一种流感病毒抑制剂

文档序号:127189 发布日期:2021-10-22 浏览:25次 >En<

阅读说明:本技术 一种流感病毒抑制剂 (Influenza virus inhibitor ) 是由 许铮 李响 熊国裕 吴朋伟 于 2021-03-10 设计创作,主要内容包括:本发明涉及一种流感病毒抑制剂,以及该该抑制剂在流行性感冒病毒感染后的患者中的治疗作用。(The present invention relates to an influenza virus inhibitor and the therapeutic effect of the inhibitor in patients after influenza virus infection.)

一种流感病毒抑制剂

技术领域

本发明属于化学药物领域,具体涉及一种具有帽依赖性核酸内切酶抑制活性的化合物,以及该该化合物在流感治疗方面的应用。

背景技术

流感病毒每年导致一种传染病,全世界有29万至65万人死亡,300万至500万人患有严重疾病。此外,由新出现的重组病毒引起的流行病可能对全球产生毁灭性的影响。因此,有必要继续努力改进疫苗和抗病毒药物作为对策。目前有两类抗病毒药物可供临床使用:神经氨酸酶抑制剂(NAIs:奥司他韦、扎那米韦、帕拉米韦)和M2离子通道抑制剂(金刚烷胺、金刚乙胺)。然而,目前流行的流感病毒在很大程度上对M2抑制剂s3具有耐药性。此外,NAIs的抗病毒能力相对较弱,这类药物的另一个担忧是耐药性的出现,就像2008年至2009年耐奥司他韦的H1N1流感流行季节一样。因此,流感病毒感染的治疗和预防需要更有效的抗病毒药物,具有新的作用机制。

流感病毒的异三聚体RNA依赖性RNA聚合酶(RdRp)由PA、PB1和PB2亚基组成。它负责在被感染细胞的细胞核中复制和转录分段的单链病毒RNA基因组(vRNA)。病毒mRNA的转录是通过一种独特的“抢帽”机制进行的。这涉及到通过将初生的封顶转录本与PB2子单元结合,然后在核苷酸处被PA子单元中的依赖于cap的内切酶(CEN)切割,从而实现对宿主RNA聚合酶的高劫持。由PB1 subunit1的RdRp功能产生的短的、带cap酶的寡聚物作为病毒mRNA转录的引物。病毒转录本在模板vRNA保守的富集区域被一种机制聚腺苷酸化,以在核输出后转化为功能蛋白。由于抢帽是病毒复制的必要条件,因此cap-binding、endonuclease和RdRp活性都是小分子抑制物的有吸引力的靶点,实际上有几种针对聚合酶的新化合物正在积极的临床开发中。2014年,一种RNA合成抑制剂Favipiravir(Avigan)在日本获得批准,尽管该适应症仅限于治疗对其他药物没有反应的新型流感病毒。Pimodivir(JNJ-63623872,VX-787)是一种PB2 cap-binding inhibitor,它单独与奥司他韦联合用于简单流感的病毒学疗效,但仅对A型流感病毒有效。因此,仍然需要继续努力发现和开发性能更好的流感药物。

发明内容

本发明的目的,在于提供一种全新的具有帽依赖性核酸内切酶抑制活性的化合物或其立体异构体或可药用盐,所述化合物具有如下结构:

其中,

所述Ra与Rb形成任选被取代基组A取代的4-7元杂环,并且其中所述杂环具有与该杂环共用一个碳原子的环外双键,优选具有环外碳氮双键;

Pa为氢、氘或形成前药的取代基团;

R2各自独立地为氢、氘、卤素、羟基、烷基、卤代烷基、或烷氧基;

M为0~2的整数;

取代基组A独立地选自氢、卤素、羟基、羧基、甲酰基、低级烷基、卤代低级烷基、低级烷基氧基、卤代低级烷基氧基、低级烷基氧基低级烷基、低级烷基氧基低级烷基氧基、低级烷基羰基、低级烷基氧基羰基、低级烷基氨基、低级烷基羰基氨基、低级烷基氨基羰基或氨基低级烷基。

一个优选的实施方案中,本发明所述化合物或其立体异构体或可要用盐,具有如下结构式

其中R1选自H、-CH3、-CH2-O-CH3

R2各自独立地为氢、氘、卤素、羟基、烷基、卤代烷基、或烷氧基;

M为0~2的整数。

一个具体的实施方案中,本发明所述的化合物或其立体异构体或可要用盐,可以具有如下结构之一:

