控制esc集成制动系统的方法

文档序号:896609 发布日期:2021-02-26 浏览:12次 >En<

阅读说明:本技术 控制esc集成制动系统的方法 (Method for controlling ESC integrated brake system ) 是由 薛镛哲 于 2020-08-20 设计创作,主要内容包括:公开了一种控制电子稳定性控制(ESC)集成制动系统的方法,该方法包括:在车辆通过ESC集成制动系统制动期间检测到无法在主缸单元中形成压力的故障时,控制器通过关闭用于联接主缸单元和回路的流动通道的指定油压释放阀来维持制动期间施加的制动力,并且当踏板缸的压力(PC1)等于或大于基于保持制动力的所述回路的压力(MC1)时,通过由驾驶员踩下制动踏板,控制器控制指定油压释放阀处于打开状态,然后将指定油压释放阀的状态切换到机械备用状态。该控制ESC集成制动系统的方法能够防止由于在主缸单元中形成的液流流入踏板模拟器并在其中形成突然压力而引发的反冲现象。(A method of controlling an Electronic Stability Control (ESC) integrated brake system is disclosed, the method comprising: when a failure that pressure cannot be built up in the master cylinder unit is detected during braking of the vehicle by the ESC integrated brake system, the controller maintains the braking force applied during braking by closing a specified oil pressure release valve for a flow passage coupling the master cylinder unit and a circuit, and when the pressure of the pedal cylinder (PC1) is equal to or greater than the pressure of the circuit based on the maintained braking force (MC1), the controller controls the specified oil pressure release valve to be in an open state by depressing the brake pedal by the driver, and then switches the state of the specified oil pressure release valve to a mechanical standby state. The method of controlling the ESC integrated brake system can prevent a kickback phenomenon caused by a fluid flow formed in the master cylinder unit flowing into the pedal simulator and forming a sudden pressure therein.)

控制ESC集成制动系统的方法

技术领域

本公开的示例性实施例涉及一种控制电子稳定性控制(electronic stabilitycontrol,ESC)集成制动系统的方法,尤其涉及一种控制ESC集成制动系统的方法,其中当发生在主缸单元中无法通过致动器形成压力的故障时,ESC集成制动系统的状态切换为仅仅通过驾驶员的踏板力产生制动力的机械备用状态(mechanical backup state),从而防止了由于在主缸单元中形成的液流流入踏板模拟器而在踏板模拟器中形成突然的压力而发生反冲现象。

背景技术

通常,制动系统包括:防抱死制动系统(anti-lock brake system,ABS),用于防止制动时车轮打滑;制动牵引力控制系统(brake traction control system,BTCS),用于防止驱动轮在突然意外加速或突然加速时打滑,以及电子稳定性控制(ESC)系统,用于通过结合ABS和牵引力控制来稳定地维持车辆的行驶状态并控制制动油压。

然而,在用于控制使用致动器(例如,马达)的主缸单元的压力的诸如ESC集成制动系统的制动系统中,可能发生无法控制主缸单元中的压力以产生制动压力的故障。例如,当由于马达控制所需的位置传感器(霍尔和编码器)的故障、马达电流传感器的故障或马达的损坏而在主缸单元中发生无法控制制动力的故障时,制动系统的状态切换到机械备用状态,在该状态下,仅能通过踏板模拟器由驾驶员的踏板力产生制动力。

然而,如果正常控制ESC集成制动系统,则驾驶员的踏板力(或踩踏感)由踏板模拟器的橡胶和弹簧形成。在这种情况下,踏板模拟器中形成的压力比主缸单元中形成的压力小得多。

当ESC集成制动系统在正常状态下执行制动时,如果由于在主缸单元中发生了制动器(例如,马达)无法形成制动压力的故障,ESC集成制动系统的状态切换到机械备用状态,则在主缸单元中形成的液流会流入比主缸单元压力更小的踏板模拟器中,在正常状态下形成的制动力减小,并且在踏板模拟器中形成突然的压力。因而,存在着驾驶员受到因反冲而产生的巨大冲击的问题。

