎后的滤纸分散于500mL去离子水中,向其中加入0.06gTEMPO、1.0gNaBr后逐滴加入次氯酸钠水溶液30mL,滴加过程中用氢氧化钠溶液调节pH在10.0-11.0范围内,直到pH不再变化,以上混合物反应24小时后对产物进行离心并透析;将透析后的纤维素纳米纤维分散体系在300W功率下超声30min,得到均一分散的纤维素纳米纤维悬浮液;纤维素纳米纤维通过酰肼反应接枝带有游离酰肼基团的3,3'-二硫代二丙酸二酰肼,制备得到酰肼功能化的纤维素纳米纤维;

(2)带有醛基的纤维素纳米纤维的制备:将1.5gNaIO4溶于200mL1wt%纤维素纳米纤维悬浮液中,混合物在黑暗环境中搅拌2小时后对所得产物进行透析得到带有醛基的纤维素纳米纤维;

(3)功能化纤维素纳米纤维气凝胶的制备:将步骤(1)及步骤(2)制得的两种不同改性的纤维素纳米纤维悬浮液按质量比1:1进行混合,磁力搅拌5至10min,使其混合均匀,停止搅拌后静置形成水凝胶,形成水凝胶的时间因悬浮液浓度的不同而不同;之后,将水凝胶在室温下放置5h以使其老化;将纤维素纳米纤维水凝胶放入无水乙醇溶液中,在室温下进行溶剂置换,溶剂置换充分的纤维素纳米纤维水凝胶经冷冻干燥后,即可得到本发明所述功能化纤维素纳米纤维气凝胶。

5页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种智能控湿阻隔复合薄膜及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!