其中所述Pa为氢或形成前药的取代基团。:

形成前药的取代基团Pa选自如下结构:

(1)-C(=O)-PR0、-C(=O)-L-PR0、-C(=O)-L-O-PR0、-C(=O)-L-O-L-PR0

(2)-C(=O)-O-PR1、-C(=O)-O-L-PR1、-C(=O)-N-PR1

(3)-C(PR2)2-O-PR3、-C(PR2)2-O-C(=O)-O-PR3

所述L为直链或直链状的亚烷基、或者直链或智利安装的亚希基;

所述PR0为氢或任选被取代基Q取代的烷基、任选被取代基Q取代的烯基、任选被取代基Q取代的碳环基、任选被取代基Q取代的杂环基、任选被取代基Q取代的烷基氨基、或任选被取代基Q取代的烷基硫基;

PR1、PR3各自独立地为氢、氘或被取代基Q取代的烷基、任选被取代基Q取代的碳环基、任选被取代基Q取代的杂环基、任选被取代基Q取代的碳环烷基、任选被取代基Q取代的杂环烷基、或任选被取代基Q取代的烷基甲硅烷基;

PR2为氢、氘或烷基;

取代基Q为氢、氘、氧代基、烷基、羟基烷基、氨基、烷基氨基、碳环基、杂环基、碳环烷基、烷基羰基、卤素、羟基、羰基、烷基羰基氨基、烷基羰基氨基烷基、烷基羰氧基、烷氧基羰基、烷氧基羰基烷基、烷氧基羰氧基、烷基氨基羰氧基、烷基氨基烷基、烷氧基、氰基、硝基、叠氮基、烷基磺酰基、三烷基甲硅烷基或磷酰基。

一个更为优选的实施方案是,所述的PR基为:

-C(=O)-CH3、-C(=O)-O-(CH2)2-O-CH3、-CH2-O-C(=O)-CH3、-CH2-O-C(=O)-O-CH3、-CH2-O-C(=O)-O-CH2CH3、-CH(CH3)-O-C(=O)-O-CH3、-CH2-O-C(=O)-CH(CH3)-NH-C(=O)-O-C(CH3)3、CH2C6H5

优选地,当其为前药时,Pa的具体结构为

如具有如下结构的前药:

本发明还公开了具有如下结构式的化合物,

一个具体的实施方案中,本发明所述化合物或其立体异构体或可以药用盐,也可以是上结构的前药形式,列举性的取代基Pa可以是如下结构

形成前药后的示范性结构如:

本发明还涉及一种药物组合物,包含本发明所述化合物或其药学上可接受的盐,以及药学上可接受的载体。

本发明公开内容的药物组合物可以通过口服、胃肠外或通过植入贮库进行给药。如再次使用的术语胃肠外包括皮下、皮内、静脉内、肌内、关节内、滑膜内、胸骨内、鞘内和损伤区注射或输液技术。

药物组合物可以以无菌可注射制剂的形式,例如,以无菌可注射含水或含油悬浮液的形式。可以根据本领域已知的技术使用合适的分散剂或润湿剂以及悬浮剂配置这种悬浮液。关于这些化合物的制备细节是本领域熟练技术人员已知的。

当口服给药时,本发明公开内容的药物组合物可以以任何口服可接受的剂型给药,所述剂型包括,但不限于,胶囊、片剂和含水混悬液和溶液。在口服运用片剂的情况中,通常使用的载体包括乳糖和玉米淀粉。还可以加入润滑剂如硬脂酸镁。对于以胶囊形式进行的口服给药,有用的载体/稀释剂包括乳糖、高和低分子量聚乙二醇和干玉米淀粉。当含水混悬液口服给药时,所述活性成分与乳化剂和混悬剂混合。如果需要的话,可以加入某些甜味剂和/或调味剂和/或着色剂。

用于上述组合物的其它适宜载体可以在标准药物教课书中找到,例如在“Remington’s Pharmaceutical Sciences”,19th ed.,Mack Publishing Company,Easton,Penn.,1995中。本领域技术人员已知所述公开内容的关于药物组合物的适宜递送形式的设计和制备的更多细节。

本发明中,除包含本发明所述化合物或其药学上可接受的盐外,还可以包含有其它抗流感病毒类化合物,如神经氨酸酶抑制剂、核苷类药物、PB2抑制剂、PB1抑制剂、M2抑制剂或其它抗流感药物等。