因此,需要一种能够在正常状态下进行制动的同时防止将ESC集成制动系统的状态切换为机械备用状态时发生反冲的方法。

在韩国专利申请特开第10-1997-0000784号(1997年1月21日公开,标题为“汽车电源控制装置”)中披露了本公开的背景技术。

发明内容

各个实施例旨在提供一种控制ESC集成制动系统的方法,其中,当主缸单元中发生无法通过致动器形成压力的故障时,ESC集成制动系统的状态切换为仅由驾驶员的踏板力产生制动力的机械备用状态,从而防止了由于在主缸单元中形成的液流流入踏板模拟器并在其中形成突然压力而引发的反冲现象。

在一个实施例中,一种控制电子稳定性控制(ESC)集成制动系统的方法包括:在车辆通过所述ESC集成制动系统进行制动期间检测到在主缸单元中无法形成压力的故障时,由控制器通过关闭指定油压释放阀来保持在制动期间施加的制动力,,所述指定油压释放阀用于联接所述主缸单元和回路的流动通道;并且当通过驾驶员踩下制动踏板将踏板缸的压力(PC1)变为等于或大于所述回路的压力(MC1)时,由所述控制器控制所述指定油压释放阀处于打开状态,然后将所述指定油压释放阀的状态切换为机械备用状态。

在一个实施例中,所述回路是指包括进入口阀和出口阀的流动通道,所述流动通道用于经由所述指定油压释放阀在前轮和后轮的各个轮缸中形成制动压力。

在一个实施例中,所述方法还包括:在所述车辆通过所述ESC集成制动系统进行制动之前检测到在所述主缸单元中无法形成压力的故障时,由所述控制器立即将所述指定油压释放阀的状态切换为机械备用状态。

在一个实施例中,所述方法还包括,在所述车辆通过所述ESC集成制动系统进行制动之前未检测到在所述主缸单元中无法形成压力的故障时,所述控制器检查是否通过踏板行程传感器产生了所需制动力,并且如果所述检查的结果是踏板行程为0,所述控制器确定未产生所需制动力并执行初始位置控制以将所述所述主缸单元保持在初始状态。

在一个实施例中,所述方法还包括,如果所述检查结果是踏板行程不为0,则由所述控制器计算与所述踏板行程的值相对应的所需压力,并且由所述控制器通过驱动所述主缸单元的致动器,根据计算出的所需压力对所述主缸单元进行压力控制。

在一个实施例中,所述方法还包括:如果所述根据计算出的所需压力对所述主缸单元进行所述压力控制之后,无法形成与所述压力控制相对应的所述主缸单元的压力,则由所述控制器检查所述指定油压释放阀是否处于正常状态,如果所述指定油压释放阀的状态的检查结果是所述指定油压释放阀不处于正常状态,则由所述控制器立即将所述指定油压释放阀的状态切换到所述机械备用状态。

在一个实施例中,所述指定油压释放阀包括第四油压释放阀,用于联接所述主缸单元和前轮侧回路的流动通道;和第五油压释放阀,用于联接所述主缸单元和后轮侧回路的流动通道。

在一个实施例中,所述方法还包括:如果所述指定油压释放阀处于正常状态,则由所述控制器执行对处于关闭状态的所述指定油压释放阀的占空控制(duty control),并由所述控制器控制第六油压释放阀控制处于关闭状态,其中所述第六油压释放阀是形成在用于联接所述指定油压释放阀的流动通道中的分流阀(split block valve)。

在一个实施例中,所述方法还包括,在所述通过关闭用于联接所述主缸单元和所述回路的流动通道的所述指定油压释放阀来保持制动期间施加的所述制动力时,在继续输入踏板行程的状态下,当所述踏板缸单元的压力小于所述回路的压力时,所述控制器控制以使所述指定油压安全阀继续保持处于关闭状态。

在一个实施例中,所述方法还包括:所述通过关闭用于联接所述主缸单元和所述回路的流动通道的所述指定油压释放阀来保持制动期间施加的所述制动力之后,当释放所述制动踏板时,所述控制器根据所述制动踏板的释放程度对处于打开状态的所述指定油压释放阀执行占空控制。

在一个实施例中,在通过关闭用于联接所述主缸单元和所述回路的流动通道的所述指定油压释放阀来保持制动期间施加的所述制动力时,当驾驶员没有踩踏所述制动踏板或所述踏板缸单元的压力等于或大于所述回路的压力时,由于没有产生所需的制动力,所述控制器释放所述制动力的保持。