在用于预防和/或治疗流感病毒感染时,本发明公开内容中的化合物的剂量水平典型地在约1至约500毫克每千克(mg/kg)体重每日,更具体地说,在约1至约50mg/kg体重每日。典型地,本发明公开内容中的药物组合物可以每天给药约1次-约3次,优选地是流感发生前或发生后服用一次。或者作为连续输液的形式给药,这样的给药可以作为慢性或急性疗法使用。可以与载体材料混合以制备单一剂型的活性成分的数量将随所治疗的宿主和具体的给药方式而改变。

另一方面,本发明涉及一种制品或药盒,包含容器和包装插页,其中所述容器中转悠本发明所述的具有结晶形式的式II结构的化合物,或包含结晶形式的式II结构化合物的组合物,所述包装插页上载有药物的使用说明书。在一个优选的实施方案中,该制品或药盒进一步包含一个或多个容器,该容器中装有一种或多种预防或治疗流感病毒感染的其它抗病毒药物。在一个优选的实施方案中,所述其它药物为N神经氨酸酶抑制剂、核苷类药物、PB2抑制剂、PB1抑制剂、M2抑制剂或其它抗流感药物等。

术语定义:

除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的相同的含义。

术语“未取代的”,当其用于限定某个基团时,意思是,该限定的基团没有为氢原子之外的其它基团所取代,此时该某个基团具有按照本发明所属领域的普通技术人员通常理解的相同含义。例如,未取代的杂环基,是指杂环上的氢原子没有被任何其它基团所取代,比如呋喃、吡啶、二氢吡啶等。

术语“取代的”,当其用于限定某个基团时,意思是,其限定的基团上的某1个、2个、3个或更多个氢原子被取代基的取代,1个、2个、3个或更多个氢原子,可以是同一个碳(或氮)原子上的氢原子,也可以是不同碳(或氮)上的氢原子,此时该某个基团的含义应结合取代基来理解,本发明中,除非特别说明,当提及“取代的”,意指有其由限定的基团中的氢原子由选自下列中的某一个、2个、3个或更多个取代基所取代:

氰基、卤素、羟基、羧基、酯基、酰胺基、磺酰胺基、胺基、甲酰基、低级烷基、低级烃基、低级炔基、卤代低级烷基、羟基取代的低级烷基、环烷基、芳基、杂环基、芳基低级烷基、杂环基低级烷基、低级烷基氧基、卤代低级烷基氧基、低级烷基氧基低级烷基、低级烷基氧基低级烷基氧基、低级烷基羰基、低级烷基氧基羰基、低级烷基氨基、低级烷基羰基氨基、低级烷基氨基羰基、低级烷基磺酰基、低级烷基磺酰基氨基、羧基低级烷基氧基、芳基低级烷基氧基。

在涉及到具体命名时,取代基通常置于被取代的基团之前,如“羧基亚甲基氧基”指氧基被亚甲基取代,二而亚甲基又被羧基取代,其结构可表示为:

术语“立体异构体”是指由分子中原子在空间上排列方式不同产生的异构体,包括顺反异构体、对映异构体和构象异构体。所有立体异构体均属于本发明的范围,本发明的化合物可以为单独立体异构体或其它异构体的混合物,如外消旋体,或者所有其它立体异构体的混合物。

术语“盐”是指本发明化合物与酸形成的药学上可接受的盐,如可以是有机或无机盐,比如选自:盐酸、硫酸、磷酸、硝酸、富马酸、柠檬酸、马来酸、苯磺酸、磺酸、苹果酸、琥珀酸、乳酸、乙酸、丙二酸等。

术语“烃基”包括烷基或烃基(如烯基或炔基)。

烷基是指直连或支链或环状的饱和的由碳和氢构成的取代基,低级烷基是指由1-6个碳原子构成的烷基。烯基是指直连或支链或环状的不饱和的由碳和氢构成的取代基,低级烯基是指由1-6个碳原子构成的烯基;炔基是指直连或支链的不饱和的由碳和氢构成的取代基,低级炔基是指由1-6个碳原子构成的炔基。取代的烷基(或取代的烃基)是指烷基上的一个或一个以上的氢原子被其它基团如卤素、羟基、羧基、氰基、环烷基、芳基、杂芳基、氧代、杂环烷氧基等取代。

术语“环烷基”指饱和或不饱和单环烃基,一般包含3-20个碳原子,环烷基可以是单环,也可以是螺环、桥环、稠环或并环。

术语芳基不仅包含碳环芳基,也包含杂环芳基。碳环芳基指6-10元全碳环或多环芳香基团,包括苯基、萘基、联苯基等,碳环芳基也可以是取代或未被取代的。杂环芳基是指含有至少一个杂原子的杂芳香体系基团,包括单环杂环芳基或稠环杂环芳基,杂原子选自氧、硫或氮,包括但不限于呋喃、噻吩、吡咯、噻唑等,杂芳基可以是取代或未被取代的。

术语“杂环基”是指至少含有一个杂原子的环烷基饱和或不饱和单环烃基

附图说明

图1为不同化合物对流感病毒感染后的小鼠的体重变化图。

图2为不同化合物对流感病毒感染后的小鼠的生存率变化图。

图3为不同化合物对流感病毒感染后(感染24小时后给药)的小鼠体重变化图。

图4为不同化合物对流感病毒感染后(感染36小时后给药)的小鼠体重变化图。

图5为不同化合物对流感病毒感染后(感染48小时后给药)的小鼠体重变化图。

图6为不同化合物对流感病毒感染后(感染24小时后给药)的小鼠生存率变化图。

图7为不同化合物对流感病毒感染后(感染36小时后给药)的小鼠生存率变化图。

图8为不同化合物对流感病毒感染后(感染48小时后给药)的小鼠生存率变化图。

具体实施方式

以下列举本发明化合物的一般制造方法,另外,萃取、纯化等只要进行通常邮寄化学的实验中进行处理即可。

本发明化合物的合成可以参考本领域中公知的步骤进行实施。

原料化合物可以使用市售的化合物、本说明书中记载的化合物、本说明书中引用的文献中记载的化合物,和其它公知化合物。

本发明化合物中,可以存在互变异构体,本发明含有这些化合物,包含其所有可能的异构体和它们的混合物。

当欲获得本发明化合物的盐时,对于本发明的化合物,可以制备成适合的盐的形式。

各缩写的意思

DMF:N,N-二甲基甲酰胺

DMA:N,N-二甲基乙酰胺

DMS:二甲基硫

NMP:N-甲基吡咯烷酮

DMI:二甲基咪唑啉酮

THF:四氢呋喃

Boc:叔丁氧基羰基

PPTS:吡啶对甲苯磺酸盐

PPA:苯丙醇胺

pd(pph3)4:四(三苯基膦)钯

DBU:1,8-二氮杂双环[5.4.0]-7-十一碳烯

T3P:丙基磷酸酐

MSA:甲基磺酸

TsOH:对甲苯磺酸

Tos:对甲苯磺酰基

Tol:对甲基苯甲酸

DIBALH:二异丁基氢化铝

Alloc-Cl:烯丙基氯甲酸酯

HATU:O-(7-氮杂苯并三唑-1-基)-N,N,N’,N’-四甲基脲六氟磷酸盐

NaBH4:硼氢化钠

n-BuLi:正丁基锂

NBS:N-溴琥珀酰亚胺

NCS:N-氯琥珀酰亚胺

DMAP:4-二甲基氨基吡啶

DIPEA:二异丙基乙基胺

TBAF:四丁基氟化铵

NAHMDS:六甲基二硅基胺基钠

TFA:三氟乙酸

化合物I-2的制备:将化合物SM2溶于、乙二醇

实施例1:化合物I-2(12)的合成

化合物1的合成:

将2,4-哌啶二酮(40g,353mmol,1eq),乙二醇(44.6g,707mmol,2eq),一水合对甲苯磺酸(13.4g,70.7mmol,0.1eq)溶到盛有1000ml甲苯的反应瓶中,然后加热120度,分水器除水。120度搅拌3小时。将反应液浓缩后倒入800.0mL甲醇,有固体析出,过滤,将滤液减压浓缩得到粗品。将粗品通过柱层析(MeOH:DCM=0-5%)纯化得到化合物1(32g,203mmol,57.7%yield),白色固体。