在一个实施例中,当释放所述制动力的保持时,所述控制器将所述指定油压释放阀的状态切换到机械备用状态并打开警告灯。

附图说明

图1是根据实施例示意性地示出ESC集成制动系统的构造的示意图。

图2是用于描述根据实施例的控制ESC集成制动系统的方法的流程图。

图3是示出图2的正常状态下的正向压力控制时的操作阀的示意图。

图4是示出图2中的切换到机械备用状态之前的操作阀的示意图。

具体实施方式

如在相应领域中的传统,可以在附图中以功能块、单元和/或模块的形式示出一些示例性实施例。本领域普通技术人员能够理解,这些块、单元和/或模块由诸如逻辑电路、分立组件、处理器、硬连线电路、存储元件、布线连接等电子(或光学)电路物理地实现。当块、单元和/或模块由处理器或类似硬件实现时,可以使用软件(例如,代码)进行编程和控制,以执行本文讨论的各种功能。或者,每个块、单元和/或模块可以由专用硬件或作为专用硬件的组合来实现以执行一些功能,并且可以由处理器(例如,一个或多个编程处理器和相关电路)来实现,以执行其他功能。在不脱离本发明构思的范围的情况下,一些示例性实施例的每个块、单元和/或模块可以被物理地分成两个或更多个相互作用和离散的块、单元和/或模块。此外,在不脱离本发明构思的范围的情况下,一些示例性实施例的块、单元和/或模块可以物理地组合成更复杂的块、单元和/或模块。

在下文中,将通过各种示例性实施方式参考附图来描述根据本公开的控制ESC集成制动系统的方法。

为了描述的清楚和方便起见,在本说明书描述的过程中,附图中所示的线的粗细或元件的尺寸可能已经被放大。下文要描述的术语已经通过考虑到本公开中的功能的方式进行了定义,并且可以根据用户或操作者的意图或实践来改变这些术语。所以,应基于本说明书的整体内容来解释这些术语。

图1是根据实施例示意性地示出ESC集成制动系统的构造的示意图。

如图1所示,根据本实施例的控制ESC集成制动系统的装置包括:储存器单元80,踏板缸单元20,马达30,主缸单元40,轮缸111、112、121和122,油压释放阀51、52、53、54、55和56以及控制器100。

储存器单元80联接至踏板缸单元20的顶部,并储存油。

在这种情况下,储存器单元80可包括储存器液流传感器Lu。

踏板缸单元20通过制动踏板10的加压形成油压。

踏板缸单元20可以包括踏板缸22和踏板模拟器21,并形成两个腔室20a和20b。例如,踏板缸单元20可包括第一腔室20a和第二腔室20b。

例如,当驾驶员的踏板力被施加到制动踏板10时,油压由踏板缸22形成。形成的油压被供应到踏板模拟器21的活塞,并且对踏板模拟器21的弹性体加压。因此,通过加压弹性体的反作用力来实现驾驶员的踏板感觉。

马达30由根据制动踏板10的位移输出的电信号驱动。

控制器100可以接收制动踏板10的旋转检测信号,并控制马达30的驱动。

主缸单元40由控制器100控制的马达30驱动,产生油压并将所产生的油压提供给轮缸111、112、121和122,以分别执行车轮FL、FR、RL和RR的制动。

在这种情况下,控制器100可以是电子控制单元(electronic control unit,ECU),即车辆的代表控制单元。

例如,当驾驶员踩下制动踏板10时,踏板行程传感器S/u检测到制动踏板10的行程并将检测到的行程发送到控制器100。控制器100通过基于由踏板行程传感器S/u检测到的制动踏板10的行程距离(或位移)控制马达30,来控制形成在主缸单元40中的油压。

此时,马达30在控制器100的控制下运行,以便基于随制动踏板10被加压由踏板行程传感器S/u和踏板缸压力传感器92输出的信号形成制动油压。

主缸单元40可以包括主活塞41,并且可以形成两个腔室40a和40b。例如,主缸单元40可包括第三腔室40a和第四腔室40b。

轮缸111、112、121和122包括:第一轮缸111,用于制动车辆的左前轮FL;第二轮缸112,用于制动车辆的右前轮FR;第三轮缸121,用于制动车辆的左后轮RL,第四轮缸122,用于制动车辆的右后轮RR。