化合物2的合成

在-78度氮气氛围下,向化合物1(32g,203mmol,1.00eq)的THF(600ml)溶液中慢慢加入2.5M正丁基锂-正己烷溶液(81ml)。并将混合物在-78度搅拌反应2小时。氯甲酸烯丙酯(24.3g,203mmol,1.00eq)滴加到反应液里,-78度搅拌反应2小时。将反应液倒入800mL氯化铵水溶液中,然后用乙酸乙酯(1000mL)萃取,合并的有机相用饱和食盐水(1000mL)洗涤后旋干。将浓缩后的粗品通过柱层析(DCM/EA=0-20%)纯化后得到化合物2(17.3g,70.7mmol,38.5%yield),无色油状物。

化合物3的合成

在-78度氮气氛围下,向化合物2(17.3g,70.7mmol,1.00eq)的THF(300ml)溶液中加入1M二异丁基氢化铝正己烷溶液(105ml,1.5eq)。并将混合物在-78度搅拌反应2小时。将反应液用40ml丙酮和50ml甲醇淬灭。倒入200mL氯化铵水溶液中,然后用乙酸乙酯(600mL)萃取,合并的有机相用饱和食盐水(600mL)洗涤后旋干。将浓缩后的粗品通过柱层析(DCM/EA=0-20%)纯化后得到化合物3(12.5g,51.4mmol,72.7%yield),无色油状物。

化合物4的合成

将化合物3(12.5g,51.4mmol,1.00eq)与乙腈(120mL),碳酸铯(34.6g,102mmol,2eq)和碘甲烷(14.5g,102mmol,2eq)的混合液室温搅拌16小时。倒入200mL氯化铵水溶液中,然后用乙酸乙酯(500mL)萃取,合并的有机相用饱和食盐水(500mL)洗涤后旋干。将浓缩后的粗品化合物4(12.3g,50.4mmol,98.7%yield),无色油状物。粗品直接用于下一步。

化合物6的合成

在氮气氛围下,向化合物4(12.3g,50.4mmol,1.00eq)的乙腈(300ml)溶液中加入化合物5(14.5g,50.4mmol,1.00eq)。并将混合物在-2度搅拌反应10分钟。四氯化锡(19.3g,75mmol,1.50eq)滴加到反应液里,-25度搅拌反应1小时。将反应液倒入800mL碳酸氢钠水溶液中,然后用二氯甲烷(1000mL)萃取,合并的有机相用饱和食盐水(1000mL)洗涤后旋干。将浓缩后的粗品通过柱层析(DCM/MeOH=0-5%)纯化后得到化合物6(8.3g,16.1mmol,32.1%yield),棕色固体。

化合物8的合成

在化合物6(8.3g,16.1mmol,1.00eq)与THF(100mL)的混合液中加入吗啉(7g,80.5mmol,5eq)和四三苯基膦钯(3.73g,3.23mmol,0.2eq),然后反应液在20-30度下搅拌16小时。向反应液加入300ml乙醚。过滤后滤饼蒸干得到5.9g粗品。3g粗品经过手型制备(SFCColumn:CHIRAL ART Cellulose-SB,5*25cm,10μm;Mobile Phase A:CO2,Mobile Phase B:MeOH:ACN=1:1(0.1%2M NH3-MeOH);Flow rate:250mL/min;Gradient:isocratic 50%B;Column Temperature(℃):35;Back Pressure(bar):100;Wave Length:254nm)得到化合物8(1.3g,3.4mmol,21.4%yield),黄色固体。

化合物9的合成

在氮气氛围下,向化合物8(1.3g,3.4mmol,1.00eq)的乙酸乙酯(10ml)溶液中加入化合物A5(0.9g,3.4mmol,1.00eq)。并向混合物加入50%wt 1-丙基磷酸酐的乙酸乙酯溶液(4.3g,6.8mmol,2eq)和甲磺酸(96mg,6.8mmol,2eq),70度搅拌反应1小时。将反应液倒入80mL碳酸氢钠水溶液中,然后用二氯甲烷(100mL)萃取,合并的有机相用饱和食盐水(100mL)洗涤后旋干。将浓缩后的粗品得到化合物9(1.6g,2.5mmol,74.7%yield),棕色固体。

化合物10的合成

向化合物9(1.6g,2.5mmol,1.00eq)中加入5ml乙腈,5ml浓盐酸,5ml水。70度搅拌反应10分钟。向反应液倒入20mL碳酸钾水溶液,然后用二氯甲烷(100mL)萃取,合并的有机相用饱和食盐水(100mL)洗涤后旋干。将浓缩后的粗品通过制备(Column:XBridge PrepOBD C18 Column,30*150mm,5μm;Mobile Phase A:Water(0.05%TFA),Mobile Phase B:ACN;Flow rate:80mL/min;Gradient:55%B to 55%B in 14min;Wave Length:220nm;RT1(min):13;Number Of Runs:0)得到0.8g黄色固体。