该装置包括入口阀61至64,用于分别调节供应至第一至第四轮缸111、112、121和122的制动油。出口阀71、72、73和74,用于分别调节由第一至第四轮缸111、112、121和122排放的制动油,设置在第一至第四轮缸111、112、121和122与储存器单元80之间的油压通道中。

油压释放阀51、52、53、54、55和56设置在油压通道中,并在控制器100的控制下打开或关闭。油压释放阀51、52、53、53 54、55和56可包括第一至第六油压释放阀。

第一油压释放阀51设置在将储存器单元80和踏板缸单元20的第一腔室20a联接的油压通道中,并且在控制器100的控制下通过打开或关闭来调节油压。

第二油压释放阀52设置在将踏板缸单元20的第一腔室20a与主缸单元40的第四腔室40b联接的油压通道中,并在控制器100的控制下通过打开或关闭来调节油压。

第三油压释放阀53设置在将踏板缸单元20的第二腔室20b和主缸单元40的第三腔室40a联接的油压通道中,并在控制器100的控制下通过打开或关闭来调节油压。

第四油压释放阀54设置在将主缸单元40的第三腔室40a与第一轮缸111和第二轮缸112连接的油压通道中,并在控制器100的控制下通过打开或关闭来调节油压。

第五油压释放阀55设置在将主缸单元40的第四腔室40b与第三轮缸121和第四轮缸122联接的油压通道中,并在控制器100的控制下通过打开或关闭来调节油压。

第六油压释放阀56(或分流阀)设置在将第四油压释放阀54与第三轮缸121和第四轮缸122联接的油压通道中以及将第五油压释放阀55与第一轮缸111和第二轮缸112联接的油压通道中,并在控制器100的控制下通过打开或关闭来调节油压。

在这种情况下,将联接第四油压释放阀54和第三轮缸121和第四轮缸122的油压通道联接到主缸单元40的第四腔室40b,并将油压引导至分别安装在两个后轮RL和RR上的第三轮缸121和第四轮缸122。此外,将第四油压释放阀54与第三轮缸121和第四轮缸122联接的油压通道包括用于测量油压的第二压力传感器95。在这种情况下,可以省去第二压力传感器95以降低成本。

此外,将联接第五油压释放阀55和第一轮缸111和第二轮缸112的油压通道与主缸单元40的第三腔室40a联接,并将油压引导至分别安装在两个前轮FL和FR上的第一轮缸111和第二轮缸112。此外,联接第五油压释放阀55与第一轮缸111和第二轮缸112的油压通道包括用于测量油压的第一压力传感器90。

第一至第六油压释放阀51、52、53、54、55和56可以是始终运行的阀,并且可以被配置为由控制器100控制的电磁阀。

此外,第六油压释放阀56(或分流阀)是管路分流阀,并且可以在关闭状态下设定为能够保持给定值或更大值的压力的弹簧力。

下面总体描述如上所述配置的ESC集成制动系统的结构。当驾驶员的踏板力施加到制动踏板10上时,踏板缸单元20形成油压。在这种情况下,形成的油压被供应到踏板模拟器21的活塞,并且对踏板模拟器21的弹性体加压。驾驶员的踏板感觉通过加压弹性体的反作用力实现。马达30在控制器100的控制下被驱动,以便基于在制动踏板10被加压时由踏板行程传感器S/u和踏板缸压力传感器92输出的信号形成制动油压。主缸单元40通过由马达30向前和向后移动主活塞41形成制动油压。

下面参考图2-图4描述了,在ESC集成制动系统在正常状态下进行制动时发生主缸单元中制动压力无法控制的故障时,ESC集成制动系统切换到机械备用状态之前,通过控制油压释放阀(以下简称为阀)来防止反冲现象发生的方法。

图2是描述根据实施例的控制ESC集成制动系统的方法的流程图。图3是示出图2的正常状态下的正向压力控制时的操作阀的示意图。图4是示出在切换到图2中的机械备用状态之前的操作阀的示意图。