化合物11的合成

向化合物10(0.045g,0.76mmol,1.00eq)的乙腈(10ml)溶液中加入甲基羟胺盐酸盐(0.062g,7.6mmol,10eq),碳酸铯(0.13g,3.8mmol,5eq)。25度搅拌反应16小时。将反应液倒入20mL碳酸氢钠水溶液中,然后用二氯甲烷(50mL)萃取,有机相用饱和食盐水(50mL)洗涤后旋干。将浓缩后的粗品得到化合物11(0.029g,0.45mmol,59.6%yield),白色固体。

化合物I-2的合成

向化合物11(0.029g,0.45mmol,1.00eq)的N,N-二甲基乙酰胺(10ml)溶液中加入氯化锂(0.016g,4.5mmol,10eq)。70度搅拌反应2小时。LCMS显示化合物12生成。

依据上述方法,可合成得到如下化合物:

实施例2:化合物I-21的制备

实施例3化合物I-28的合成

依据上述方法,可合成得到如下化合物:

实施例4:化合物I-32的合成

实施例5:化合物I-2前药(II-2)的合成

向化合物II-1(52.5mg,0.1mmol)、氯甲基甲基碳酸酯(25mg,0.2mmol),碳酸钾(28mg,0.2mmol)和碘化钾(3mg,0.02mmol),在N,N-二甲基甲酰胺溶液中于50℃反应5小时,TCL检测反应完全,加水淬灭反应,然后用1N稀盐酸调pH至3-4,土体过滤后干燥,柱层析得化合物II-2(32.8mg)。

同样的方法,也可以制备其它药的前药.

实施例6:体外细胞抑制试验

如下进行CPE抑制试验以评估测试化合物抑制帽依耐性核酸内切酶活性的效力。

将96孔组织培养板中的MDCK细胞与测试化合物和A型流感(IFV A/WSN/33(H1N1))在低感染率下于37℃培养72小时,通过添加0.5%甲醛来固定培养板,然后用0.5%结晶紫染色,随后,用微盘分析仪(Multiskan Ascent,Thermo)测波长570nm的吸光值,相对于病毒对照组,测试化合物将病毒诱导的CPE降低50%所需的浓度,表示50%有效剂量(EC50),以及CC50值。

用CPE抑制试验评估各化合物,其中,对IFV A/WSN/33流感病毒,化合物2、3和4的CE50值小于10nM,而化合物6几乎无活性(化合物28-32几乎失去活性)。

表1各候选化合物对IFV A/WSN/33的抑制活性

实施例7:体内抗流感病毒药学学实验

动物:7周龄,无特定病原体级别的雌性BALB/c小鼠,购于上海灵畅生物科技有限公司,于2020年7月23日到达南通药明康德医药科技有限公司生物部动物房,并饲养于独立通风笼盒中。小鼠的饲养及使用按照药明康德IACUC批准的实验方案(动物使用方案号:ID01-QD031-2020v1.0)。3-4天的环境适应期后,取合格动物用于实验。

甲型流感病毒:WSN/33(H1N1),原株购买于Virapur,货号:F-1003A。使用株为药明康德生物部扩增,批次号:20200518YNRP70.03。滴度:6.80E+05PFU/mL。

受试化合物:实验药物为前药结构,分别为II-00、II-01、II-1、II-2和II-33,待测化合物为粉末,配制方法如下:根据配置浓度,准确称量适量供试品,依次加入适量体积的PEG 400和30%Solutol HS-15水溶液,逐步涡旋超声至化合物分散均匀,再加入适量体积0.9%氯化钠注射液涡旋均匀获得分布均一的溶液(或混悬液)。将配置好的混悬液,存放于4℃,每次使用前取出涡旋后备用。

病毒接种:取出甲型流感病毒WSN/33株储备液于37℃水浴锅中快速融化,用无菌DPBS稀释至接种所需浓度:6.0*104p.f.u./mL。第0天,腹腔注射舒泰50/速眠新Ⅱ麻醉剂进行小鼠麻醉,随后经滴鼻的方式接种病毒,每只动物的接种量分别为3.0*103p.f.u.,接种体积为50μL。