参照图2,控制器100检查是否可以在主缸单元40中形成制动压力(S101)。

例如,控制器100被配置为使用多个传感器(例如,位置传感器、压力传感器和电流传感器)实时地检查主缸单元40的状态及其致动器(即马达)30的状态。在本实施例中,省略了脱离了本公开的技术主题的用于检查主缸单元40的状态的构造的描述。

如果S101中的检查结果为不能在主缸单元40中形成制动压力(S101中为“否”)(即如果在开始制动之前的待机状态下已经发生故障),则控制器100立即切换到机械备用状态并打开警告灯(S111)。

如果S101中的检查结果为在开始制动之前可以在待机状态下形成制动压力(S101中为“是”),则控制器100检查踏板行程传感器S/u是否产生了所需的制动力(即,检查驾驶员踩踏制动踏板时踏板模拟器是否工作)(S102)。

如果S102中的检查结果是踏板行程为0(S102中为“是”),则表明尚未产生所需的制动力(即,由于驾驶员没有踩踏制动踏板而使踏板模拟器不工作的状态)。因此,控制器100执行初始位置控制(S103)(即,将主液压缸单元保持在初始状态)。

如果S102中检查的结果是踏板行程不为0(S102中为“否”),则表明已经产生了所需的制动力(即,由于驾驶员踩下制动踏板而使踏板模拟器工作的状态)。因此,控制器100计算与踏板行程值相对应的所需压力(S104),并且通过驱动主缸单元40的致动器(即,马达)30来执行与所计算的所需压力相对应的压力控制(S105)。

此时,如果主缸单元40和致动器(即马达)30处于正常状态,则可以形成根据压力控制的压力(即制动压力)(S106中为“是”)。

例如,如果主缸单元40和致动器(即,马达)30处于正常状态,如图3所示,所需制动力的产生需要通过踏板行程传感器S/u检测。所以,在第一油压释放阀51、第三油压释放阀53、第五油压释放阀55和第六油压释放阀56工作的状态下,控制器100通过驱动致动器(即,马达30)来正向操作主缸单元40的活塞,从而形成压力。

如果不能形成根据压力控制的压力(即,制动压力)(S106中为“否”),则意味着在制动期间主缸单元40和致动器(即马达)30发生了故障。在这种情况下,控制器100检查多个预先指定的油压释放阀(即第四和第五油压释放阀54和55)是否处于正常状态(S107)。

如果S107中的检查结果为多个预先指定的油压释放阀(即,第四油压释放阀54和第五油压释放阀55)不处于正常状态(S107中为“否”),这意味着不能执行根据本实施例的反冲防止操作的状态。因此,控制器100立即将预先指定的油压释放阀的状态切换为机械备用状态,并打开警告灯(S111)。

相反,如果S107中的检查结果为多个预先指定的油压释放阀(即第四油压释放阀54和第五油压释放阀55)处于正常状态(S107中为“是”),控制器100控制(即在关闭状态下执行占空控制)多个预先指定的油压释放阀(即第四和第五油压释放阀54和55)(S108)。此外,控制器100控制第六油压释放阀56(或分流阀)(即将第六油压释放阀56的状态切换为关闭状态)(S109)。

作为参考,第四油压释放阀54和第五油压释放阀55是将主缸单元40与回路的流动通道联接并且是常开(NO)阀的油压释放阀。即,NO阀是在不进行控制(即,占空控制)的正常时间处于打开状态,并在控制(即,占空控制)时切换到关闭状态的阀。相反,第一油压释放阀51和第六油压释放阀56中的每一个是在不执行控制(即,占空控制)的正常时间处于关闭状态,并且在控制时切换到打开状态(即,占空控制)的阀。

例如,当在第四油压释放阀54和第五油压释放阀55正常的状态下发生无法通过主缸单元40形成制动压力的故障时(S107中为“是”),控制器100打开警告灯并切断主缸单元40的致动器(即马达)30的输出,并且同时根据来自驾驶员的压力指令值或形成在踏板缸20中形成的压力,通过控制(即,占空控制)来关闭第四油压释放阀54和第五油压释放阀55,并且不操作剩余的油压释放阀。

此外,在继续输入踏板行程的状态下(即踏板行程>0),当由踏板缸压力传感器92(PC1)检测到的踏板缸单元20的压力(即PC1压力)小于由第一压力传感器90(MC1)检测到的回路(即,用于在轮缸111、112、121和122中形成制动压力的阀61至64和71至74的流动通道)的压力(即MC1压力)(S110中为“是”)时,控制器100继续对多个预先指定的油压释放阀(即第四油压释放阀54和第五油压释放阀55)执行控制(即在关闭状态下的占空控制)并控制(即在关闭状态下控制)第六油压释放阀56(或分流阀)(S107至S110)。

此时,当驾驶员额外踩下制动踏板并且压力变为状态PC1>=MC1时,控制器100控制第四油压释放阀54和第五油压释放阀55(例如,将占空比设为0,即控制第四油压释放阀54和第五油压释放阀55处于打开状态)。因此,在踏板模拟器21中形成的压力被传递到回路侧。所以可以执行与驾驶员通过制动踏板输入的所需制动力相对应的制动。

此外,如上所述,即使在主缸单元40的致动器(即,马达)30处于故障状态下,控制器100依然根据驾驶员压力指令值(即,所需制动力)对第四油压释放阀54和第五油压释放阀55进行控制(即在打开状态下逐渐进行占空控制)。因此,如果驾驶员缓慢释放制动踏板,则不会发生反冲现象,因为回路的压力也会基于驾驶员的制动意图而逐渐降低。

即,对多个预先指定的油压释放阀(即第四油压释放阀54和第五油压释放阀55)的控制(即占空控制)和对第六油压释放阀56(或分流阀)的连续控制(S107至S110)意味着驾驶员没有踩踏制动踏板(即,没有产生所需的制动力)或者踏板缸压力传感器92(PC1)检测到的踏板缸单元20的压力(即PC1压力)等于或大于由第一压力传感器90(MC1)检测到回路(即用于在轮缸111、112、121和122中形成制动压力的阀61至64和71至74的流动通道)的压力(即MC1压力)。

因此,当驾驶员没有踩踏制动踏板(即,没有产生所需的制动力)或由踏板缸压力传感器92(PC1)检测到的踏板缸单元20的压力(即PC1压力)等于或大于回路(即用于在轮缸111、112、121和122中形成制动压力的阀61至64和71至74的流动通道)的压力(即MC1压力)时,控制器100将阀的状态切换为机械备用状态,并打开警告灯(S111)。

如上所述,根据本实施例,当在ESC集成制动系统在正常状态下进行制动时主缸单元40中发生了制动压力无法控制的故障时,ESC集成制动系统不会立即切换到机械备用状态,而是控制第四油压释放阀54和第五油压释放阀55,直到驾驶员释放制动踏板或踏板模拟器21的压力与回路侧的压力相等为止。因此,本实施例具有可以防止反冲现象发生的效果。

根据本公开的一个方面,当发生在主缸单元中无法通过致动器形成压力的故障时,ESC集成制动系统切换到机械后备状态,在该状态下,仅由驾驶员的踏板力产生制动力。因此,可以通过在主缸单元上形成液流流入踏板模拟器,从而在踏板模拟器中形成突然的压力,防止反冲现象的发生。

上面已经参考附图中图示的实施例描述了本公开,但是实施例仅是说明性的。本公开所属领域的普通技术人员将理解,源自实施例的各种修改和其他等效实施例是可能的。因此,本公开的保护技术范围应由所附权利要求确定。此外,在本说明书中描述的实施方式可以实现为,例如方法、过程、装置、软件程序、数据流、信号。尽管仅在单一形式的实现方式的背景下讨论了本公开(例如,仅作为一种方法讨论),但是所讨论的特征也可以以另一种形式(例如,装置或程序)来实现。该设备可以被实现为适当的硬件、软件或固件。例如,该方法可以在诸如处理器等通常指处理设备的装置中实现,包括计算机、微处理器、集成电路或可编程逻辑设备。处理器也包括通信设备,例如计算机、蜂窝电话、移动电话/个人数字助理(personal digital assistant,PDA)以及其它有助于终端用户之间信息通信的设备。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:操作用于使车辆的减速器联接及断开联接的分离离合器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类