给药:用化合物或溶剂处理小鼠。口服每天2次给药,给药体积为10mL/kg,首次给药时间为病毒接种后24小时,连续给药5天,对照组给予等体积溶媒。

分组:按照实验设计,将动物分成6组,每组6只小鼠,第6组(溶剂对照)5只小鼠

人道终点:根据IACUC方案规定,实验期间任何小鼠体重下降超过35%(以第0天体重为基准体重),或/以及表现出濒死症状,将被执行安乐死,并在结果中记为死亡动物。

观察及结果:第0-14天:每日记录动物体重,观察动物健康及存活状况,通过小鼠体重变化及小鼠存活率评价受试化合物在甲型流感病毒小鼠感染模型中的体内药效结果见图1及图2。

体重变化影响:从图1结果可知,溶媒组小鼠体重从第3天开始出现显著下降,随后持续下降至死亡或到人道终点;II-00、II-2药物组能够保护小鼠免受因病毒感染引起的体重下降,小鼠体重基本保持稳定;II-33及II-01药物组能够缓解因病毒感染引起的体重下降,存活小鼠体重分别从第9天和第8天开始恢复;II-1药物组与溶媒组相似,对应病毒引起的体重下降的小鼠没有任缓解作用。

存活率影响:从图2结果可知,溶媒组小鼠从第6天开始出现死亡,并于第10天全部死亡,中位生存期为7天,最终存活率为0%;II-1组小鼠在第9天出现死亡,并于第11天全部死亡,中位生存期为9天,最终存活率为0%;II-01组小鼠在第3天出现死亡,最终存活率为66.67%;其它组小鼠均未出现死亡,最终存活率均为100%。

实施例8:给毒后不同时间给药体内抗流感病毒药学学实验

受试化合物:实验药物为前药结构,分别为II-00、II-1和II-2,其中II-2化合物组分两个剂量。

给药:用化合物或溶媒处理小鼠。口服每天2次给药,给药体积为10mL/kg,首次给药时间分别为病毒接种后24小时、36小时、48小时,连续给药5天。

分组:按照实验设计,将动物分成13组,每组6只小鼠。

观察及结果:第0-14天:每日记录动物体重,观察动物健康及存活状况,通过小鼠体重变化及小鼠存活率评价受试化合物在甲型流感病毒小鼠感染模型中的体内药效结果见图3、4及图5。

受试化合物在模型中对小鼠体重的保护(见图3、4和5)

溶媒组:小鼠病毒接种后,体重从第3天开始出现明显下降,随后持续下降,直至动物自然死亡或被执行安乐死。

受试化合物II-2(0.5mpk、5mpk)组:化合物II-2低、高剂量给药组在病毒接种24和36小时后开始给药,小鼠体重基本维持稳定,未见明显体重下降;在病毒接种48小时后开始给药,低剂量给药组小鼠体重在第3天出现明显下降,并于第7天降至最低,最大降幅为-9.2%,随后开始恢复,直至正常水平(效果相当于化合物II-00的5mpk剂量组);高剂量给药组小鼠体重在第3天出现下降,最大降幅为-4.7%,随后开始恢复,并于第5天恢复至正常水平。

受试化合物II-00(5mpk)组:化合物II-00在病毒接种24小时后开始给药,小鼠体重基本维持稳定,未见明显体重下降。在病毒接种36和48小时后开始给药,小鼠体重分别在第6天和第3天出现显著下降,均在实验第7天降至最低,最大降幅分别为-5.7%和-10.3%,随后开始恢复,直至正常水平。

受试化合物II-1(5mpk)组:化合物II-1在病毒接种24小时后开始给药,小鼠体重从第3天开始出现显著下降,随后持续下降至死亡或被执行安乐死。

受试化合物在模型中对小鼠存活的保护(图6、图7和图8)。

溶媒组:小鼠在感染后第8天出现死亡,并于第9天全部自然死亡或被执行安乐死,中位生存期为8.5天,最终存活率为0%。

受试化合物II-2(0.5mpk,5mpk)组:实验期间均未见小鼠死亡,终点存活率均为100%。

受试化合物II-00(5mpk)组:病毒接种24和36小时后开始给药组均未出现动物死亡,最终存活率均为100%;病毒接种48小时后开始给药组小鼠在实验第8天出现死亡,终点存活率为83.33%。

受试化合物II-1(5mpk)组:小鼠于第7-11天全部死亡,最终存活率为0%,中位生存期为8.5天。

26页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种有机化合物及其应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!